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In vertebrates, gonadotropin-releasing hormone (GnRH) represents the primary neuroen-
docrine link between the brain and the reproductive axis, and in some species up to three
different forms of GnRH have been detected. Until recently, it had been assumed that
humans and non-human primates only express one form (GnRH-I), but it is now clear they
also express a second form (GnRH-I1). GnRH-I1, like GnRH-I, is highly effective at stimulating
gonadotropin release, both in vitro and in vivo, but the neurons that produce GnRH-Il are
completely distinct from those producing GnRH-I. Moreover, GnRH-Il and GnRH-I produc-
ing neurons respond very differently to estradiol; specifically, estradiol stimulates GnRH-II
gene expression in the former and inhibit GnRH-I gene expression in the latter. Conse-
quently, the negative feedback action of estradiol may be mediated exclusively by the
subpopulation of GnRH neurons that express GnRH-I, while the positive feedback action
may be mediated exclusively by the subpopulation that expresses GnRH-Il. Taken together,
these findings raise the possibility that two completely different GnRH neuronal systems
participate in the control of primate reproductive physiology. The primary role of GnRH-
| neurons is likely to be focused on the maintenance and modulation of tonic pulsatile
LH release, whereas the primary role of GnRH-Il neurons is likely to be focused on the
generation of the preovulatory LH surge. This functional segregation of the primate neu-
roendocrine reproductive axis lends itself for novel targeted approaches to fertility control

and for treatment of human reproductive disorders.
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THE NEUROENDOCRINE REPRODUCTIVE AXIS

In its essence, the mammalian neuroendocrine reproductive axis
is composed of three main components, which act in a coordi-
nated manner to control the onset of puberty and to subsequently
maintain fertility (Silverman et al., 1994; Ojeda et al., 2006). The
pulsatile secretion of gonadotropin-releasing hormone (GnRH)
from the hypothalamus stimulates the anterior pituitary gland
to release luteinizing hormone (LH) and follicle-stimulating hor-
mone (FSH). In turn, these two gonadotropins then act on the
gonads to stimulate maturation of gametes and to synthesize and
secrete sex-steroid hormones. Important neuroendocrine feed-
backloops also exist. For example, although sex steroids contribute
to the development and maintenance of fertility and play a role in
other physiological and behavioral functions, they also feedback
onto the hypothalamo-pituitary unit to modulate gonadotropin
release. There is, however, a conundrum regarding the mechanism
by which sex steroids do this. On the one hand, the ovarian steroid
estradiol usually exerts a negative feedback action on GnRH and
gonadotropin release, which is epitomized by the marked increases
in circulating LH and FSH levels that occur at menopause or after
ovariectomy (i.e., when estradiol levels are markedly attenuated).
On the other hand, around the time of ovulation estradiol appears
to exert a positive feedback action, causing the production of a
gonadotropin surge, which serves as the ovulatory trigger. The

traditional explanation for these two radically different effects of
estradiol is that GnRH neurons respond differentially to low and
high levels of this sex steroid — negatively when estradiol levels
are low and positively when estradiol levels are high. Inherent in
this argument, however, is the assumption that the GnRH neu-
rons are relatively homogenous, despite their diffuse distribution
pattern, and that individual GnRH neurons have the capacity to
show both negative and positive feedback responses. Recent find-
ings, especially from primate studies, suggest that this assumption
is inaccurate. Not only have morphologically distinct GnRH neu-
rons been observed in discrete subpopulations, in some species
these subpopulations have been shown to express different mol-
ecular forms of GnRH. Importantly, different GnRH neuronal
subpopulations respond differently to estradiol, suggesting that
the negative and positive feedback actions are mediated by two
distinctly different neuronal populations. This alternative view of
the neuroendocrine reproductive axis lends itself to novel tar-
geted approaches to fertility control and treatment of human
reproductive disorders.

