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Insulin-like growth factor binding proteins (IGFBP-1 to -6) bind insulin-like growth factors-I
and -II (IGF-I and IGF-II) with high affinity. These binding proteins maintain IGFs in the cir-
culation and direct them to target tissues, where they promote cell growth, proliferation,
differentiation, and survival via the type 1 IGF receptor. IGFBPs also interact with many
other molecules, which not only influence their modulation of IGF action but also mediate
IGF-independent activities that regulate processes such as cell migration and apoptosis by
modulating gene transcription. IGFBPs-1 to -6 are structurally similar proteins consisting of
three distinct domains, N-terminal, linker, and C-terminal.There have been major advances
in our understanding of IGFBP structure in the last decade and a half. While there is still no
structure of an intact IGFBP, several structures of individual N- and C-domains have been
solved. The structure of a complex of N-BP-4:IGF-I:C-BP-4 has also been solved, providing
a detailed picture of the structural features of the IGF binding site and the mechanism
of binding. Structural studies have also identified features important for interaction with
extracellular matrix components and integrins. This review summarizes structural studies
reported so far and highlights features important for binding not only IGF but also other
partners. We also highlight future directions in which structural studies will add to our
knowledge of the role played by the IGFBP family in normal growth and development, as
well as in disease.
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INTRODUCTION
The insulin-like growth factor binding protein (IGFBP) family
consists of six structurally similar proteins (IGFBP-1 to -6), which
bind insulin-like growth factors (IGFs) with high affinity (Firth
and Baxter, 2002). The two IGF ligands (IGF-I and IGF-II) are
expressed in a wide variety of tissues and act primarily via the
type 1 IGF receptor (IGF-1R) to promote cell proliferation, sur-
vival, differentiation, and migration as well as metabolic processes
(Denley et al., 2005a). IGF-II also interacts with one of the two
splice variants of the insulin receptor (IR-A), with similar signaling
outcomes to those arising from the interaction with IGF-1R (Den-
ley et al., 2003). Bioavailability of IGF-II is also controlled by an
interaction with the type 2 IGF receptor (IGF-2R), which internal-
izes bound IGF-II, leading to its degradation (Brown et al., 2009).
Through these interactions, IGFs play a critical role in normal pre
and postnatal growth and development (Rosenfeld, 2007). Dysreg-
ulation of IGFs is associated with growth-related diseases such as
small stature resulting from low IGF expression or acromegaly due
to IGF-I overexpression (Rosenfeld, 2007). IGFs are also associated
with many other diseases including atherosclerosis (Clemmons,
2007) and Alzheimer’s disease (Piriz et al., 2011). Moreover, high
circulating IGF levels are associated with an increased risk of sev-
eral cancers, and IGFs promote cancer cell growth and survival
(Pollak, 2008a). A significant effort is therefore being devoted to
developing inhibitors of IGF action for the treatment of cancer
(Pollak, 2008b).

Insulin-like growth factor binding proteins modulate IGF
action by functioning as IGF carriers within the circulation. In
serum, IGFs are predominantly found in a ternary complex formed
when IGF bound to IGFBP-3 forms a complex with the acid
labile subunit (ALS; Boisclair et al., 2001). A small proportion of
IGFs can also be found in a ternary complex of IGF:IGFBP-5:ALS
(Twigg and Baxter, 1998). These ternary complexes are unable to
cross the vascular epithelial layer and serve as an IGF reservoir
within the circulation. The other IGFBPs (IGFBP-1, -2, -4, -6)
are also present in serum, with the most abundant being IGFBP-
2, and are all competent to bind IGFs. These smaller IGF:IGFBP
binary complexes can cross the vascular epithelial layer, and thus
deliver IGFs to target tissues (Boes et al., 1992; Lewitt et al.,
1994).

Locally expressed IGFBPs also modulate IGF action by inhibit-
ing binding to the IGF-1R. Two mechanisms of IGF release have
been identified, one involving extracellular matrix (ECM) binding
and the other IGFBP proteolysis (Firth and Baxter, 2002). Both
of these processes lower the affinity of IGFBPs for IGFs and thus
increase the local concentration of bioactive IGF.

Almost all IGFBPs have been shown to have IGF-independent
actions (Bach et al., 2005; Wheatcroft and Kearney, 2009). These
are a consequence of their ability to enter cells and locate to
the nucleus as well as their interaction with ECM components,
integrins, or other binding partners. IGF-independent actions are
much less well understood than IGF-dependent actions.
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This review outlines the structural features of IGFBPs involved
in their intermolecular interactions, and focuses on our under-
standing of the molecular mechanisms underlying the control of
IGF action by the IGFBPs

STRUCTURAL FEATURES OF THE IGFBPs
OVERALL STRUCTURE
The IGFBPs range in mass from ∼24 to 50 kDa (216–289 amino
acids) and share a similar overall three-domain structure, with
the structured N- and C-terminal domains connected by a less
structured linker domain (Figure 1). IGFBPs-1 to -5 have six con-
served disulfide bonds and a characteristic GCGCC motif in the
N-domain, whereas the IGFBP-6 N-domain lacks the last two cys-
teines of the motif and therefore has only five N-domain disulfide
bonds (Neumann et al., 1998; Bach et al., 2005) resulting in a dif-
ferent fold from IGFBPs-1 to -5. All six IGFBP C-domains have
three conserved disulfide bonds, making a total of nine disulfide
bonds throughout (except for IGFBP-6, which has 8, and IGFBP-4,
which has 10 due to an extra disulfide bond in the linker domain,
Chelius et al., 2001).

In the Protein Data Bank1 (Berman et al., 2000) there are cur-
rently four N-domain and three C-domain structures solved by
either NMR or X-ray crystallography (Table 1). The N-domains
of IGFBP-2, -4, and -5 are rigid globular structures, whereas the
C-domains of IGFBPs-1, -2, -4, and -6 adopt a thyroglobulin type
1 fold and contain some more flexible regions (Figure 1). The
N-terminal region of IGFBP-6 (residues 1–45, NN-BP-6) adopts
a completely different extended structure from that seen in the
short two-stranded β-sheet structure of the equivalent subdo-
main of IGFBP-2 and -4 (Chandrashekaran et al., 2007; Figure 1)
as a consequence of the different disulfide connectivity of NN-
BP-6 compared to the other IGFBPs in this region. No IGFBP-3
structures have been reported so far, and the structures of the
IGFBP linker domains are unsolved, but are believed to be rela-
tively flexible (Siwanowicz et al., 2005; Sitar et al., 2006). Recently,
a covalently cross-linked dimer of the IGFBP-5 linker domain has
been reported to show helical properties, as observed using circular
dichroism (Sung et al., 2010).

