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Atherosclerosis results from endothelial cell dysfunction and inflammatory processes
affecting both macro- and microvasculature which are involved in vascular diabetic complica-
tions. Glucagon-like peptide-1 (GLP-1) is an incretin hormone responsible for amplification
of insulin secretion when nutrients are given orally as opposed to intravenously and it retains
its insulinotropic activity in patients with type 2 diabetes mellitus (T2D). GLP-1 based ther-
apies, such as GLP-1 receptor (GLP-1R) agonists and inhibitors of dipeptidyl peptidase-4,
an enzyme that degrades endogenous GLP-1 are routinely used to treat patients with
T2D. Recent experimental model studies have established that GLP-1R mRNA is widely
expressed in several immune cells. Moreover, its activation contributes to the regulation
of both thymocyte and peripheralT cells proliferation and is involved in the maintenance of
peripheral regulatory T cells. GLP-1R is also expressed in endothelial and smooth muscle
cells. The effect of incretin hormones on atherosclerogenesis have recently been stud-
ied in animal models of apolipoprotein E-deficient mice (apoE−/−). These studies have
demonstrated that treatment with incretin hormones or related compounds suppresses
the progression of atherosclerosis and macrophage infiltration in the arterial wall as well as
a marked anti-oxidative and anti-inflammatory effect on endothelial cells. This effect may
have a major impact on the attenuation of atherosclerosis and may help in the design of
new therapies for cardiovascular disease in patients with type 2 diabetes.
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INTRODUCTION
Diabetes is a global health problem with a prevalence of more than
285 million cases worldwide and an incidence that continues to
increase. The vast majority of diabetic patients (∼90–95%) suf-
fer from type 2 diabetes (T2D), whereas type 1 diabetes (T1D),
accounts for 5–10% and rare forms (i.e., genetic forms of dia-
betes, diabetes secondary to pancreatic diseases or surgery, as
well as gestational diabetes) constitute the remaining subtypes
(International Diabetes Federation, 2009). Cardiovascular compli-
cations represent the primary source of morbidity and mortality
in diabetic subjects (Mazzone et al., 2008) and it is well known
that diabetic milieu per se accelerates the course of atheroscle-
rosis (Nogi et al., 2012). It is also well established that T2D is
caused by a combination of insulin resistance in skeletal mus-
cle, liver, and adipose tissues and impaired insulin secretion
from the pancreatic islets (Stumvoll et al., 2005). Insulin resis-
tance is the main feature of metabolic syndrome, which refers to
the clustering of cardiovascular risk factors that include diabetes,
obesity, dyslipidemia, and hypertension (Bajaj and Defronzo,
2003). In relation to insulin resistance, the mechanisms that can
promote both atherogenesis and advanced plaque progression
likely involve both systemic factors that promote these pro-
cesses, particularly dyslipidemia, but also hypertension and a
proinflammatory state as well as the effect of perturbed insulin
signaling at the level of the intimal cells that participate in
atherosclerosis (Bornfeldt and Tabas, 2011). There is extensive

evidence indicating that insulin resistance increases the risk of
coronary artery disease (CAD) even in the absence of hyper-
glycemia (DeFronzo, 2010). In vivo studies have provided data
showing that insulin resistance in macrophages and endothe-
lial cells may promote atherogenesis and clinical progression of
advanced plaques (Rask-Madsen et al., 2010). Data from human
and animal studies supporting a direct pro-atherogenic role of
hyperglycemia in vascular cells are not as strong as for insulin
resistance but there is suggestive evidence that high glucose is
atherogenic, particularly at the level of the arterial endothelium
by promoting early stages of lesion formation (Vikramadithyan
et al., 2005). However, it is possible that hyperglycemia acts also
synergistically with other cardiovascular risk factors and even
insulin resistance itself in advanced lesions in the setting of
T2D (Bornfeldt and Tabas, 2011). For example, glucotoxicity
may contribute to insulin resistance, and treatment of hyper-
glycemia in T2D improves insulin resistance in some tissues
(Henry, 1996).