HETEROGENEITY IN THE PRIMATE GnRH NEURONAL
SYSTEM

It has generally been assumed that GnRH neurons are all essen-
tially similar in their responses to neurotransmitters. Indeed, this
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is a fundamental assumption that underlies the extensive use
of immortalized GnRH neurons for in vitro studies by many
researchers, including members of this laboratory (e.g., Urbanski
et al., 1996; Olcese et al., 2003; Garyfallou et al., 2006). However,
this assumption is questionable because in humans GnRH neu-
rons appear to show three distinct morphological types, based on
cell size and GnRH cDNA probe labeling density (Rance et al.,
1994; Krajewski et al., 2003): (1) small, heavily labeled, oval, or
fusiform neurons, located primarily in the medial basal hypothal-
amus, ventral preoptic area, and periventricular zone; (2) small,
oval, sparsely labeled neurons located in the septum, and dor-
sal preoptic region and scattered from the bed nucleus of the
stria terminalis to the amygdala (“extended amygdala”); and (3)
large round neurons (>500 pm two sectional profile area), inter-
mediate in labeling density, scattered within the magnocellular
basal forebrain complex, extended amygdala, ventral pallidum,
and putamen. The pronounced differences in morphology, label-
ing density, and location of the three subtypes suggest that distinct
functional subgroups of GnRH neurons exist in the human brain.
Similar morphological subtypes have been observed in the brains
of rhesus macaques (Urbanski et al., 1996), and it has been shown
that the type 1 and type 3 neurons have characteristically distinct
biochemical properties (e.g., they differ in their capacity to express
glutamate and estrogen receptors). Currently, however, it is unclear
whether the type 2 and 3 neuronal subtypes play any physiological
role in the control of gonadotropin synthesis.

A second basic assumption, and the one that is most relevant
to this hypothesis, is that pituitary gland activity is influenced by
a single molecular form of GnRH. Although multiple molecular
forms of GnRH have been identified in non-mammalian verte-
brates (Sherwood et al., 1993; Fernald and White, 1999; Dubois
et al., 2002; Roch et al., 2011), until recently only one form of this
decapeptide was thought to exist in mammals. It now appears that
at least a few eutherian mammals, including musk-shrews, tree-
shrews, and humans express an additional form of GnRH (review:
Herbison, 2006). This second form of GnRH is commonly referred
to as “chicken GnRH-II,” or simply GnRH-II, and it shows 70%
similarity to mammalian GnRH (i.e., GnRH-I) at the amino acid
level (Figure 1). The genomic and mRNA structures of GnRH-II
resemble those of GnRH-I, although significant differences exist

within the GnRH-associated peptide (GAP) regions of the respec-
tive genes (not shown); in addition, in humans the two molecules
are encoded on different chromosomes (White et al., 1998). HPLC
and immunocytochemical studies have shown that GnRH-II also
exists in non-human primates (Lescheid et al., 1997), and this
has been corroborated through the cloning of GnRH-II ¢cDNA
from the monkey brain (GenBank #228312; Urbanski et al., 1999).
Importantly, GaRH-II gene expression has been demonstrated in
the hypothalamus of monkeys, and shows a distribution pattern
that is distinct from that of GnRH-I (Figure 2). GnRH-I expres-
sion has a diffuse expression pattern in the hypothalamus, whereas
GnRH-II appears to be concentrated in specific nuclei such as the
paraventricular, supraoptic, suprachiasmatic as well as the medial
basal hypothalamus. Subsequent studies used double histochem-
ical labeling to show that GnRH-I and GnRH-II are produced by
two completely distinct populations of cells (Latimer et al., 2000).

INFLUENCE OF GnRH-11 ON GONADOTROPIN RELEASE

Although several reviews of the mammalian GnRH system, have
attempted to explain the physiological role of GnRH-II (Pawson
et al., 2003; Terasawa, 2003; Cheng and Leung, 2005; Herbison,
2006; Kah et al., 2007), the physiological function of this most
ancient and highly conserved form of GnRH in primates is still
unclear. There is some evidence from the musk-shrew and mar-
moset that GnRH-II plays a role in coordinating reproductive
behavior, although these behavioral effects are thought to be medi-
ated by GnRH-II neurons located in the central regions of the
midbrain rather than in the forebrain (Kauffman et al., 2005; Bar-
nett et al., 2006). Rhesus macaques, however, show a high level of
GnRH-II expression in the hypothalamus as well as in the mid-
brain (Urbanski et al., 1999; Latimer et al., 2001), which raises
the interesting possibility that GnRH-II may contribute to the
control of the primate reproductive neuroendocrine axis. Indeed,
it has already been shown that GnRH-II is highly effective at
stimulating LH and FSH release in rhesus monkeys in vivo, and
from pituitary culture in vitro (Lescheid et al., 1997; Densmore
and Urbanski, 2003; Kada et al., 2003). Furthermore, this activa-
tion can be blocked by Antide, a GnRH receptor-1 (GnRHR-1)
specific antagonist (Figure 3). Taken together this suggests that
both GnRH-I and GnRH-II act through the same receptor to