The structures of an intact IGFBP or an intact IGFBP:IGF com-
plex have also not been solved as yet. While proteins of up to
45 kDa have been solved by NMR (Kainosho et al., 2006), appli-
cation of this technique to an intact IGFBP has been hampered
by the tendency of IGFBPs to aggregate under the conditions of
NMR (Galea et al., 2012). Furthermore, the predicted flexibility of
the linker domain has been suggested to hinder the formation of
intact IGFBP crystals (Siwanowicz et al., 2005; Sitar et al., 2006).
However, the crystal structure of a ternary complex of IGF-I with
the isolated N- and C-domains of IGFBP-4 (N-BP-4 and C-BP-4,
2DSR) has been solved (as well as a structure of the IGF-I:N-BP-
4:C-BP-1 ternary complex, 2DSQ; Siwanowicz et al., 2005; Sitar
et al., 2006). The ternary structure shows that the IGFBP-4 N- and
C-termini are in close contact. Similarly, NMR studies identified
an interaction in solution between the isolated N- and C-domains
of IGFBP-2 (Kuang et al., 2007). In the case of IGFBP-6, it has

1www.pdb.org

also been shown that the NN- and C-domains are located in close
proximity upon IGF binding (Chandrashekaran et al., 2007). The
NN-domain of IGFBP-6 is unique as it is unstructured in the
absence of ligand. These structural studies have been invaluable in
providing an understanding of the mechanism by which IGFBPs
interact with the IGFs.

IGF BINDING DETERMINANTS
The IGFBPs bind IGFs with nanomolar affinities. IGFBPs-1 to -5
bind both IGF-I and IGF-II with affinities that differ by only 2- to
10-fold between the two ligands (Kalus et al., 1998; Neumann and
Bach, 1999; Carrick et al., 2001; Galanis et al., 2001; Siwanowicz
et al., 2005), whereas IGFBP-6 has a distinct preference for IGF-II,
having >100-fold higher affinity for IGF-II than IGF-I (Headey
et al., 2004c). All six IGFBPs have similar IGF binding determinants
located in both the N- and C-domains (Figure 1, in red underlined
text), and both of these domains are required for high-affinity IGF
binding (Forbes et al., 1998; Carrick et al., 2001). Isolated N- and
C-domains of the IGFBPs have significantly lower affinities for
the IGFs than the intact IGFBPs (Clemmons, 2001). Isolated N-
domains have affinities up to 100-fold lower than intact IGFBPs;
for example, N-BP-3 has a 100-fold lower affinity for IGF-I (Payet
et al., 2003) than IGFBP-3 and N-BP-2 has a 10-fold lower affinity
for IGF-I than IGFBP-2 (Kuang et al., 2007). Isolated C-domains
have lower affinities than N- domains and intact IGFBPs, with C-
BP-3 and C-BP-2, for example, having ∼1000-fold lower affinity
for IGF-I than IGFBP-3 and IGFBP-2, respectively (Payet et al.,
2003, 2004; Kuang et al., 2007).

An intriguing finding from NMR studies is that the N- and C-
terminal domains of IGFBP-2 bind IGF cooperatively (Kuang et al.,
2007). C-BP-2 binding to the IGF-I:N-BP-2 binary complex is sig-
nificantly stronger than the binding of C-BP-2 to IGF-I alone, as
shown by a switch from intermediate exchange to slow exchange on
the NMR time scale. The IGF-I Phe49–Leu54 region and the Phe49
aromatic ring undergo a conformational change or stabilization
upon binding to the N-domain. Both this effect on the ligand and
the inter-domain interaction between N-BP-2 and C-BP-2 (which
is also detectable in the absence of ligand), may contribute to this
cooperativity in IGF binding. Furthermore, combining individual
IGFBP-3 N- and C-domains in solution results in a binary com-
plex with an affinity only ∼10-fold lower than native IGFBP-3, 10-
to 100-fold greater than the affinities observed for the individual
domains (Payet et al., 2003; Yan et al., 2004). A similar result was
obtained with the combination of C-BP-4 and N-BP-4 with IGF-
I (Siwanowicz et al., 2005), although enhanced binding was not
observed with N- and C-domains of IGFBP-2 and -6 using sur-
face Plasmon resonance techniques (Carrick et al., 2001; Headey
et al., 2004c). It appears that in solution the N- and C-domains
can cooperate to bind IGF with high affinity. Presumably, flexi-
bility in the inter-domain binding sites (including loops I and II
of the C-domain) is required to enable conformational changes
upon ligand binding and this may be hindered upon tethering to
a biosensor chip.

Structural studies have identified three key N-domain residues
[Val49, Leu70, and Leu74 of IGFBP-5 (Zeslawski et al., 2001) or
Val48, Leu69, and Leu72 of IGFBP-4 (Sitar et al., 2006)] and several
other N-domain residues (residues 40–92 of mini-IGFBP-5; Kalus
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FIGURE 1 | Sequences and structures of IGFBP domains. Sequence
alignments of IGFBP-1 to-6 N-terminal (N-), linker (L-), and C-terminal (C-)
domains, highlighting cysteine residues (yellow box) and the disulfide bonding
connectivity (black lines above and below sequences). Residue numbers are
shown next to the sequences and every 10th residues is gray or white. The
following distinctive features are highlighted: Red underlined text highlights
IGF binding residues defined in structural studies of the N-domain [IGFBP-4
(Sitar et al., 2006) and mini IGFBP-5 (Kalus et al., 1998)] and C-domain
[IGFBP-4 (Sitar et al., 2006) and IGFBP-6 (Headey et al., 2004a)]. Open red
boxes, key residues involved in binding conserved across all IGFBPs; Light
gray arrowheads, IGFBP-2 proteolysis sites (Ho and Baxter, 1997; Rehault
et al., 2001; Monget et al., 2003; Standker et al., 2003; Mark et al., 2005; Berg
et al., 2007; Miyamoto et al., 2007); Dark gray arrowhead, PAPP-A cleavage
sites on IGFBP-2, -4, and -5 (Conover et al., 1995; Laursen et al., 2001;

