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Ever since the discovery of insulin and its role in the regulation of glucose uptake and utiliza-
tion, there has been great interest in insulin, its structure and the way in which it interacts
with its receptor and effects signal transduction. As the 90th anniversary of the discov-
ery of insulin approaches, it is timely to provide an overview of the landmark discoveries
relating to the structure and function of this remarkable molecule and its receptor.
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INSULIN
DISCOVERY OF INSULIN: 1922
Frederick Banting made the first public presentation of the dis-
covery of insulin to the Association of American Physicians in
1922 (Banting et al., 1922). The remarkable story of the Toronto
group of Banting, Charles Best, James Collip, and John Macleod
and their monumental finding is now well documented (Bliss,
1982; Rosenfeld, 2002; King, 2003). The discovery was followed
shortly after by the successful large-scale production of insulin in
1923 by the USA company Eli Lilly, resulting from a collabora-
tion between the Toronto researchers and the company’s director
of biochemical research George Clowes. This was followed rapidly
by the treatment of patients with insulin produced in Copenhagen.
August Krogh, a doctor and researcher in metabolic diseases, and
his wife Marie, a type II diabetic, had heard about Banting and
Best’s research while touring the USA in late 1922 and were granted
permission to produce insulin in Denmark. On his return to Den-
mark, Krogh, together with Hans Christian Hagedorn, founded
the Nordisk Insulinlaboratorium with the financial support of
pharmacist August Kongsted. In December 1922, the Nordisk lab-
oratory successfully extracted a small quantity of insulin from
a bovine pancreas and the first patients were treated in 1923
(Novo Nordisk, 2009). The commercial availability of insulin
then rapidly revolutionized the treatment of diabetes. The various
forms of insulin developed over the next 80 years included mono-
component forms, human mono-component forms (derived from
porcine insulin and converted chemically to human insulin),
biosynthetic human insulins (produced by genetic engineering
and microbial expression), and long-acting insulins (Brange et al.,
1990; King, 2003).

PHYSICOCHEMICAL CHARACTERIZATION: 1926–1953
Early insulin research centered on methods for its extraction
in the purest possible form from animal pancreas tissue and
on methods for its large-scale production. The physicochemical

characterization of insulin then followed over the subsequent
two-and-a-half decades. Milestones included the crystallization
of insulin (Abel, 1926), the determination of its molecular weight
(Sjögren and Svedberg, 1931), and the demonstration that it con-
sisted of a pair of disulfide-linked polypeptide chains, namely the
acidic chain A and the basic chain B (Sanger, 1949). In 1953,
Dorothy Crowfoot demonstrated that insulin crystals diffracted
X rays (Crowfoot, 1935), deducing at the same time the likely
dimensions of the insulin molecule.

PRIMARY STRUCTURE DETERMINATION: 1953
The chemical structure of the two-chains of the mature human
insulin molecule was determined by Frederick Sanger and col-
leagues and described in a series of four papers in the early 1950s
(Sanger and Tuppy, 1951a,b; Sanger and Thompson, 1953a,b).
Insulin was the first protein to have its sequence determined and
in 1958 Sanger was awarded his first Nobel Prize in Chemistry
for this achievement. The pioneering study showed that human
insulin B-chain consisted of 30 amino acids and the A-chain of
21 amino acids, with the B- and A-chains being held together by
the two disulfide bonds CysB7 to CysA7 and CysB19 to CysA20,
with a third intra-chain disulfide bond linking CysA6 to CysA11
(Figure 1).

DEMONSTRATION OF BIOSYNTHESIS FROM A SINGLE-CHAIN
PRECURSOR: 1967
The processes involved in insulin biosynthesis were elucidated
by Donald Steiner and colleagues in the late 1960s and have
been recently reviewed by him in a “reflections” article (Steiner,
2011). Steiner showed, by incubating tissue slices from a rare
insulin-producing adenoma of the pancreas in a medium con-
taining tritium-labeled leucine and phenylalanine, that extracts
from these incubated samples contained insulin as well as a higher
molecular weight component of 9–10 kDa. This higher molecular
weight component was then shown to consist of a single-chain
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polypeptide that he called “proinsulin.” Proinsulin contained the
B-chain at its N-terminus and the A-chain at its C-terminus, with
a connecting segment, the C-peptide, in the middle (Figure 1).
The first reports of these findings were in 1967 (Steiner and Oyer,
1967; Steiner et al., 1967), with the sequence of porcine proinsulin
being reported in 1968 by Chance et al. (1968) from Eli Lilly.