Two novel classes of glucose-lowering agents for the treat-
ment of T2D have been introduced in the market in the last
years: glucagon-like peptide-1 receptor (GLP-1R) agonists and
dipeptidyl peptidase-4 (DPP-4) inhibitors or incretin enhancers
(Tahrani et al., 2011). The mechanism of action of these drugs
is based on the enhancement of the incretin effect. The well-
documented phenomenon of oral glucose eliciting a higher insulin
response than intravenous glucose at identical plasma levels of
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glucose is known as the incretin effect (McIntyre et al., 1964).
The incretin effect has been found to be mediated mainly by
two gut-derived hormones: glucagon-like peptide-1 (GLP-1) and
glucose-dependent insulinotropic polypeptide (GIP; Baggio and
Drucker, 2007). These incretins control blood glucose by stimulat-
ing insulin release from the β cells of the pancreatic islet, decreasing
glucagon secretion and slowing gastric emptying (Nauck et al.,
2011). However, both GLP-1 and GIP are rapidly inactivated
in vivo by circulating peptidases, mainly DPP-4/CD26. Thus,
the administration of DPP-4 inhibitors prevents the degradation
and inactivation of GLP-1 and GIP. In addition to their antidi-
abetic action through the aforementioned mechanisms, recent
experimental and clinical studies have demonstrated that incretin
therapies have several effects on cardiovascular function (Grieve
et al., 2009). These effects are possibly mediated at least in part
by mechanisms independent of their glucose-lowering activity
and include: changes in blood pressure (Brown, 2012), endothe-
lial function (Irace et al., 2012), body weight (Vilsbøll et al.,
2012), cardiac metabolism (Nielsen et al., 2012), lipid metabolism
(Farr and Adeli, 2012), left ventricular function (Poornima
et al., 2008), and the response to ischemia-reperfusion injury
(Chinda et al., 2012).

It is now widely accepted that inflammation and immunity
play important roles in the pathogenesis of atherosclerosis (Hans-
son and Libby, 2006). Recently, several studies have shown that
DPP-4 inhibitors and GLP-1R agonists exert also a potent anti-
inflammatory effect and thus, may potentially contribute to the
prevention of atherosclerosis (Chaudhuri et al., 2012; Makdissi
et al., 2012).

ATHEROSCLEROSIS AS AN IMMUNE-MEDIATED DISORDER
Studies over the last decade strongly support the idea that
atherosclerosis results from endothelial cell dysfunction followed
by lipid accumulation and an inflammatory process affecting both
macro- and microvasculature (Lusis, 2000). But also, atheroscle-
rosis is now universally recognized as having an inflammatory
immune-mediated component in disease development in which
both the monocyte and the macrophage are central to this inflam-
mation (Ross, 1999). Macrophage infiltration is one of the driving
factors for plaque development and during the first stages of
atherosclerosis, they are actively recruited from the circulation
and the vasa vasorum into the intimal lining of blood vessels. On
the other hand, there is now solid evidence that T cell are involved
in atherogenesis. The available data suggest that T cell-mediated
responses contribute to both the development and the progression
of atherosclerosis. The majority of pathogenic T cells involved in
atherosclerosis are of Th1 profile producing high levels of INF-γ
among other cytokines which are known to activate macrophages
and dendritic cells, leading to the perpetuation of this pathogenic
Th1 response (Hansson, 2001). In addition, IFN-γ may inhibit
vascular smooth muscle cell (SMC) proliferation and reduces
local collagen production. Matrix metalloproteinases are also up-
regulated, thereby contributing to the thinning of the fibrous cap
(Tedgui and Mallat, 2006). Deficiency of IFN-γ receptor or IFN-γ
significantly reduces lesion development and enhances collagen
content of the plaque, whereas exogenous administration of IFN-γ
stimulates lesion development (Whitman et al., 2000).

In relation to Th2 cells, Th2-biased responses have been pro-
posed to antagonize pro-atherogenic Th1 effects and thereby
confer atheroprotection. However, the role of Th2 pathway in
the development of atherosclerosis remains controversial depend-
ing on the stage and/or site of the lesion, as well as on the
experimental model used (Mallat et al., 2009). In mouse mod-
els that are relatively resistant to atherosclerosis, a Th2-bias has
been shown to protect against early fatty streak development
(Huber et al., 2001). However, in other models using LDLR−/−
mice, deficiency in IL-4, the prototypic Th2-related cytokine,
had no substantial effect on lesion development al least in one
study (King et al., 2007). However, while initial studies focused
more on the pathogenic arm of the immune system, recent
work clearly suggests an important role for several subsets of
regulatory T cells (Treg) in the protection against lesion devel-
opment (Wigren et al., 2011). These cells home to peripheral
tissues to maintain self-tolerance and prevent autoimmunity by
inhibiting pathogenic lymphocytes (Sakaguchi et al., 2009). Data
gathered from the literature indicate that several populations
of Tregs “tune down” the inflammatory response within the
atherosclerotic lesion in transgenic atherosclerosis-prone mice
which points to a protective role of Tregs in this process (Mallat
et al., 2003).