Monget et al., 2003); Blue boxes, IGFBP heparin-binding domains confirmed
by site-directed mutagenesis or NMR-IGFBP-2 (Russo et al., 2005; Kuang
et al., 2006), IGFBP-3 (Firth et al., 1998), and IGFBP-5 (Arai et al., 1996b);
Filled red boxes, phosphorylation sites (Jones et al., 1993a; Coverley et al.,
2000; Gibson et al., 2001; Graham et al., 2007; Dolcini et al., 2009); Light
green boxes, integrin binding sites (Jones et al., 1993c; Kuang et al., 2006),
Dark green boxes; glycosylation sites (Neumann et al., 1998; Firth and Baxter,
1999; Graham et al., 2007); Black underlined text, nuclear localization
sequences (Schedlich et al., 1998; Iosef et al., 2008); Blue underlined text,
Leu194 and Leu197 of IGFBP-3 involved in nuclear export
(Paharkova-Vatchkova and Lee, 2010). Protein sequence SwissProt accession
numbers are as follows: IGFBP-1 (P08833), IGFBP-2 (P18065), IGFBP-3
(P17936), IGFBP-4 (P22692), IGFBP-5 (P24593), IGFBP-6 (P24592).

(Continued)
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FIGURE 1 | Continued

N-domain and C-domain ribbon structures are from the following
database files: N-BP-4 (PDB 2DSR), mini N-BP-5 (PDB 1BOE, conformer
1), NN-BP-6 (PDB 2JM2), C-BP-1 (PDB 1ZT3), C-BP-2 (PDB 2H7T), C-BP-4
(PDB 2DSR), C-BP-6 (PDB 1RMJ), and the Ii p41 thryglobulin type 1
domain (PDB 1ICF). Some of these structures are derived from

IGF:IGFBP complexes (seeTable 1). For those NMR PDB files containing
more than one conformer the first entry was used in this figure.
Molecular graphic images were produced using UCSF Chimera program
from Resource for Biocomputing, Visualization, and Informatics at the
University of California at San Francisco (http://www.cgl.ucsf.edu/
chimera; Pettersen et al., 2004).

Table 1 | Structures of IGFBP domains found in the Protein Data Bank (PDB) and Biological Magnetic Resonance Bank (BMRB) databases.

N-domain C-domain IGF-I:N-BP IGF-I:N-BP:C-BP

IGFBP-1 1ZT3 (aa 166–259), 1ZT5 (aa

166–259, Fe2+; Sala et al., 2005)*

IGFBP-2 http://rest.bmrb.wisc.edu/

bmrb/NMR-STAR2/17743

(Galea et al., 2012)**

2H7T (aa 183–289; Kuang et al.,

2006)#

IGFBP-4 2DSP (IGF-I:N-BP-4 aa 1–92;

Sitar et al., 2006)*
2DSR (IGF-I:N-BP-4 aa 1–92: C-

BP-4 aa 151–232; Sitar et al.,

2006)*

IWQJ (IGF-I:N-BP-4, aa 3–82;

Siwanowicz et al., 2005)*
2DSQ (IGF-I:N-BP-4 aa 1–92: C-

BP-1 aa 141–234; Sitar et al.,

2006)*

IGFBP-5 1BOE (aa 40–92; Kalus

et al., 1998)#
1H59 (IGF-I:N-BP-5, aa 58–111;

Zeslawski et al., 2001)*

IGFBP-6 2JM2 (aa 25–69;

Chandrashekaran et al.,

2007)#

1RMJ (aa 136–216; Headey et al.,

2004a)#

*Structures determined by X-ray crystallography.
#Structures determined by NMR.

**Model based on NMR data and homology modeling using N-BP-4 coordinates (PDB 2DSP and 2DSR).

et al., 1998) that interact with IGF (Figure 1). These residues form
a deep binding cleft into which IGFs dock (Figure 2A). Mutagen-
esis studies confirmed the role of IGFBP-5 residues Val49, Leu70,
and Leu74 in IGF-I and IGF-II binding and sequence comparisons
show that these residues are conserved throughout all six IGFBPs
(Kalus et al., 1998). Equivalent residues have been mutated in IGF-
BPs -3,-4, -5, and -6 to produce IGFBP analogues with <1000-fold
lower affinities for IGFs than the wild-type IGFBPs (Qin et al.,
1998b; Imai et al., 2000; Yan et al., 2004; Fu et al., 2007). These
findings correlated well with a chemical modification study that
identified Tyr60 of bovine IGFBP-2 as being part of the interac-
tion surface (Hobba et al., 1996, 1998); Tyr60 of bovine IGFBP-2
lies adjacent to Val59 (equivalent to Val48 and Tyr49 of IGFBP-4;
Figure 2A).

Looking at IGF-I, the core of the N-domain interaction with
IGF-I involves the side chains of Phe16 and Leu54 of IGF-I that
are inserted into the deep binding cleft of mini N-BP-5 (Zeslawski
et al., 2001), which forms a “palm”-like structure (Sitar et al., 2006;
Figure 2A). Mutagenesis and NMR studies previously mapped
specific residues on IGFs involved in IGFBP binding (Headey et al.,
2004b; Carrick et al., 2005; Denley et al., 2005a), and these findings
agreed with the sites of interaction revealed by the mini-IGFBP-5
structure. The critical role of Glu3 in IGF-I in binding IGF-
BPs (Francis et al., 1992) could be attributed to hydrogen bonds
between this residue (and IGF-I Glu9) and IGFBP-5 residues Tyr50

(equivalent to Tyr60 in IGFBP-2) and His71 (Zeslawski et al., 2001;
Figure 2A).

Further structural studies with the intact IGFBP-4 N-domain
(residues 1–92) and NN-BP-6 revealed that N-terminal residues
wrap around IGF-I in a “thumb”-like manner (Siwanowicz et al.,
2005; Chandrashekaran et al., 2007) and contact residues Phe23,
Tyr24, Phe25 of IGF-I (Figure 2A). This hydrophobic patch of
residues on IGF-I is critical for IGF-1R binding (Denley et al.,
2005a), and thus binding of IGF-I to IGFBPs sterically hinders its
interaction with the IGF-1R. Importantly, in addition to contribut-
ing to overall IGF binding affinity, the NN-subdomain of IGFBP-6
preferentially binds IGF-II over IGF-I, suggesting that this region
is important in determining the marked preference of IGFBP-6
for IGF-II (Sitar et al., 2006; Chandrashekaran et al., 2007). The
details of the mechanism underlying this IGF-II preference are yet
to be elucidated.