GnRH-I

1 2 3 4 5

1 2 3 4 5

FIGURE 1 | A comparison between the amino acid sequences of
GnRH-I and GnRH-Il. Both decapeptides undergo similar
post-translational modification, which includes conversion of GIn to

pGlu - His - Trp - Ser - Tyr - Gly - Leu - Arg - Pro - Gly - NH9o

pGlu - His - Trp - Ser - His - Gly -Trp - Tyr - Pro - Gly - NH»p

7 8 9 10

Fi 8 9 10

pGlu at amino acid position 1 and amidation of the Gly at position 10.
Note, 70% similarity in the amino acid sequence of the two
decapeptides.
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FIGURE 2 | Differential distribution of GnRH-l1 and GnRH-Il mRNA in the caudal (lower panels) hypothalamic sections. SON, supraoptic nucleus; PVN,
rhesus macaque hypothalamus, as revealed by in situ hybridization paraventricular nucleus; SCN, suprachiasmatic nucleus; MBH, medial basal
histochemistry. (A) Line drawing showing hypothalamic region (in box). (B) hypothalamus; oc, optic chiasm; ot, optic tract. (Adapted from Urbanski et al.,
Autoradiographs showing GnRH expression in the rostral (upper panels) and 1999, with permission from the Endocrine Society).
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FIGURE 3 | Effect of GnRH on plasma LH levels in female rhesus Antide (100 ng/kg body weight). The data demonstrate that (A) GnRH-I and
macaques. GnRH-I or GnRH-II (both at 1 ng/kg body weight) were (B) GnRH-II are both potent stimulators of LH release and that they both act
administered via an indwelling vascular catheter, and the effect of GnRH through the same GnRH receptor (i.e., GnRH receptor-1). (Adapted from
receptor-1 antagonist was determined by simultaneous administration of Densmore and Urbanski, 2003, with permission from the Endocrine Society).

stimulate gonadotropin release. Note that a second receptor for
GnRH (GnRHR-2) has been cloned in monkeys and humans, but it
probably does not have a specific role in controlling the reproduc-
tive neuroendocrine axis of primates; in monkeys the GnRHR-2
has a ubiquitous distribution pattern, while in humans there is a
stop codon in the middle of its gene sequence which precludes
its translation into a functional protein (Cheng and Leung, 2005;
Herbison, 2006).

DIFFERENTIAL RESPONSES OF GnRH-1 AND GnRH-II
NEURONS TO ESTRADIOL

Although GnRH-I and GnRH-II can both stimulate gonadotropin
release in the rhesus macaque (Figure 3), the neurons that produce
them show marked differences in their responsiveness to estradiol.
Firstly, the GnRH-II gene promoter contains estrogen response
elements and the GnRH-II neurons express estradiol receptors
(ERB), whereas GnRH-I neurons do not (Sullivan et al., 1995;
Densmore and Urbanski, 2004). Furthermore, semi-quantitative
in situ hybridization histochemistry (Densmore and Urbanski,
2004) has shown that GnRH-II gene expression increases in the

monkey medial basal hypothalamus after exposure to estradiol,
whereas GnRH-I gene expression decreases (Figure 4). This obser-
vation is consistent with the central hypothesis that different
GnRH neuronal subpopulations respond differentially to estra-
diol. Importantly, the result suggests that GnRH-II neurons are
the primary mediators of positive estradiol feedback, whereas the
GnRH-I neurons are the primary mediators of negative estra-
diol feedback. It is also consistent with the finding from other
primate studies, showing that hypothalamic GnRH-I gene expres-
sion is elevated when estradiol levels are very low, such as after
menopause or after ovariectomy (Rance and Uswandi, 1996; Abel
et al., 1999). Additional support for the hypothesis comes from
a microarray gene profiling study that examined hypothalamic
GnRH-I and GnRH-II gene expression across the monkey men-
strual cycle (Urbanski et al., 2009, 2010a). This study focused
on three stages of the menstrual cycle that show three distinct
sex-steroid profiles (Figure 5). During the early follicular (EF)
phase, both estradiol and progesterone concentrations are low,
whereas in the late follicular (LF) phase estradiol is highly ele-
vated; during the mid-luteal (ML) phase, estradiol is moderately
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FIGURE 4 | Differential regulation of GnRH-l and GnRH-Il gene
expression by estradiol in ovariectomized rhesus macaques. (A)
Histogram depicting number of cells expressing GnRH-I mRNA in the
hypothalamus of ovariectomized (OVX) and ovariectomized/estradiol-treated
(OVX + E) animals, as revealed by semi-quantitative in situ hybridization
histochemistry. The number of detectable GnRH-I cells in the hypothalamus
was markedly lower in the OVX + E animals than in the OVX animals. (B)
Histogram depicting number of cells expressing GnRH-Il mRNA in the
MBH of OVX and OVX + E animals, as revealed by in situ hybridization. The
number of detectable GnRH-II cells in the MBH was significantly greater in
the OVX + E animals than in the OVX animals. The in situ hybridization was
performed on a series of six coronal hypothalamic sections from each
animal (N =3/group); the sections were collected at ~200-um intervals.
**P <0.01, *P <0.05. (Adapted from Densmore and Urbanski, 2004, with
permission from the Society for Endocrinology).