INCRETIN HORMONES AND ATHEROSCLEROSIS
Two main incretin hormones have been fully characterized to date:
GLP-1 and GIP. GLP-1 stimulates insulin and inhibits glucagon
secretion in a glucose-dependent manner. It also inhibits gas-
tric emptying and reduces appetite, actions that contribute to
improved glycemic control in T2D patients (Kazakos, 2011). It
is synthesized and secreted by enteroendocrine L cells distributed
through the small and large intestine; however, the majority of
intestinal GLP-1 content has been localized to the distal small
bowel and colon (Brubaker, 2010). The GLP-1R was originally
identified in islet β cells but is widely expressed in extrapancre-
atic tissues, including the lung, kidney, central nervous system,
enteric and peripheral nervous system, lymphocytes, macrophages
(Bullock et al., 1996), human coronary endothelial cells (Erdogdu
et al., 2012), human umbilical vein endothelial cells (HUVECs;
Ding and Zhang, 2012), and heart (Wei and Mojsov, 1995). GIP
is synthesized in and secreted from enteroendocrine K cells local-
ized to the proximal small bowel (Ussher and Drucker, 2012). GIP
receptor (GIP-R) are widely expressed in extrapancreatic tissues,
including the gastrointestinal tract, adipose tissue, heart, pituitary,
adrenal cortex, and multiple regions of the central nervous system
(Usdin et al., 1993).

The mechanisms by which incretin modulation might be asso-
ciated with cardiovascular benefits are multiple. Considerable
evidence incriminates the dysfunctional adipocyte and excess
ectopic adiposity – in the liver, around visceral organs, and/or
in the skeletal musculature – as culprits in both T2D and its
atherosclerotic complications (Bays, 2011). Adipose tissue is an
important inflammatory source in obesity and T2D, not only
because of cytokines produced from the adipocyte itself, but
also because of infiltration by proinflammatory macrophages
(Shoelson and Goldfine, 2009). Thus, weight loss associated
with GLP-1R agonists decreases cardiovascular risk in successfully
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treated subjects and may have a positive influence in cardiovas-
cular endpoints. In relation to lipid metabolism, a direct role for
GLP-1 in the control of chylomicron secretion has been suggested.
Indeed, treatment with GLP-1 as well as GLP-1R agonists in ani-
mals models reduces triacylglycerol (TAG) absorption, decreases
intestinal lymph flow, and reduces intestinal B-48 apolipoprotein
production (Qin et al., 2005). In T2D patients, treatments with
GLP-1R agonists and DPP-4 inhibitors have demonstrated favor-
able effects on postprandial dyslipidemia (TAG, Apo B-48, and
FFA; Hsieh et al., 2010).

On the other hand, GLP-1R expression in endothelial cells,
vascular SMCs, monocytes, macrophages, and lymphocytes also
raises the prospect for direct effects on atherosclerosis and inflam-
mation (Figure 1). However, little information exists on the
effects of GLP-1 on atherogenesis itself. Elevated tumor necro-
sis factor-alpha (TNF-α) levels and hyperglycemia are implicated
in diabetes-associated endothelial cell dysfunction and may be
causal in premature atherosclerosis (Iwasaki et al., 2008). Indeed,
TNF-α and hyperglycemia have been shown to induce plas-
minogen activator inhibitor-1 (PAI-1) and vascular cell adhesion
molecules (VCAM-1 and ICAM-1) expression in human vascu-
lar endothelial cells (Morigi et al., 1998). Recently, the protective
properties in endothelial cells of GLP-1 and liraglutide, a GLP-
1R agonist, have been demonstrated by several investigators.
This treatment reduces TNF-α-mediated expression of PAI-1,
ICAM-1, and VCAM-1 expression in human vascular endothe-
lial cells (Liu et al., 2009) as well as TNF-α induced oxidative
stress (Shiraki et al., 2012). In relation to the atherosclerotic