Sites of ligand interaction with the C-domain have also been
defined in structural studies. NMR techniques have been used
to map the large IGF binding surface of C-BP-6 to one side of
the flat thyroglobulin type I domain encompassing the helix, the
first and second strands of the β-sheet, and the first and second
loops (Headey et al., 2004b; residues in red underlined text in
Figure 1). Site-directed mutagenesis confirmed the involvement
of Asn166 in binding both IGF-I and IGF-II and identified Ser180,
Ser181, Gln182 as being determinants contributing to IGFBP-6’s
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FIGURE 2 | Structure of the N-BP-4:IGF-I:C-BP-4 complex (PDB 2DSR;

Sitar et al., 2006). (A) The N-domain of BP-4 (blue, residues 3–82) contacts
the C-domain of BP-4 (green, residues 151–232) to form a high-affinity
complex with IGF-I (red). IGF-I residues Phe16 and Leu54 insert into a cleft
in the N-BP-4 encompassing residues Val48, Tyr49, Leu69, and Leu72 (Kalus
et al., 1998). The “thumb” region of the N-domain and residues Leu157,
Leu161, and Ile180 of the IGFBP-4 C-domain are in contact with IGF-I
residues Phe23, Tyr24, Phe25, and Val44, which are involved in IGF-1R
binding, resulting in steric hindrance of IGF-I binding to the receptor (PDB
2DSR, Sitar et al., 2006). (B,C) Superposition of IGF-I crystal structures
highlighting that the Tyr60 side chain remains in the same position whether
IGF-I is bound to IGFBPs or free. Ribbon views of IGF-I in the free form
(bound to detergent molecules) PDB 1GZR (green; Brzozowski et al., 2002)
and PDB 1IMX (yellow; Vajdos et al., 2001), the IGF-I‚mini-N-BP-5 binary
complex (PDB 1H59, blue; Zeslawski et al., 2001), and the
IGF-I‚N-BP-4‚C-BP-4 ternary complex (PDB 2DSR, light gray; Sitar et al.,
2006) are superimposed over backbone heavy atoms of the three helices
(Ala8–Cys18, Gly42–Cys48, Leu54–Cys61). The side chains of Phe16,
Phe49, and Leu54 are shown. The structures are shown in two different
orientations (B,C). The structures in (B) are in an orientation equivalent to
that of the IGF-I structure in (A). Parts of the flexible regions (residues 1–2,
26–42, and 63–70) are excluded for clarity. Molecular graphic images were
produced with the UCSF Chimera program from Resource for
Biocomputing, Visualization, and Informatics at the University of California
at San Francisco.

marked specificity for IGF-II. This region was previously identi-
fied as an IGF binding surface of IGFBP-2 by deletion mutagenesis
(Forbes et al., 1998) and cross-linking studies (Horney et al., 2001).
Interestingly, crystal structures of the ternary IGF-I:N-BP-4:C-
BP-1 complex suggest that the IGF binding surface of C-BP-4 is
located in the same region, but the overall binding surface is much
smaller than the C-BP-6 surface defined by NMR (Figure 2; Sitar
et al., 2006), as is often the case in such comparisons. A similar
region of IGFBP-3 and -5 is involved in IGF binding, as defined by
mutagenesis studies (Song et al., 2000; Yan et al., 2004). Mutation
of Gly217 and Gln223 in the C terminus (Gly217Ser, Gln223Ala
IGFBP-3) disrupted IGF binding by 4- to 11-fold, with a greater
effect on IGF-II binding. Strikingly, IGF binding was completely
abolished when Gly217 was mutated to Ser and Gln223 to Ala in
the C terminus in combination with mutations of the IGFBP-3
N-domain binding site (Leu77Gln, Leu80Gln, and Leu81Gln; Yan
et al., 2004).

C-BP-4 also contacts IGF residues critical for IGF-1R binding,
including Phe25 (contacting Leu161 and Ile180 of C-BP-4) and
Val44 (contacting Leu157 of C-BP-4; Denley et al., 2005b) and
equivalent residues of C-BP-6 are involved in the interaction with
IGF-II (Headey et al., 2004a). Therefore, the interaction of both
the N- and C-domains of the IGFBPs with IGFs sterically hinders
IGF receptor binding and thus inhibits IGF action.

While structural studies to date suggest that the major binding
determinants lie in the N- and C-domains, there is some indirect
evidence for a role of the linker in IGF binding. As described above,
high-affinity binding is achieved by incubating individual domains
with IGF. However, in the absence of a flexible linker domain, the
affinity is 10-fold lower than wild-type. This suggests that the
linker domain plays a role in the formation of a high-affinity IGF
binding complex, perhaps by controlling inter-domain movement
upon ligand binding (Kuang et al., 2007). Further evidence for
a role of the linker domains comes from a chemical modifica-
tion study where Tyr60 of IGF-I was protected from iodination
when in complex with IGFBP-2 (Hobba et al., 1996). This suggests
that either IGFBP-2 is blocking access or the IGF-I undergoes a
structural change upon binding to prohibit access of the label-
ing reagent to this residue, as we know from structural studies
that Tyr60 does not interact with either the N- or C-domains
(Figure 2A). However, when comparing the IGF-I structures in
the IGFBP-bound and free states we see that there is no major per-
turbation of the overall IGF-I structure or local structure around
Tyr60 (Figure 2B). Therefore a likely explanation is that the linker
domain (not present in the IGF-I:N-BP-4:C-BP-1 structure) plays
a role in protecting Tyr60 from iodination, although this is yet to
be proven experimentally.

OTHER FUNCTIONAL MOTIFS
Insulin-like growth factor binding proteins engage in a range of
interactions with binding partners other than IGFs. This includes
interactions with serum, cell-surface, and ECM proteins, as well
as metal ions (reviewed in Clemmons, 2001; Firth and Baxter,
2002; Bach et al., 2005; Duan and Xu, 2005). The IGFBPs can
also undergo post-translational modification (some of which are
shown in Figure 1). These interactions and modifications confer
on each IGFBP some of its unique characteristics and functions;
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here we discuss the best characterized of these interactions with
respect to their effect on IGFBP structure and function.