The identification and characterization of the subtilisin-like
convertases that carry out the proteolytic removal of the C-peptide
to yield the two-chain insulin molecule (Smeekens and Steiner,
1990; Smeekens et al., 1991) was a major challenge and took a
further 20 years (Steiner, 2011).

It is now recognized that human insulin is part of a larger
family of sequence-related hormones that comprises insulin, the
insulin-like growth factors IGF-I and IGF-II, the relaxin peptides
relaxin-1, -2, and -3 and the insulin-like peptides INSL3, INSL4,
INSL5, and INSL6 (Shabanpoor et al., 2009). The two IGFs each
contain a single polypeptide chain, while each of the remaining
members of the family contains a pair of chains resulting from the
proteolytic processing of a single-chain precursor. All members
of the family exhibit the same disulfide-bonding pattern that was
determined originally for human insulin.

DETERMINATION OF THE THREE-DIMENSIONAL STRUCTURE: 1969
The crystal structure of porcine insulin was first determined
by Dorothy Hodgkin (née Crowfoot) and colleagues in 1969
as the 2Zn2+-stabilized hexamer at 2.8 Å resolution (Adams
et al., 1969). The structure revealed that the insulin monomer
consists of a two-layered sandwich structure with the B-chain
overlaying the A-chain. The B-chain consists of an N-terminal
segment (residues B1–B6), a type II β-turn (B7–B10) a cen-
tral α-helix (B9–B19), a type I β-turn (B20–B23), and a C-
terminal β-strand (B24–B28), followed by residues B29 and B30,
which are less well ordered (Figure 2A). The A-chain consists
of an N-terminal α-helix (A1–A8), a non-canonical turn (A9–
A11), a second α-helix (A12–A18), and a C-terminal segment
(A19–A21).

Remarkably, at the same time and in isolation during the Cul-
tural Revolution in China, the so-called “Beijing Insulin Structure
Group”was also working to determine the structure of insulin. The
details of the structure were finally published in Scientia Sinica in
1972 (Beijing Insulin Structure Group, 1972).

Since then, the three-dimensional structures of the insulin-like
growth factors, the relaxin peptides and the insulin-like pep-
tides have also been determined and, as expected from their

close sequence relationship, all have the same three-helix tertiary
structure as insulin (Shabanpoor et al., 2009).

STRUCTURAL CHANGES IN INSULIN UPON RECEPTOR BINDING:
1991–2010
Following the landmark determination of the structure of porcine
insulin, numerous structures of mutant insulins, insulin analogs,
and insulins from other species have also been determined by
either X-ray crystallography or NMR spectroscopy (Weiss, 2009).
This extensive body of knowledge provides overwhelming evi-
dence that insulin undergoes a conformational change upon bind-
ing the insulin receptor (IR). The first such evidence came from
studies of a single-chain B29–A1 peptide-linked insulin molecule
(Derewenda et al., 1991). This molecule was completely devoid
of biological activity yet retained the same crystal structure as
wild-type insulin. The authors concluded that receptor binding
required a separation of the B-chain C-terminus away from the
core body of insulin. Shortly afterward, an NMR study of the active
GlyB24 insulin mutant revealed that the C-terminal region of its B-
chain (residues B20–B30) were disordered in solution (Figure 2B),
supporting the contention that displacement of the B-chain C-
terminus away from the core structure may occur upon receptor
binding (Hua et al., 1991).

The detachment model for insulin binding (Hua et al., 1991;
De Meyts, 1994, 2004; Ludvigsen et al., 1998; Glendorf et al., 2008;
Xu et al., 2009; Jiráček et al., 2010) proposes that the B-chain
C-terminal region (residues B21–B30) reorganizes to expose the
side chains of residues IleA2 and ValA3 at the N-terminus of the
A-chain and in so doing exposes a mostly hydrophobic surface
comprised of residues GlyA1, IleA2,ValA3, GlnA5, ThrA8, TyrA19,
AsnA21, ValB12, TyrB16, GlyB23, PheB24, PheB25, and TyrB26.
This so-called “classical” binding surface consists of residues pre-
dominantly from the dimer interface of insulin and represents
binding surface 1. With regards to insulin’s transition from an
inactive to active form and the unmasking of previously buried
amino acids required for IR binding, Jiráček et al. (2010) have pre-
sented indirect evidence that suggests that a key element in this
process may be the formation of a β-turn at residues B25–B26
(Figure 2C) which is associated with a trans to cis switch at the
B25–B26 peptide bond.