elevated and progesterone highly elevated (Downs and Urban-
ski, 2006). Despite differences in circulating sex-steroid concen-
trations during these three phases of the cycle, GnRH-I gene
expression showed no significant change (Figure 5A); in marked
contrast, GnRH-II gene expression showed a marked increase
during the LF phase, in association with the elevated estradiol
levels. The positive relationship between estradiol and GnRH-II
gene expression, and the close temporal relationship between ele-
vated GnRH-II gene expression and the preovulatory LH surge,
suggests that the GnRH-II neurons play a dominant causal role
in the preovulatory LH surge (Figure 5B). Further support-
ive evidence for this hypothesis comes from a recent study in
which estradiol benzoate (EB; 42 pg/kg, s.c.) was administered
to ovariectomized rhesus macaques (Urbanski et al., 2010b). In
this well-established experimental model plasma estradiol levels
reached a peak within 4 h of EB injection, and this was associated
with an expected suppression of plasma LH levels, followed by
a surge approximately 2 days later. Real-time-PCR showed that
initial suppression of LH to be associated with a decrease in
GnRH-I gene expression, which is consistent with estradiol exert-
ing a negative influence on GnRH-I neurons. In marked contrast,
GnRH-II gene expression increased following the estradiol peak,
and reached a maximum just before the plasma LH surge, which is
consistent with estradiol exerting a positive influence on GnRH-II
neurons.

CENTRAL HYPOTHESIS

Based on these recent findings, mainly from rhesus macaques,
it is hypothesized that GnRH-II neurons play a major role in
the generation of the preovulatory LH surge in female primates,

A _ 300
o
>
L 250
c
o
‘' 200
(2]
o
g 150
x
[0}
= 100
%
< 50
“ 0
_ 300
o
>
QL 250
&
‘» 200
o
a 150
x
()
100
50
0
EF LF ML
Phase of menstrual cycle
B
300
—~ | |
T E 200
-
g “ W
0
250 EF LF ML
5= 200
T E 150
= 2 100
0n =
(1] 50
0
o 8
[
5g
5E 4
o £
D= 2
2]
o 0
0 10 20 30

Day of menstrual cycle

FIGURE 5 | (A) Mean expression of GnRH-I (upper panel) and GnRH-II
(lower panel) mRNA levels in the rhesus monkey hypothalamus, as
determined by Affymetrix GeneChip microarray analysis (HU133A plus 2.0;
N = 3-4/group). The following three characteristic stages of the menstrual
cycle were examined: EF, early follicular; LF, late follicular, ML, mid-luteal.
The level of GnRH-I gene expression was similar across the menstrual
cycle, whereas the level of GnRH-II gene expression showed a significant
mid-cycle increase (*P < 0.05). (B) Serum reproductive hormone profiles
from a representative female rhesus macaque across a complete menstrual
cycle. Note the temporal relationship between the mid-cycle preovulatory
LH surge and the elevated serum estradiol levels of the LF phase. Periods
of menstruation are indicated by black horizontal bars. Together the data
suggest that estradiol-mediated activation of GnRH-Il neurons may play a
key role in triggering ovulation, whereas GnRH-I neurons are more likely to
play a role in modulating tonic LH release and in follicular maturation.
(Adapted from Urbanski et al., 2010a).
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FIGURE 6 | A summary of the hypothesized mechanism by which
estradiol (E;) modulates luteinizing hormone (LH) release in female
primates. Stylized representations of three distinct temporal patterns of LH
release are depicted in the upper panels, while corresponding plasma E, levels
and GnRH neuronal activity are represented in the middle and lower panels,
respectively. (A) Low amplitude pulse of LH are typically observed during the
follicular phase of the menstrual cycle; this is associated with low-to-medium
plasma E, levels, which exert a moderate degree of negative feedback onto
GnRH-I neurons (represented by the dashed green line) but cause little
stimulation of GnRH-II neurons (represented by the solid orange line). (B) An
LH surge typically occurs in the middle of the menstrual cycle; this is
associated with high plasma E, levels, which inhibit GnRH-I neuronal activity