Acid labile subunit binding site
Acid labile subunit is an ∼85-kDa glycosylated protein that binds
to IGFBP-3:IGF and IGFBP-5:IGF binary complexes (Boisclair
et al., 2001). ALS belongs to the leucine-rich repeats (LRR) family
of proteins, whose members participate in protein–protein inter-
actions. ALS consists of 20 LRR(s), modeled to be arranged in
a donut shape, with negatively charged patches within its center
proposed to form the sites of interaction with the binary com-
plex (Janosi et al., 1999). On IGFBP-3 and IGFBP-5 the ALS site
of interaction has been mapped by mutagenesis studies to the
C-domain; it involves residues 215–232 in IGFBP-3 [more specifi-
cally residues 228–232 (Firth et al., 1998) and residues 201–218 in
IGFBP-5; Figure 1; Twigg et al., 1998]. Interestingly, ALS does not
bind either IGFBP unless they are in complex with IGF (Boisclair
et al., 2001).

The main function of ALS is to increase the half-life of IGFs in
the circulation. Free IGF-I has a half-life of ∼12 min, in marked
contrast to >12 h when in complex with IGFBP-3 and ALS (Bois-
clair et al., 2001). Almost all serum IGF is found in 150-kDa com-
plexes, with ∼90% in the ALS:IGFBP-3:IGF complex and ∼10%
in the ALS:IGFBP-5:IGF form. The affinity of ALS for the IGF-
I:IGFBP-3 binary complex is ∼300-fold lower than the binding
constant for the binary complex, in line with the 150-kDa com-
plex playing an important role in maintaining a readily available
pool of bioavailable IGF (Holman and Baxter, 1996). Knockout
mice (Ueki et al., 2000; Yakar et al., 2002) and mutations in the
human ALS gene clearly demonstrate this role (Domene et al.,
2011). At least 16 naturally occurring mutations in the human
ALS gene have been reported so far, including missense, nonsense,
frameshift, and duplication mutants (Domene et al., 2011). The
lack of functional ALS results in low serum IGF-I and IGFBP-3
and leads to small mice or short stature in humans.

Extracellular matrix binding
Insulin-like growth factor binding protein-2, -3, -5, and -6 have
all been shown to interact with glycosaminoglycans (GAGs; Booth
et al., 1995; Fowlkes et al., 1997; Firth et al., 1998; Russo et al.,
2005; Kuang et al., 2006). A region spanning residues 215–232 of
IGFBP-3 is rich in basic residues. Synthetic peptides corresponding
to this sequence and mutation of the Lys-Gly-Arg-Lys-Arg con-
sensus sequence (residues 227–232) in IGFBP-3 disrupt binding
to GAGs (Booth et al., 1995; Fowlkes et al., 1997). Similar exper-
iments demonstrated the specificity of GAG binding by IGFBP-5
and -6 via their equivalent basic regions (Arai et al., 1996b; Fowlkes
et al., 1997). The heparin-binding motif consensus sequence (B-
B-B-X-X-B) found within the IGFBP-3, -5, and -6 C-domain basic
regions (Figure 1, blue boxes) is lacking in IGFBPs-1 and -4.

A heparin-binding surface identified in IGFBP-2 by NMR
encompasses Lys227, His228, Asn232, Leu233, Lys234, and His271
and overlaps the equivalent IGFBP-3 heparin-binding region
(Kuang et al., 2006). These heparin-binding residues of IGFBP-
2 are located in the thyroglobulin type I domain within the β-turn
connecting the first and second strands, part of the third strand,
and the beginning of the C-terminal tail (Kuang et al., 2006). The

interaction of IGFBP-2 with heparin via this site is pH-dependent,
presumably as His becomes protonated at the optimal binding pH
of 6.0, thereby improving the electrostatic interaction. The pH-
dependent interaction with GAGs may be relevant in situations
where extracellular pH is low, as is the case in sites of wound
healing or with highly metabolically active cancer cells. IGFBP-
2 is unique in that it also contains a second GAG binding site
within the linker domain (residues 179–184), which matches a
secondary heparin-binding motif consensus sequence (B-B-X-B;
Russo et al., 2005). Interestingly, an increase in GAG binding affin-
ity by IGFBP-2 is achieved in the presence of IGF-I and IGF-II,
suggesting that a structural change occurs upon IGF binding to
expose the heparin-binding surfaces (Arai et al., 1996a).

The interaction with GAGs modulates IGF action. The GAG
binding region is adjacent to residues important for IGF binding
(Song et al., 2000; Kuang et al., 2006; Figure 1). Once bound to
GAGs, the affinity of IGFBPs for IGFs is much lower, leading to
an increase in the concentration of bioavailable IGF to bind to the
IGF-1R (Jones et al., 1993b; Arai et al., 1994). The heparin-binding
region also overlaps the ALS binding sites of IGFBPs-3 and -5
(Figure 1). As such, binding to ECM components can result in IGF
release from the 150-kDa complex, thereby promoting delivery of
IGFs to targets (Firth and Baxter, 2002). Interestingly, IGFBP-2
and IGFBP-6 bind a broad range of GAGs whereas IGFBP-3 and
IGFBP-5 preferentially bind to heparin, heparan sulfate, dermatan
sulfate and minimally to chondroitin sulfates and hyaluronic acid
(Fowlkes and Serra, 1996). These differences in GAG binding
specificity are likely to confer some tissue-specific actions upon
the IGFBPs.

GAG binding can also alter IGFBP interactions with other lig-
ands, thereby modulating the IGF-independent actions of IGFBPs.
For example, activation of plasminogen to plasmin is promoted by
the interaction of IGFBP-5 and plasminogen activator inhibitor-1
(PAI-1), leading to ECM degradation and remodeling indepen-
dently of IGF-I. This process is important in mammary gland
involution. However, binding of heparin to IGFBP-5 perturbs the
IGFBP-5:PAI-1 interaction, thus inhibiting this IGF-independent
action of IGFBP-5 (Nam et al., 1997). Further interaction with
ECM proteins via IGFBP C-domains has been reported (Bach et al.,
2005). For example, IGFBP-3 binds fibrin/fibrinogen, fibronectin,
vitronectin (Kricker et al., 2010), and plasminogen, which then can
influence both its IGF-dependent and IGF-independent actions.
Also, fibronectin binds IGFBP-5 and inhibits its ability to promote
IGF-dependent cell migration (Xu et al., 2004).