The B-chain N-terminus of insulin is also thought to change on
binding from the extended, more stable, but less active, T state to
the less stable, but more active, R state. The T state is that observed
in the original insulin crystal structure mentioned above (Adams

FIGURE 1 | Sequence of human insulin precursor. The B- and A-chain segments of the processed protein are shown in cyan and light brown color,
respectively, with the proteolytically removed C-peptide in gray. Disulfide bonds are indicated in green, while residues adopting a helical conformation in the
mature protein are circled in black.
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FIGURE 2 | (A) Tertiary structure of the porcine insulin monomer in
its 2 Zn rhombohedral form (PDB entry 4INS). (B) Structure of the
human insulin mutant GlyB24 (PDB entry 1HIT), showing the
flexibility of the B-chain C-terminus. (C) Structure of a high affinity
N-MeAlaB26 human insulin mutant (PDB entry 2WRX, solid colors) overlaid
on that of wild-type hormone (gray). (D) Structure of the so-called R state
form of porcine insulin (PDB entry 1ZNI), with the N-terminal extension of
the B-chain helix shown in blue. For clarity, disulfide bonds are omitted
in (B,C).

et al., 1969) and is similar to that adopted by the insulin monomer
in solution (Hua et al., 1991). In the R state (Figure 2D), the N-
terminal portion of the B-chain alters conformation to become
part of an extended α-helix B1–B19, as first observed in a crystal
structure of porcine insulin produced under high-salt conditions
(Bentley et al., 1976). Structural studies of insulin analogs suggest
that the classical insulin T state represents an inactive conforma-
tion of the hormone that favors storage and stability, while the R
state is less stable, but is the state that facilitates receptor binding
and signal transduction (Nakagawa et al., 2005).

Mutagenesis data indicate that there is a second receptor bind-
ing surface (surface 2) on insulin that involves residues SerA12,
LeuA13, GluA17, HisB10, GluB13, and LeuB17 from the hexamer-
forming face of insulin (Schäffer, 1994; Jensen, 2000; De Meyts,
2004; Glendorf et al., 2008).

Similar, though less detailed, information now exists for other
molecules in the insulin family. IGF-I binds the Type 1 insulin-
like growth factor receptor (IGF-1R) via surfaces related to those
employed by insulin in binding the IR, but the relative contri-
bution of the equivalent individual residues varies between the
two ligands. Binding surface 1 in IGF-I includes residues Phe23,
Tyr24, Val44, Tyr60, and Ala62 (corresponding to insulin surface
1 residues PheB24, PheB25, ValA3, TyrA19, and AsnA21, respec-
tively); additional residues employed by IGF-I in binding to surface
1 of IGF-1R are the B-domain residue Ala8, the C-domain residues
Tyr31, Arg36 and Arg37, and the A-domain residue Met59 (Gau-
guin et al., 2008). Residues involved in the second binding surface
of IGF-I have been identified using alanine-scanning mutagenesis
(Gauguin et al., 2008) – these are Glu9, Asp12, Leu54, and Glu58
(corresponding to the insulin surface 2 residues HisB10, GluB13,
LeuA13, and GluA17, respectively). IGF-II has been shown to
bind the A, but not the B, isoform of IR with similar high affin-
ity to insulin (Frasca et al., 1999). In contrast, IGF-I is shown
to bind both the IR isoforms relatively weakly. Comparison of a
series of chimeric IGFs shows that the C and D domains of the
IGFs are primarily responsible for their differential binding prop-
erties to the IR isoforms and IGF-1R (Denley et al., 2004). An
analysis of selected candidates for the IGF-II binding site residues
confirmed that Val14, Phe28, and Val43 (equivalent to insulin
surface 1 residues) are critical to both IGF-1R and IR binding,
whereas mutation to alanine of Gln18 affects only IGF-1R and not
IR binding (Alvino et al., 2009). Alanine substitutions at Glu12,
Asp15, Phe19, Leu53, and Glu57 result in significant (>two-fold)
decreases in affinity for both IGF-1R and IR. Residues equivalent
to insulin surface 2 are found to be Glu12, Phe19, Leu53, and Glu57
(Alvino et al., 2009).