lesion, recent experimental studies have shown that GLP-1R acti-
vation by the administration of exendin-4 significantly reduces
the accumulation of monocytes/macrophages in the vascular wall
of C57BL/6 and ApoE−/− mice. This effect seems to be medi-
ated, at least in part, by suppressing the inflammatory response
in macrophages through the activation of the cAMP/PKa path-
way which inhibits the expression of TNF-α and the monocyte
chemoattractant protein-1 (MCP-1) in activated macrophages
(Arakawa et al., 2010). Administration of active forms of native
incretins (GLP-1 and GIP) has also been described to be associ-
ated with a suppression of atherosclerotic lesions and macrophage
infiltration in the vascular wall in ApoE−/− mice. This treat-
ment directly suppresses the expression of MCP-1, VCAM-1,
ICAM-1, and PAI-1 in aortic endothelial cells, as well as sup-
presses aortic SMCs proliferation and macrophage foam cell
formation associated with the down-regulation of CD36, a type
A scavenger receptor that takes up modified LDLs, and acyl-
coenzyme A: cholesterol acyltransferase-1 (ACAT-1), the enzyme
that promotes cholesteryl ester accumulation in macrophages
(Nagashima et al., 2011).

Glucagon-like peptide-1 receptor protein expression is not only
found in endothelial cells and macrophages but also in murine
SMCs suggesting that GLP-1R agonists may have direct effects
on SMCs during neointimal formation. The effects of exendin-
4, a GLP-1R agonist, on intimal thickening after vascular injury
have been investigated in a recent study. The results obtained have
shown that treatment with a GLP-1R agonist is associated with a
reduced intimal thickening after vascular injury. This effect seems

FIGURE 1 | Direct and indirect effects of GLP-1 on the cardiovascular system.
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to be mediated through a reduced proliferation of SMC induced by
platelet-derived growth factor (PDGF) which seems to be indepen-
dent of the canonical (cAMP) GLP-1R signal pathway suggesting
a direct action of GLP-1 on SMCs (Goto et al., 2011).

The truncated metabolite of GLP-1 (9–36) amide has also been
described to exert some cardioprotective effects, increasing basal
myocardial glucose uptake, and improving left ventricular func-
tion in animal models with cardiomyopathy (Nikolaidis et al.,
2005; Ban et al., 2008).

Since its description in 1966, DPP-4 has been considered to
be a unique peptidase that cleaves dipeptides from peptides and
proteins containing proline in the penultimate position. How-
ever, proteolysis is only one of the multiple functions that this
protein executes. Other functions attributed to this glycopro-
tein include the regulation of T cell activation, DNA synthesis,
cell proliferation, cytokine production, and signaling activation
(Hegen et al., 1997). In addition to the action of CD26/DPP-
4 on GLP-1 and GIP, CD26/DDP-4 directly activates a number
of proteins such as mitogen-activated protein kinases (MAPKs)
which are involved, in particular the extracellular signal-regulated
kinase (ERK), in cell proliferation. In a recent in vitro study
it has been demonstrated that the inhibition of DPP-4/CD26
by alogliptin suppresses Toll-like receptor (TLR)-4-mediated
ERK activation and ERK-dependent matrix metalloproteinases
expression by histiocytes (Ta et al., 2010). The ERK pathway
is an important signaling cascade involved in many physiologi-
cal and pathophysiological processes including cell proliferation,
apoptosis, angiogenesis, and inflammation (McCubrey et al.,
2007). Thus, results of this study suggest that DPP-4/CD26 may
play an important role in macrophage-mediated inflammation
response and tissue remodeling since matrix metalloproteinases
are crucially involved in atherosclerosis. The inhibition of DPP-
4 has also demonstrated a reduction of atherosclerotic lesions
in diabetic apolipoprotein E-deficient mice. Moreover, ex vivo
studies have shown that DPP-4 inhibition attenuates diabetes-
augmented IL-6 and IL-1β expression in atherosclerotic plaques
(Ta et al., 2011) and reduces plaque macrophages infiltration
and monocyte migration to the aorta of male LDLR−/− mice
(Shah et al., 2011).