but markedly stimulate synthesis and release of GnRH-II. (C) High amplitude
pulses of LH are typically observed after ovariectomy and after menopause, as
a result of the highly attenuated plasma E, levels; in the absence of significant
E, negative feedback, GnRH-I neurons show increased activity whereas
GnRH-II neurons lack positive feedback and so revert to a relatively quiescent
state. Although it is commonly assumed that the same GnRH neurons can
mediate both negative and positive E, feedback onto LH release, the data
presented in this mini-review question this assumption. Instead, it is
hypothesized that tonic and surge modes of LH release are orchestrated by
two distinct GnRH neuronal populations, which in primates can be
distinguished by their capacity to produce different molecular forms of GnRH
(i.e., GnRH-I and GnRH-II, respectively) and to respond differentially to E,.

whereas GnRH-I neurons mediate the negative feedback influ-
ence of estradiol on tonic gonadotropin release (Figure 6). It
should be emphasized that this hypothesis does not invoke a
special role for the GnRH-II molecule, other than suggesting
that GnRH-II expression may be used to identify the estrogen-
responsive neurons that are activated at the time of the LH
surge. The hypothesis simply proposes that the menstrual cycle
is orchestrated by the coordinated action of two separate sub-
populations of GnRH neurons — one subpopulation responds to
estradiol in a negative manner and is involved in stimulating the
ovary during the follicular phase of the cycle, while the other
subpopulation responds to estradiol in a positive manner and
hyper-stimulates the pituitary gland to produce a mid-cycle LH
surge.

In rodents it may be more difficult to distinguish between these
two GnRH neuronal subpopulations because only one molecu-
lar form of GnRH (i.e., GnRH-I) has been equivocally shown to
exist. Despite attempts by several laboratories, GnRH-II has still
not been cloned in mice or rats, which is not surprising given that

a BLAST search of the genome of these rodents reveals only one
molecular form of GnRH (i.e., the traditional GnRH-I). Never-
theless, there is evidence from female rodents that activation of
a specific subpopulation of GnRH-I neurons is associated with
the preovulatory LH surge (Hiatt et al., 1992; Porkka-Heiskanen
et al., 1994; Rubin and King, 1994). Therefore, it is plausible that
the essence of the current hypothesis also applies to non-primate
mammalian species.

For many years there was much debate as to whether a GnRH
surge even existed in primates, because the primate pituitary gland
appeared capable of producing an LH surge in response to tonic
pulsatile GnRH stimulation (Knobil et al., 1980). Although there
is now good evidence to suggest that an estradiol-induced GnRH
surge does occur in primates, as in rodents, the key studies (Xia
et al., 1992; Pau et al., 1993) were performed before the existence
of GnRH-II was known in primates, and unfortunately relied on
hormone immuno-assays that did not clearly distinguish between
GnRH-I and the closely related GnRH-II molecule. Consequently,
it is unclear if the assays measured GnRH-I exclusively or GnRH-I
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plus GnRH-II. More recently, however, c-Fos immunohistochem-
istry has been used to examine activation of GnRH-I neurons
around the time of the primate preovulatory surge. In marked
contrast to rodents (Lee et al., 1990; Hoffman et al., 1993; Doan
and Urbanski, 1994), however, there was no obvious increase in
the number of c-Fos-expressing GnRH-I neurons at the time of
the LH surge in primates (Witkin et al., 1994; Caston-Balderrama
et al., 1998). This negative finding gives further credence to the
hypothesis that GnRH-I neurons do not play a dominant role in
stimulating the preovulatory LH surge in primates, and implies
that this role is more likely to be mediated by GnRH-II neurons
instead.

CONCLUDING REMARKS

Like rhesus macaques, humans express two molecular forms
of GnRH (i.e., GnRH-I and GnRH-II). Given that GnRH-I
and GnRH-II are produced by different neuronal populations,

it is plausible that fertility in women is controlled by the
coordinated action of two distinct GnRH neuronal subpop-
ulations, rather than by a single homogenous population. If
correct, this hypothesis has several implications, especially in
primates where the distinct biochemical signatures of the two
subpopulations lend themselves to targeted therapeutic inter-
ventions. For example, specific activation of the GnRH-II neu-
rons could help to treat amenorrhea and improve fertility. Con-
versely, by specific silencing of the GnRH-II neurons it may
be possible to selectively block ovulation while retaining nor-
mal tonic LH secretion, a strategy that could open up novel
approaches to contraception without negatively impacting ovarian
steroidogenesis.
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