Nuclear localization and interaction with importins
In some circumstances IGFBPs-2, -3, -5, and -6 are able to localize
to the nucleus and act in an IGF-independent manner to influ-
ence cell signaling and gene expression (Xu et al., 2004; Miyako
et al., 2009; Azar et al., 2011; Lee et al., 2011). Nuclear localiza-
tion sequences have been located in the C-domain of IGFBPs-3
and -5 within the basic region important for ALS and ECM bind-
ing (Schedlich et al., 1998; Figure 1, black underlined text), and
within the corresponding region of IGFBP-6 (Iosef et al., 2008). In
the case of IGFBP-3, nuclear localization results in binding to the
retinoid-X-receptor (RXR) α transcription factor and control of its
activity to promote apoptosis (Liu et al., 2000). Recently, nuclear
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IGFBP-6 has been shown to bind the vitamin D receptor (VDR),
which inhibits the VDR function and its interaction with RXR,
thereby blocking osteoblastic differentiation (Cui et al., 2011).
Finally, site-directed mutagenesis identified Leu194 and Leu197
in the IGFBP-3 C-domain as playing a role in nuclear export
(Paharkova-Vatchkova and Lee, 2010; Figure 1, blue underlined
text). Nuclear export sequences have not been reported for other
IGFBPs so far.

Integrin binding – RGD motifs
Other IGF-independent activities ascribed to IGFBPs-1 and -2
involve Arg-Gly-Asp (RGD) motifs present in their C-domains
(Figure 1, light green boxes), which mediate interaction with α1β5
integrins (Jones et al., 1993c). The IGFBP-2 RGD motif is located
in loop III of the C-domain (Kuang et al., 2006). The interac-
tion decreases cell adhesion and proliferation and promotes cell
migration, all processes involved in promoting cancer growth and
metastasis (Schutt et al., 2004; Russo et al., 2005; Wang et al., 2006).
For example, IGFBP-2/β5 integrin binding stimulates migration of
glioma cells via activation of the MAP kinase JNK (Mendes et al.,
2010). Similarly, interaction of IGFBP-1 with α1β5 integrin via its
RGD motif promotes extravillous trophoblast migration (Gleeson
et al., 2001).

Sites of proteolysis
All IGFBPs are susceptible to proteolysis by a range of proteases
(Firth and Baxter, 2002; Bunn and Fowlkes, 2003), with most
cleavage sites identified so far being located in the linker domain
(Figure 1, arrowheads). The importance of IGFBP proteolysis was
first recognized over 20 years ago when IGFBP fragments were
detected in sera of pregnant women. A pregnancy-associated zinc-
binding metalloproteinase, pregnancy-associated plasma protein
A (PAPP-A), was identified, and since then its cleavage of IGFBP-
4 on the N-terminal side of residue Lys136 has been studied in
detail (Boldt and Conover, 2007; Conover, 2010; Table 2). Inter-
estingly PAPP-A cleavage of IGFBP-4 is dependent on IGF binding,
suggesting that the cleavage site becomes more accessible upon a
conformational change of the linker domain (Conover et al., 1993;
Gyrup and Oxvig, 2007). IGFBP-2 cleavage between Gln165 and
Met166 by PAPP-A is also IGF-dependent, whereas IGFBP-5 is
cleaved between Ser143 and Lys144 independently of IGF bind-
ing, suggesting that the cleavage site is already exposed in the case
of IGFBP-5 (Laursen et al., 2001; Gyrup and Oxvig, 2007; Table 2).
Thus, these studies highlight subtle differences in local structure
within the linker domains of individual IGFBPs.

Many other proteases, including pepsin, cathepsins, matrix
metalloproteinases, and kallikreins, also cleave IGFBPs predomi-
nantly in the linker domain and are not dependent on IGF binding
(Firth and Baxter, 2002; Bunn and Fowlkes, 2003). These obser-
vations again provide indirect evidence that the linker domain is
predominantly unstructured and solvent accessible. To exemplify
the complexity of IGFBP regulation by proteolysis, the range of
proteases reported to cleave IGFBP-2, and their sites of cleavage, is
presented in Table 2.

Proteolytic fragments of IGFBPs have lower affinity for the
IGFs than the intact proteins. Proteolysis therefore provides a
mechanism by which the concentration of freely bioavailable

Table 2 | IGFBP-2 proteolytic cleavage sites and PAPP-A cleavage sites

on IGFBPs-4, and -5 as identified by mass spectrometry and/or

N-terminal sequencing.

IGFBP Protease Cleavage site Reference

IGFBP-2 Calpain (Ca2+

activated)

His165–Arg166 Berg et al. (2007)

Unknown in

hemofiltrate

Tyr103–Gly104,

Leu152–Ala153,

Arg156–Glu157,

Gln165–Met166,

Thr205–Met206,

Arg287–Met288

Mark et al. (2005)

Unknown in

hemofiltrate

Met166–Gly167,

Lys168–Gly169

Standker et al. (2003)

Unknown in milk Leu3–Phe4,

Lys168–Gly169,

Lys181–Leu182

Ho and Baxter (1997)

Human kallikrein-2 Arg164–Gln165 Rehault et al. (2001)

Matrix

metalloproteinase-7

Glu151–Leu152,

Gly175–Leu176,

Lys181–Leu182

Miyamoto et al. (2007)

PAPP-A Gln165–Met166 Monget et al. (2003)

IGFBP-4 PAPP-A Met135–Lys136 Conover et al. (1995)

IGFBP-5 PAPP-A Gln142–Ser143 Laursen et al. (2001)

IGFs is increased, leading to subsequent activation of the IGF-
1R. This mechanism has been elegantly demonstrated by in vivo
studies in which, for example, PAPP-A and PAPP-A2 (a PAPP-
A homologue)-knockout mice exhibit pre and postnatal growth
retardation due to their lack of ability to cleave IGFBP-4 or IGFBP-
5, respectively (Conover et al., 2004, 2011). The growth defect
is reversed in the PAPP-A (−/−) and IGFBP-4 (−/−) double
knockouts, thus demonstrating IGFBP-4 is acting as a reservoir
for IGF-II and regulates IGF-II release during development (Ning
et al., 2008).