Two recent clinical studies have evaluated the anti-
inflammatory effect of a GLP-1R analog (exenatide) and a DPP-4
inhibitor (sitagliptin) in a group of patients with T2D. Results
of these studies have demonstrated that both treatments have
a potent and rapid anti-inflammatory effect with a significant
reduction in reactive oxygen species generation and the mRNA
expression of several inflammatory mediators (TNF-α, JNK-1,
TLR-2, TLR-4, IL-1β, and SOCS-3) in mononuclear cells, which
might potentially contribute to the inhibition of atherosclero-
sis. Remarkably, these anti-inflammatory effects occurred at an
earlier phase of treatment and were independent of weight loss
(Chaudhuri et al., 2012; Makdissi et al., 2012).

On the other hand, DPP-4 or CD26 cleaves other multiple pep-
tide substrates, many of which have direct actions on the heart and
blood vessels. Among them are included the stromal cell-derived
factor-1α (SDF-1α), the neuropeptide Y (NPY), the peptide Y
(PYY), the B-type (brain) natriuretic peptide (BNP), and the GLP-
2 (Ussher and Drucker, 2012). In relation to SDF-1α, a chemokine

that promotes homing of endothelial progenitor cells to sites of cel-
lular injury, considerable evidence supports a role for SDF-1α as a
cardioactive DPP-4 substrate. Indeed, DPP-4 inhibitors have been
used, mainly in combination with granulocyte-colony-stimulating
factor (G-CSF), to increase stem cell number in both preclinical
and clinical studies of cardiovascular injury (Zaruba et al., 2009).
The therapeutic use of SDF-1 has also been studied in an animal
model to treat the peripheral artery disease. The study shows that
SDF-1 engineered to be resistant to DPP-4 improves the blood
flow (Segers et al., 2011).

Little has been published on GIP and atherosclerosis. GIP
has a potent stimulatory effect on insulin release from the pan-
creas, but several experimental studies have demonstrated that
GIP looses this action in diabetes because GIP-R in pancre-
atic islets are substantially down-regulated in a hyperglycemic
state (Lynn et al., 2001, 2003). This may explain the inability
of GIP to induce insulin secretion in diabetes. Recently, Nogi
et al. (2012) have described that chronic administration of GIP
at a level several-fold higher remarkably suppresses the progres-
sion of atherosclerosis in STZ-induced diabetic ApoE−/− mice.
In this study, GIP infusion significantly suppressed macrophage-
driven atherosclerotic lesions and reduced foam cell formation
in macrophages, even though GIP-R expression in macrophages
was partially down-regulated in the diabetic state. Recently a pub-
lished experimental study suggests that GIP could block the signal
pathways of advanced glycation end products (AGEs) in HUVECs,
which play a crucial role in vascular damage in diabetes (Ojima
et al., 2012). The same protective mechanism has been described
with GLP-1 (Zhan et al., 2012).

Finally, the majority of GLP-1R agonists and DPP-4 inhibitors
are undergoing assessment of cardiovascular outcomes in large,
multicenter clinical trials of cardiovascular outcomes. To date,
results of randomized trials do not suggest any detrimental effect
of GLP-1 receptor agonists on cardiovascular events. However,
specifically designed longer-term trials are needed for verifying
the possibility of a beneficial effect (Monami et al., 2011a). In rela-
tion to DPP-4 inhibitors a recent meta-analysis suggests a possible
protection from cardiovascular events, although results should be
interpreted with caution, as those events were not the primary
endpoint, the trial duration was short, and the characteristics of
patients included could be different from routine clinical practice
(Monami et al., 2011b).

CONCLUSION
In conclusion, there is now overwhelming evidence that the
macrophage has a crucial role in the initiation and progression of
atherosclerotic plaque and thus has emerged as a novel therapeutic
target for the treatment of atherosclerosis. Recent studies suggest
that incretin agents seem to have direct effects on macrophages
and endothelial cells which are both involved in the progression of
atherosclerosis. Despite the intriguing findings in animals, data on
the long-term effects of incretin-based therapy on atherosclerosis-
associated outcomes in diabetic humans are not yet available. The
critical issue of whether the anti-atherogenic action of incretin
agents can be translated into improved cardiovascular outcomes
for diabetic patients remains to be elucidated with prospective,
large-scale clinical trials.
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