INSULIN RECEPTOR
DISCOVERY OF INSULIN BINDING TO CELL SURFACES: 1970
The early literature on the discovery of the IR has been summa-
rized by Pierre de Meyts in a review describing his more than
three decades of research in the field (De Meyts, 2004). Levine in
1949 postulated that insulin interacted with the cell membrane to
facilitate the uptake of hexoses into cells, rather than playing an
enzymatic role in carbohydrate metabolism (Levine et al., 1949).
The first description of radio-labeled insulin binding to liver cell
membranes was by the Australians House and Weidemann in 1970,
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followed by more detailed reports from two USA laboratories
in 1971 (House and Weidemann, 1970; Cuatrecasas et al., 1971;
Freychet et al., 1971). Independently, and around the same time,
Gammeltoft and Gliemann (1973) in Copenhagen developed an
assay to detect insulin binding to isolated fat cells.

THE RECEPTOR IS A DISULFIDE-LINKED HOMODIMER: 1980–1981
The next major discovery was the demonstration in 1980–1981
that the IR is a dimer of apparent molecular weight ∼350 kDa and
composed of two α-subunits (∼120–130 kDa) and two β-subunits
(∼90 kDa) that are linked by disulfide bonds (Massague et al.,
1980). Sixteen years later, Lindsay Sparrow et al. (1997) showed
there was a single disulfide bond (Cys685–Cys872) connecting the
α- and β-chains of each monomer and two sites of inter-monomer
α–α disulfide bonds in the IR dimer, namely, at Cys524–Cys524
and at a site comprising at least one of the potential disulfide
bonds Cys682–Cys682, Cys683–Cys683, and Cys685–Cys685. Par-
tial reduction studies (Finn et al., 1990; Chiacchia, 1991) had
shown earlier that there were only two α–α disulfide bonds in the
IR dimer, suggesting that, within the (Cys682, Cys683, Cys685)
triplet, the remaining two residues form an intra-chain disulfide.

THE RECEPTOR IS A TYROSINE KINASE: 1982
The next key discovery was the demonstration by Kasuga et al.
(1982a,b) that the IR is a tyrosine kinase (TK) that activates its
β-subunit upon insulin binding. The first discovery of an intra-
cellular substrate was by White et al. (1985) - this protein was
subsequently characterized and called IR substrate 1, or IRS1 (Sun
et al., 1991).

SEQUENCE DETERMINATION: 1985
The cDNA sequence for the human IR was determined indepen-
dently by two laboratories in 1985 (Ebina et al., 1985; Ullrich
et al., 1985) and immediately revealed that there were two iso-
forms of the receptor that differed by the absence (in the IR-A
isoform) or presence (in the IR-B isoform) of an additional 12

residues between residues 716 and 717. These, and subsequent
amino acid analyses (reviewed in Adams et al., 2000), revealed
that each receptor monomer consists, from its N-terminus to
C-terminus (Figure 3), of a leucine-rich repeat domain (L1), a
cysteine-rich region (CR), a second leucine-rich repeat domain
(L2), and three fibronectin type III domains (FnIII-1, FnIII-2, and
FnIII-3), with FnIII-2 containing a large (∼120 residues) insert
domain (ID). The ID contains the furin cleavage site that yields
the α-chain and β-chain of the mature receptor monomer. The
intra-cellular C-terminal region of the IR monomer contains the
TK catalytic domain, which is flanked by two regulatory regions
(the juxtamembrane region and the C-tail).

The human IR is heavily glycosylated and estimated to contain
58–64 kDa of carbohydrate (Cosgrove et al., 1995). The sequence
revealed 18 potential N-linked glycosylation sites, 16 of which were
subsequently shown to have carbohydrate attached (Sparrow et al.,
2007b). Further analysis showed the existence of six O-linked gly-
cosylation sites, all of which lay near the N-terminus of the β-chain
(Sparrow et al., 2007a).

There are 13 potential tyrosine phosphorylation sites in the
intra-cellular IR β-subunit that provide potential docking sites for
SH2-containing (Pawson et al., 2001; Machida et al., 2007) and
PTB-containing signaling proteins (Wolf et al., 1995; Borg and
Margolis, 1998). Some of these are located in the catalytic domain,
rather than the juxtamembrane and C-tail regions, and some do
not conform to the conventionally accepted recognition sequence
motifs (Ward et al., 1996).

The cDNA sequence for IGF-1R was determined in 1985 and
revealed extensive similarity in size and structural topology to that
of IR (Ullrich et al., 1986). Nevertheless, regions of difference both
within the respective receptor ectodomains and at the C-terminal
tail of the β-subunit provided the first hints as to how specificity
of ligand binding and specificity of signaling might occur.