Sites of post-translational modification (glycosylation and
phosphorylation)
Glycosylation of all IGFBPs has been reported, although the bio-
logical significance of these modifications is not fully understood
(Firth and Baxter, 2002; Graham et al., 2007). The specific sites
of N-linked glycosylation have been identified in the IGFBP-3 N-
and linker domains (Asn89, Asn109, and Asn172; Figure 1, dark
green boxes). Glycosylated and non-glycosylated forms of IGFBP-
3 have been shown to have identical affinity for the IGFs (Firth and
Baxter, 1999), although lack of glycosylation increases the affin-
ity of IGFBP-3 for the cell membrane (Firth and Baxter, 1999).
IGFBP-5 is also glycosylated,predominantly at Thr103 in the linker
domain and to a lesser extent at Ser249 in the C-domain. This
similarly has no effect on IGF binding but increases the affinity for
heparin, suggesting a role in modulating ECM binding (Graham
et al., 2007). IGFBP-6 is O-glycosylated on Thr126,Ser144,Thr145,
Thr146, and Ser152, and this protects IGFBP-6 from proteolytic
degradation, thereby increasing its circulating half-life (Neumann
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et al., 1998). Therefore, glycosylation can influence both the
IGF-dependent and IGF-independent actions of some IGFBPs.

Phosphorylation can also influence IGFBP actions. IGFBPs-1,
-3, and -5 can be phosphorylated on sites found mainly in the
linker domain (Figure 1, filled red boxes). IGFBP-1 is phospho-
rylated by casein kinase-2, predominantly on Ser101, with Ser119
and Ser169 being minor sites (Jones et al., 1993a). Increasing phos-
phorylation was shown to increase susceptibility to proteolysis by
amniotic fluid proteases (Dolcini et al., 2009), but provide pro-
tection against plasmin cleavage (Gibson et al., 2001), suggesting
that this modification alters the recognition motif for each pro-
tease in different ways. Phosphorylation of human IGFBP-1 also
increases its affinity for IGFs, and thus the phosphorylation status
is thought to influence whether IGFBP-1 inhibits or potentiates
IGF action (Jones et al., 1993a). The same enzyme phosphorylates
IGFBP-3 on Ser111 and Ser113,but this modification does not alter
IGFBP-3’s affinity for IGF-I or IGF-II (Coverley et al., 2000). Phos-
phorylation of IGFBP-3 protects it from proteolytic cleavage and
disrupts its cell membrane association and ability to complex with
ALS (Coverley et al., 2000). IGFBP-5 is also a substrate of casein
kinase-2 and is phosphorylated on Ser96 and to a lesser extent on
Ser248. This modification does not affect IGF or ALS binding but
disrupts heparin binding (Graham et al., 2007). Therefore, phos-
phorylation of each IGFBP has distinct effects on its interactions
with binding partners and influences the IGFBP modulation of
both IGF-dependent and IGF-independent actions.

Metal ion binding
Insulin-like growth factor binding protein-3 possesses a metal
binding domain, which overlaps the heparin-binding domain in
the C-domain (Singh et al., 2004). Metal binding influences its
interaction with integrins and transferrin and subsequent uptake
into cells, a property that has been exploited for the delivery of
pro-apoptotic molecules into cancer cells (Huq et al., 2009). Zn2+

also influences binding of IGFs to cell surface associated IGFBP-3
and -5, possibly affecting IGF bioavailability (McCusker, 1998).
NMR studies showed that IGFBP-6 residues Gln13, Glu23, Asp25,
Ser28, Glu31, Glu35, and Glu37 interact with the lanthanide ion
Yb3+ but binding to physiologically relevant metal ions like Ca2+
or Mg2+ was not detected (Chandrashekaran et al., 2007).

IMPLICATIONS OF IGFBP STRUCTURAL STUDIES FOR THE
DESIGN OF DISEASE THERAPIES
Significant advances have been made in determining the struc-
tures of IGFBPs and relating their specific structural motifs to
function. These studies have provided the basic understanding
required for development of IGFBPs as disease therapies. For
example, the product Mecasermin rinfabate (iPLEX™, a complex
between IGF-I and IGFBP-3 intact proteins) was originally devel-
oped for the treatment of primary IGF-I deficiency in children with
short stature and patients with a growth hormone (GH) gene dele-
tion who have developed neutralizing antibodies to GH. However,
use of Mecasermin for this application is currently suspended for
legal reasons (Williams et al., 2008). While IGF-I treatment alone
is also effective, the aim is to increase the half-life of IGF-I by co-
administration with IGFBP-3. Mecasermin rinfabate is currently
in clinical trials for the treatment of other diseases associated with

poor growth, including amyotrophic lateral sclerosis (Lou Gehrig’s
disease) and myotonic muscular dystrophy2. Improved insulin
sensitivity in patients with severe insulin resistance was achieved
recently by treatment with Mecasermin rinfabate, possibly by
promoting improve beta cell function (Regan et al., 2010).

Insulin-like growth factor binding proteins have also been
investigated as potential cancer therapies based on their ability
to inhibit IGF binding to the IGF-1R. Overexpression of IGFBP-
4 and -6 in cancer xenografts inhibited tumor growth (Damon
et al., 1998; Gallicchio et al., 2001). In addition, PAPP-A resistant
IGFBP-4 effectively inhibited mammary tumor xenograft growth
when overexpressed in the tumor cells producing the protease
(Ryan et al., 2009). Therefore, there is significant potential for the
use of a modified protease-resistant IGFBP for the treatment of
IGF-dependent cancers (Rosenzweig and Atreya, 2010). Toward
this aim we have recently demonstrated efficacy of subcutaneous
administration of a protease-resistant IGFBP-2 in inhibiting breast
cancer xenografts (unpublished).

The trimeric complex involving IGF-I, vitronectin, and IGFBP-
3 has been developed to promote cell migration for application in
tissue repair and wound healing (Vitrogro®; Kricker et al., 2003,
2010). This complex leads to activation of the phosphatidylinosi-
tide 3-Kinase/AKT and MAPK/ERK 1/2 signaling pathways via
co-activation of the αv integrins and the IGF-1R (Hollier et al.,
2008). It is currently in clinical trials for the treatment of dia-
betic ulcers. A chimera of vitronectin and IGF-I also has similar
properties (Van Lonkhuyzen et al., 2007).