The major signaling pathways by which insulin and the IGFs
regulate metabolism and gene expression have been reviewed
elsewhere (Johnston et al., 2003; Siddle, 2011) and include the

FIGURE 3 | Domain structure of the human insulin receptor. L1, first
leucine-rich repeat domain; CR, cysteine-rich region; L2, second leucine-rich
repeat domain; FnIII-1, -2, -3, first, second, and third fibronectin type III
domains; ID, insert domain; TM/JM, trans- and juxtamembrane regions; TK,
tyrosine kinase domain. The second fibronectin Type III domain and the insert

domain span both the α- and the β-chains of the mature protein. The critical
C-terminal segment of the α-chain (αCT) is indicated by a red asterisk.
Inter-chain and inter-monomer disulfide bonds are indicated by black line
segments and membrane and cytoplasmic regions are shown in dashed
outline.
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serine/threonine kinases Akt/PKB and MEK whose activation is
dependent on phosphorylation of IRS1 and Shc and the subse-
quent activation of PI3K and the small G-protein Ras. The roles of
various accessory pathways involving PTPs, PTEN, CAP/cbl, other
PI3Ks, PIKfyve, GABs, DOKs, and other signaling proteins are also
reviewed (Siddle, 2011).

DETERMINATION OF THE THREE-DIMENSIONAL STRUCTURE OF THE
KINASE DOMAIN: 1994
The crystal structure of the human IR TK domain in its unphos-
phorylated (basal) state was determined by Hubbard et al. (1994).
This was the first structure of a TK to be reported, though the struc-
ture of a serine kinase (cAMP protein kinase) had been reported
earlier (Knighton et al., 1991). Like the serine kinases, the IR TK
is composed of two lobes with a single connection between them
(Figure 4A). The N-terminal lobe comprises a twisted β-sheet of
five anti-parallel β-strands (β1–β5) and one α-helix (αC). The
larger C-terminal lobe comprises eight α-helices (αD, αE, αEF, αF,

αG, αH, αI, αJ) and four β-strands (β7, β8, β10, β11). The human
IR TK lacks β-strands β6 and β9 present in cAMP protein kinase.

In the inactivated IR TK, one of the three tyrosines in the activa-
tion loop, Tyr1162, is bound in the active site but cannot be phos-
phorylated (in cis) because part of the A-loop interferes with the
ATP binding site and the catalytic residue Asp1150 is improperly
positioned to co-ordinate MgATP (Hubbard et al., 1994). Upon
activation, auto-phosphorylation of residues Tyr1162, Tyr1158,
and Tyr1163 occurs in trans by the kinase domain of the sec-
ond monomer. Thus, in the basal state, Tyr1162 competes with
the neighboring β-chain and other protein substrates for bind-
ing to the active site, but is not cis-phosphorylated because of
steric constraints that prevent simultaneous binding of Tyr1162
and MgATP.

The structure of the activated phosphorylated IR kinase reveals
that auto-phosphorylation of the three tyrosines in the A-loop
leads to a dramatic change in its configuration (Hubbard, 1997). In
the phosphorylated state, the A-loop is displaced by approximately

FIGURE 4 |Three-dimensional crystal structure of the insulin

receptor tyrosine kinase domain. (A) Inactive form, showing the
secondary structure of the N- and C-terminal domains. (B) Overlay of
the inactive (blue, PDB entry 1IRK) and activated (orange, PDB entry
1IR3) forms of the domain, showing the displacement from the
catalytic site of the activation loop (residues 1149–1170, highlighted
as a thicker ribbon within each form) and the concomitant domain rotation

which are observed upon activation. (C) Interaction between the
juxtamembrane residues 978–988 (red tube) and the N-terminal domain of
the IR tyrosine kinase in its basal state (transparent pink surface, PDB entry
1P14). (D) Stylized cartoon showing the hypothesized sequestered
disposition of the kinase domain as a consequence of its interaction with the
proximal region juxtamembrane segment [see (C)], followed by its release
upon activation.
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30 Å, resulting in unrestricted access to the binding site for ATP
and protein substrates. This movement facilitates a functional spa-
tial arrangement of Lys1030 and Glu1047, the residues involved
in MgATP coordination, and of Asp1150, which is part of the
highly conserved Asp–Phe–Gly triad. The A-loop rearrangement
also leads to closure of the N and C-terminal lobes, which is nec-
essary for productive ATP binding (Hubbard, 1997). This closure
involves significant rotation of the N-terminal lobe (Figure 4B).

In 2003 Stevan Hubbard’s group (Li et al., 2003) described the
structure of an extended IR kinase construct showing the mole-
cular details of the interaction between the catalytic domain and
the juxtamembrane region (Figure 4C). In IR, the juxtamembrane
interactions dominate and are considerably stronger than the acti-
vation loop inhibition described earlier (Li et al., 2003; Craddock
et al., 2007). In IR and IGF-1R, the proximal juxtamembrane
regions show TK inhibition through the highly conserved residue
Tyr984 (IR-B numbering, equivalent to Tyr972 in IR-A and Tyr957
in IGF-1R). This tyrosine residue interacts with several conserved
residues in the N-terminal lobe of the IR kinase domain, stabi-
lizing a non-productive position of the αC helix (Li et al., 2003).
Mutation of this residue in the full-length IR or IGF-1R increases
basal autophosphorylation substantially (Li et al., 2003; Craddock
et al., 2007). This juxtamembrane inhibition in IR is more sig-
nificant than that contributed by the activation loop since in the
full-length IR found on cells; mutation of Tyr984 to Ala increases
the basal phosphorylation state 30-fold, 10 times greater than the
three-fold increase seen following mutation of the activation loop
residue Tyr1162 to Asp (Li et al., 2003).

The direction of the juxtamembrane segment relative to the
lobes of the catalytic domain as revealed in the three-dimensional
structure of the extended IR kinase construct (Figure 4C) implies
that, in the basal state, the catalytic domain is partially wrapped
up and held inverted with respect to the cell membrane, as indi-
cated schematically in Figure 4D. We thus proposed (Ward and
Lawrence, 2009) that, in the basal state, the catalytic domain
is unlikely to be exposed and/or suspended from the end of
the 41-residue (∼140 Å) strand of juxtamembrane polypeptide.
We suggest that ligand binding results in an as yet unknown
domain re-arrangement within the ectodomain that in turn affects
the juxtamembrane/catalytic domain interaction, resulting in the
release of the sequestered kinase domains and their subsequent
transphosphorylation, as summarized in Figure 4D.

THE THREE-DIMENSIONAL STRUCTURE OF THE FIRST THREE DOMAINS
OF IGF-1R: 1998
The first information on the structure of the IR ligand binding
region came in 1998 from the crystal structure of the closely related
Type 1 IGF-1R (Garrett et al., 1998). This revealed that the IGF-
1R L1 and L2 domains were, in fact, leucine-rich repeats with the
characteristic solenoid shape comprised of three β-sheet surfaces
with an irregular end (Figure 5A). The high degree of sequence
relationship between IR and IGF-1R implied immediately that the
corresponding three domains of IR had a closely similar structure
to their respective IGF-1R counterparts. The structure confirmed
the earlier predictions (Ward et al., 1995) that the CR domain
was comprised of seven smaller disulfide-linked modules, each
containing one or two disulfide bonds similar to those found in

FIGURE 5 | (A) Three-dimensional crystal structure of the L1–CR–L2
module of the Type 1 insulin-like growth factor receptor (IGF-1R). (B) View of
the molecular surface of the central and third β-sheet of the L1 domain of
IGF-1R, highlighting in red those portions of the surface that correspond to
equivalent residues within the insulin receptor that have been implicated in
hormone binding. (C) Overlay of the L1 domains of insulin receptor (light
green) and IGF-1R (light orange), highlighting the difference in side chain
disposition of the equivalent residues IR Phe39 and IGF-1R Ser35. Panels
are based on PDB entries 1IGR and 2HR7.
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the epidermal growth factor, laminin, and the tumor necrosis fac-
tor receptor. The structure also revealed that the residues that
are mutated in IR in many patients that have defective insulin
binding, as well as all of the residues in the L1 domain that are
compromised in insulin binding when mutated to alanine, lie on
the central β-sheet of the L1 domain (Figure 5B).

The structure of the equivalent L1–CR–L2 fragment of IR was
determined in 1999 and published in 2006 (Lou et al., 2006).
As expected, it closely resembled the IGF-1R fragment structure,
but with two important differences found at sites known to be
involved in determining ligand specificity. The first site is at the
corner of the L1 domain central β-sheet, where the side chain
of IR Phe39 extends down to form part of the ligand binding
surface, in contrast to the disposition of its counterpart IGF-1R
Ser35 (Figure 5C). The second major difference is in the sixth
module of the CR domain, where IR contains a longer loop that
protrudes further into the binding pocket than its IGF-1R counter-
part. This module, which contributes to IGF binding specificity,
shows negligible sequence identity, significantly more α-helical
secondary structure, an additional disulfide bond and an opposite
electrostatic potential to that of the IGF-1R (Lou et al., 2006).