Further understanding of the molecular interactions with other
binding partners and the relevance to IGFBP action in normal and
diseased states will ultimately lead to the development of novel
therapies targeting these interactions.

SUMMARY: QUESTIONS REMAINING
Recent significant advances in understanding the structure and
function of IGFBPs provide us with a growing and detailed model
of the molecular mechanisms of IGFBP action (Figure 3). Within
this model, it is clear that IGFBPs act primarily as inhibitors of
IGF binding to the IGF-1R (or IR-A in the case of IGF-II), as
residues critical for receptor binding interact directly with the N-
and C-terminal domains of the IGFBPs. Importantly, the role of
the IGFBP linker domain in IGF binding remains unclear. A signif-
icant proportion of the linker domain can be removed with little
effect on overall binding affinity (Qin et al., 1998a) and individ-
ual N- and C-domains can bind IGFs with only a ∼10-fold lower
affinity compared to intact IGFBPs (Payet et al., 2003; Siwanowicz
et al., 2005). Experience from fragment-based drug design shows
that linkage of two separate binding entities results in a molecule
with a binding affinity that approximates the product of the two
individual affinities (Hajduk and Greer, 2007). For instance, two
chemical entities with K d values of 10−4 and 10−5 M, respectively,
could be linked to produce a molecule with a K d of 10−9 M. In
the case of the IGFBPs, individual N- and C-domains have K d

values of micromolar or better, which implies that it should be
possible to link them to produce an intact IGFBP with a K d in

2clinicaltrials.gov
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FIGURE 3 | Model of the molecular mechanisms of IGFBP action. 1. The
N- (blue) and C- (green) domains are connected by a flexible linker (dark
blue). Inter-domain interaction between the N- and C-domains is detected
in the absence of ligand, but this is of low affinity (Kuang et al., 2007). The
interface between the N- and C-domains lies immediately adjacent to their
IGF binding surfaces and both domains act cooperatively to bind IGF. Upon
IGF-I or IGF-II (pink) binding, the C-domain undergoes a structural change.
Residues in the N- and C-domains form the IGF binding site, with the linker
playing an as yet unknown role. 2. Proteolysis of IGFBPs occurs primarily in
the linker domain (indicated by scissors) resulting in an increased
concentration of free IGFs. Individual N- and C-domains have low affinity for
IGFs, whereas in vitro, reconstituted binary complexes of the N- and
C-domains generally bind IGFs with an affinity only 10-fold lower than intact
IGFBPs. It is not clear whether in vivo cleavage results in the dissociation
of IGFBP into separate domains or whether cleaved IGFBP domains remain

associated via the inter-domain interface. Cleavage products are
susceptible to further breakdown, which possibly leads to the equilibrium
being pushed toward free IGF and individual IGFBP domains. 3. Intact and
cleaved IGFBPs bind extracellular matrix components (ECM,
glycosaminoglycans, and proteins) via the C-domain (and the linker domain
in IGFBP-2). Binding to ECM (hatched green shape) lowers the affinity for
IGFs. 4. IGFBP-2, -3, -5, and -6 are found within the nucleus and can affect
gene expression (arrow). IGFBP-3 can be associated with the endoplasmic
reticulum (ER). 5. Binary IGFBP:IGF complexes, intact IGFBPs, and
cleavage products can be found in the blood. IGFBP-3 and -5 form a
trimeric 150 kDa complex with IGF and the acid labile subunit (ALS, large
blue circle). Even with limited proteolysis in the L-domain, IGFBP fragments
can also form a trimeric complex. Only the binary complexes are small
enough to cross the vascular epithelium into the extracellular space to
promote IGF-dependent biological activities.

the picomolar range (depending on the length and flexibility of
the linker). That this is not the case further supports the observa-
tions of a pre-existing interaction between the individual domains
even in the absence of the linker domain (Sitar et al., 2006; Kuang
et al., 2007). These considerations further emphasize the need to
understand the structure and dynamics of the linker domain and
its proximity to the IGF ligands in order to clarify the molecular
basis for its function.

An understanding of the role of the linker domain in IGF bind-
ing will also have implications in understanding the mechanism
of IGF release upon IGFBP proteolysis. Experimental evidence
in vitro and in vivo suggests that IGFBP proteolysis of the linker
domain leads to increased concentrations of bioavailable IGF. A
basic interpretation of these observations has been that prote-
olysis leads to the complex dissociating into low affinity frag-
ments. However, it has been clearly shown that in pregnancy
serum the majority of IGF remains in the large molecular weight
IGFBP-3:ALS:IGF complex despite most of the IGFBP-3 being

proteolyzed (Suikkari and Baxter, 1992; Yan et al., 2009). It is not
clear whether proteolytic fragments also remain associated at the
tissue level. Therefore the mechanism of IGF release remains to be
elucidated.

Finally, a full understanding of the determinants of IGF speci-
ficity for all IGFBPs has not yet been achieved, particularly in
the case of the IGF-II preference for IGFBP-6, although we do
know that this involves residues in both the C- and NN-domains
(Headey et al., 2004b; Chandrashekaran et al., 2007).

In contrast to the interaction with IGFs, little is known about
the mechanism of interaction with other binding partners. In
some cases, binding sites have been identified but no struc-
tural detail is available for complexes formed with other binding
partners. Therefore much remains to be understood about the
IGF-independent binding interactions.

In summary, studying the structural features of the individual
domains has revealed a range of different functions of the IGFBPs.
A complex picture has emerged of IGFBPs as multi-functional
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proteins able to interact with a broad range of proteins and GAGs.
These interactions confer on the IGFBPs the ability to modulate
IGF actions and/or to influence IGF-independent actions, such
as ECM and cell membrane binding leading to cell migration.
An understanding of these molecular interactions has allowed
researchers to probe the role of IGFBPs in normal growth and
development as well as in disease. Future understanding of the
linker domain structure, as well as solution of the structure of an

intact IGFBP alone or bound to its various ligands, will provide the
basis for development of specific tools to inhibit IGF-dependent
and IGF-independent actions for the treatment of diseases such as
cancer.
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