It is interesting to note that the receptors that bind relaxin
and INSL3 also employ leucine-rich-repeat domains for ligand
binding, despite belonging to the otherwise structurally and
functionally distinct class of GPCRs (Ward and Lawrence, 2009).

THE THREE-DIMENSIONAL STRUCTURE OF THE IR ECTODOMAIN
DIMER: 2006
The structure of the IR ectodomain dimer (approximately 1800
amino acids) was reported in a landmark paper in Nature in
2006 (McKern et al., 2006) and represented a major milestone

in insulin research. The difficulty confronting researchers was
the generation of crystals that diffracted sufficiently to allow
the three-dimensional structure of the large, heavily glycosylated
ectodomain to be solved. The Australian group made numerous
receptor constructs using different cell lines for the protein pro-
duction. They also explored subtle methods for high-resolution
protein purification and a variety of protein treatment protocols
before obtaining crystals of adequate quality. Final success came
as a result of a series of improvements, including in particular
antibody-mediated crystallization wherein the IR dimer was dec-
orated with two monoclonal antibody fragments (Fabs) from the
anti-IR antibody 83-7 and two from the anti-IR antibody 83-14
(Soos et al., 1986). The attachment of Fabs resulted in a crys-
tal packing arrangement that involved almost solely Fab-to-Fab
interfaces, thus overcoming the hindrance to crystallization posed
by the surface glycans of the IR ectodomain. These crystals were
obtained by Meizhen Lou (McKern et al., 2006), who, remarkably,
had also been a technician within the Beijing Insulin Structure
Group working on the crystallization of insulin in the early 1970s!

The three-dimensional structure revealed that the IR adopted
a folded-over (inverted “V”) conformation that placed putative
ligand binding regions in close juxtaposition. One leg of each
monomer consists of the L1–CR–L2 module described above and
the other of the FnIII-1, FnIII-2, and FnIII-3 domains in an
extended, linear arrangement (Figure 6A). FnIII-2 contains the
ID. The IR homodimer has a two-fold rotation axis that places the
L2 domains of each monomer in contact with the FnIII-1 domain
of the alternate monomer at the apex of the inverted “V” and
places the L1 domains of the each monomer in contact with the
FnIII-2 domains of the alternate monomer around the midpoint
of the legs of the inverted “V” (McKern et al., 2006). At the base

FIGURE 6 | (A) Three-dimensional crystal structure of the IR ectodomain,
showing the inverted “V” conformation with respect to the membrane.
The background monomer is shown in molecular surface representation
(beige) and the foreground monomer in secondary structure schematic
representation (gray) with the constituent domains labeled. The disordered
portions of the α-chain components of the insert domain are shown as
dashed and their conformation shown here is speculative, with the
approximate location of the inter-chain disulfide being indicated by a black
line. The relative location of the components that make up the insulin

binding site within one leg of the inverted “V” are highlighted and include
the surface of the central β-sheet of the L1 domain of one monomer
(purple), residues at the junction of FnIII-1 and FnIII-2 domains of the
adjacent monomer (light green) and the helix formed by the C-terminal
segment of α-chain (brown coil). (B) Detail of the conformation of the αCT
segment on the surface the central β-sheet of the L1 domain in the crystal
structure of the apo-form of the insulin receptor ectodomain. The Figure is
based on PDB entry 3LOH; (B) is from Smith et al. (2010), used by
permission.
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of the structure, the C-termini of the two FnIII-3 domains are
poised to extend through the cell membrane to the intra-cellular
juxtamembrane, kinase, and C-tail domains of the intact recep-
tor. The FnIII-1 and FnIII-2 domains contain unusually large CC′
loops. In the FnIII-1 domain, the large CC′ loop enables formation
of the Cys525–Cys524 dimer disulfide bond, while in the FnIII-2
domains the entire ID segment is contained within their respective
CC′ loops. The α−β disulfide bond between Cys647 (near the start
of the ID) and Cys860 (at the beginning of the C′E loop of FnIII-3)
is visible in the structure. The Cys524 α–α disulfide bond lies in
a very weakly ordered region of the polypeptide, whereas the α–α

disulfide bond(s) involving Cys862, Cys863, and Cys865 lies in a
region of the ID (residues 655–755) that is entirely disordered in
the crystal (McKern et al., 2006).

An intriguing, though uninterpretable, segment of electron
density was seen to be lying across the central β-sheet of each L1
domain in the original crystallographic maps of IR ectodomain
(McKern et al., 2006). It was suggested that this segment most
likely corresponded to the C-terminal region of the IR α-chain, the
so-called “αCT” segment, that is known to be critical for insulin
binding (Kurose et al., 1994; Mynarcik et al., 1996, 1997; Kristensen
et al., 1998). Indeed, prior evidence existed for the proximity of
these two elements: the adjacent insulin B-chain residues Phe24
and Phe25 can be cross-linked respectively to the L1 domain and
CT region (Xu et al., 2004). The electron density segment was
finally resolved by means of thermal-factor sharpening, revealing
it to be α-helical in conformation and interpretable as IR residues
693–710 (Smith et al., 2010). The final nine residues of the IR α-
chain (711–719; IR-A isoform numbering) remained disordered.

The key features of the interaction of the 693–710 segment with
the surface of the central β-sheet of the L1 domain are shown in
Figure 6B. In particular, (i) the side chains of residues Phe701
and Phe705 are packed adjacent to each other in a hydrophobic
pocket formed by the side chains of the L1 domain residues Leu62,
Phe64, Phe88, Phe89, Tyr91, Val94, Phe96, and Arg118 - these
two aromatic residues are conserved in type in IGF-1R (as Tyr688
and Phe692, respectively); (ii) the side chain of Tyr708 is packed
approximately parallel to the strands of the L1 central β-sheet, in
proximity to the side chains of Arg14, Gln34, Leu36, and Phe88 –
again this residue is conserved in type in IGF-1R (as Phe695); (iii)
the side chains of the αCT residue pair Glu698/Arg702 lie close
to each other and interact with the side chains of the L1 domain
residue pair Arg118/Glu120 respectively, with the four side chains
forming a charge-compensating cluster; and (iv) the side chain of
Leu709 is in hydrophobic interaction with the side chains of Leu37
and Phe64 (Smith et al., 2010).

A remaining feature of interest is the fact that the αCT segment
associated with each L1 domain in the IR dimer is contributed by
the alternate monomer to that which contributes the L1 domain.

This was first predicted by (Ward et al., 2007), based on the
expectation that C-terminus of the α-chain most likely lies in
proximity to the N-terminus of the β-chain, given that during
IR biosynthesis, proteolytic cleavage of the pro-receptor into α

and β chains occurs after dimer assembly (Bass et al., 1998). The
relative proximity of the last observed residue in the αCT segment
(His710) to the first observed residue of the β-chain (Glu755)
within the CC′ loop of FnIII-2 thus defines these as being part of
the same monomer. This trans arrangement of L1 and αCT has
since been confirmed experimentally by complementation analy-
sis (Chan et al., 2007) using co-expression of pairs of differentially
tagged insulin midi-receptors carrying single mutations either in
L1 or αCT, respectively, and by direct chemical crosslinking of two
IR α-chains using doubly derivatized [PapB16, PapB25]-insulin or
[PapB16, PapA3]-single-chain insulin (Smith et al., 2010).

FUTURE LANDMARK: THE THREE-DIMENSIONAL
STRUCTURE OF THE INSULIN/IR COMPLEX
This still remains an unachieved goal. However the 3D structures
of the intact ectodomain and the L1–CR–L2 fragments from IR
and IGF-1R along with the wealth of studies on mutant insulins
and IGFs provide some insight into the nature of the ligand bind-
ing sites and the insulin/IR complexes. This has been reviewed in
detail elsewhere (Lawrence et al., 2007; Ward et al., 2007, 2008;
Ward and Lawrence, 2009).

To date, no successful high-resolution crystallizations of ligand-
receptor complexes have been reported, despite the availability of
a number of domain-minimized versions of the IR that are known
to retain insulin binding capacity (Kristensen et al., 1998; Kris-
tensen et al., 2002; Surinya et al., 2002; Menting et al., 2009) and
which might assist in the production of crystals for X-ray diffrac-
tion studies. The reasons for this lack of success are not obvious.
From our own experience of trying to produce such crystals now
for over two decades, we speculate that this might relate to the lim-
ited range of pH over which insulin/IR complexes are stable (and
hence over which they might be amenable to crystallization), or to
further intrinsic structural instabilities in the receptor/ligand com-
plex that are not yet understood. Nevertheless, given the progress
in understanding the structural biology of the apo-receptor and
in automated crystallization technology, we are confident that in
the near future these problems will be overcome.
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