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Insulin-like growth factor-II (IGF-II), traditionally considered as a growth factor implicated in
growth of fetal tissues and cancer cells, is now emerging as a potential metabolic regulator.
The aim of this overview is to provide the available evidence, obtained in both experimen-
tal conditions and in humans, for a role of IGF-II in the fine-tuning of metabolism and
body composition. The underlying mechanisms and the potential clinical implications are
discussed.
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IGF-II: A NEGLECTED NODE OF A COMPLEX NETWORK
Insulin-like growth factor-II (IGF-II) is a member of the IGF fam-
ily of growth factors and related molecules. The IGF family is
comprised of three ligands (IGF-I, IGF-II, and insulin), at least six
binding proteins (IGFBP-1 to -6), and three specific cell surface
receptors that mediate the actions of the ligands [IGF-I recep-
tor, insulin receptor (IR), and the IGF-II mannose-6-phosphate
(M-6-P) receptor; Jones and Clemmons, 1995; Cianfarani and
Rossi, 1997; Le Roith et al., 2001]. Gene knockout studies revealed
that the IGF-I receptor mediates the mitogenic and metabolic
actions of both IGF-I and IGF-II, whereas the IGF-II/M-6-P
receptor is not considered to have any major role in IGF sig-
nal transduction, but is primarily responsible for clearing, and
thereby reducing, the levels of IGF-II during fetal development
(Baker et al., 1993).

IGF-II is a peptide of 67 amino acids with approximately 50%
amino acid homology to insulin (Daughaday and Rotwein, 1989).
The human IGF-II gene is located on the short arm of chromo-
some 11 (11p15.5; Tricoli et al., 1984). This gene is an imprinted
gene with paternal allele expressed and maternal allele silenced.
Genetic or epigenetic alterations of IGF-II gene are implicated
in the pathophysiology of both Beckwith–Wiedemann syndrome
and Russell–Silver syndrome (Smith et al., 2007), clearly indicat-
ing a key role of IGF-II in prenatal growth. The IGF-II gene
comprises nine exons (codons 7–9 being coding) and four pro-
moters, spanning a region of approximately 30 kb (O’Dell and
Day, 1998). Several different RNA molecules are formed upon
transcription of the gene within the coding region plus one of the
various 59-untranslated regions arising from exons 1–6. The dif-
ferent transcripts are expressed according to their tissue and the
stage of development.

“CLASSICAL” PROPERTIES
Albeit IGF2 expression and IGF-II effects have been reported in
several animal and cellular models, the physiological role of this
peptide in growth and development still remains largely unknown.

IGF-II exerts endocrine, paracrine, and autocrine actions in virtu-
ally all tissues (Efstratiadis, 1998). The heterozygous mice carrying
a paternally derived mutated IGF-II gene [Igf2(+/p) mutants]
and the Igf2(−/−) nullizygotes are phenotypically indistinguish-
able; they are viable dwarfs with ∼60% normal birthweight and,
except for a slight delay in ossification, they do not exhibit devel-
opmental abnormalities. In contrast, when the disrupted IGF2
allele is transmitted maternally, the offspring are phenotypically
normal, since the maternal allele is normally silent due to imprint-
ing (DeChiara et al., 1990). The overexpression of IGF2 increases
body size at birth up to 160% (Sun et al., 1997), and size at E17 up
to 200% (Eggenschwiler et al., 1997), in a dose dependent man-
ner. Also individual organs can be enlarged in proportion to their
IGF-II levels, thus suggesting an autocrine or paracrine control
(Sun et al., 1997).

IGF-II exerts a growth promoting action in the placenta. Data
originated from mice with placental-specific deletion of P0 pro-
moter of IGF2, showed that placental-specific IGF2 is required for
the attainment of normal placental size and of normal surface area
and thickness of the labyrinthine layer where solute exchange takes
place in the mouse (Sibley et al., 2004).

Both IGF-I and IGF-II are potent neuronal mitogen and sur-
vival factors (Sara et al., 1983; Lund et al., 1986; Adamo et al.,
1989). The IGF-I receptor is ubiquitously expressed in all neural
cells. The widespread and developmentally associated expres-
sion of each component of the IGF system, argues that IGFs act
during brain development locally near its sites of expression in
an autocrine and/or paracrine fashion. Mutations or deletions
of IGF1 are associated with microcephaly, sensorineural deaf-
ness, and mental retardation (Woods et al., 1996; Bonapace et al.,
2003; Netchine et al., 2009; Fuqua et al., 2012), a clinical pic-
ture consistent with the phenotype of IGF-I gene knockout mice
characterized by small brains, hypomyelination, and loss of cer-
tain subtypes of neurons (Powell-Braxton et al., 1993). Although
IGF-II has been shown to regulate neuronal growth and differ-
entiation in animal models and cell lines (Sullivan et al., 2008;
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Bracko et al., 2012), only a small proportion of patients with
Russell–Silver syndrome with loss of methylation (LOM) of
the 11p15 ICR1 telomeric domain (including IGF2) leading to
reduced IGF-II gene expression in tissues, show developmen-
tal delay (Netchine et al., 2007). Interestingly, no single case
of mutations/deletions of IGF2 has been reported so far in
humans.

EVIDENCE FOR UNEXPECTED ACTIONS
Besides the still uncertain physiological roles played by IGF-II in
growth and development, there is emerging evidence for new and
unsuspected metabolic actions. In humans, IGF2 has closely been
related to the metabolic risk. Several reports have shown that spe-
cific polymorphisms of IGF2 are associated with weight and the
obese phenotype (O’Dell et al., 1997; Gaunt et al., 2001; Le Stunff
et al., 2001; Gu et al., 2002; Zhang et al., 2006). More recently,
polymorphisms of IGF-II gene have been related to other cardio-
vascular risk factors such as fat mass distribution (Rice et al., 2002)
and hypertension (Rodríguez et al., 2004; Faienza et al., 2010).
In rats, specific IGF2 polymorphisms have been associated with
hypertriglyceridemia (Kadlecová et al., 2008). These findings are
consistent with the mapping of IGF2 in close proximity to the
insulin and tyrosine hydroxylase genes on chromosome 11p15, a
genomic region that has been implicated in various common dis-
orders including the metabolic syndrome, type 2 diabetes, and
coronary heart disease.

IGF2 may also play a role in intrauterine programming predis-
posing to cardiovascular risk in postnatal life. The involvement of
IGF-II in programming is suggested by the study of the popula-
tion exposed to the Dutch Hunger Winter, the period of famine
induced by the German-imposed food embargo in the western part
of The Netherlands toward the end of World War II in the winter
of 1944–1945. The offspring of this population exposed to famine
during fetal life showed, decades later, a higher incidence of car-
diovascular disease (Painter et al., 2006). Interestingly, a cohort of
these individuals prenatally exposed to the Dutch Hunger Winter
tested six decades later, showed that the periconceptional expo-
sure to famine was associated with reduced DNA methylation of
the imprinted IGF2 (Heijmans et al., 2008). This finding suggests
that early detrimental cues in critical time windows of develop-
ment may induce permanent epigenetic changes in IGF2 probably
secondary to a deficiency in methyl donors such as the amino acid
methionine. Whether or not these changes in IGF2 are associated
with an altered expression in the different tissues and are related
to the cardiovascular risk has to be established.

In humans, the degree of IGF2 methylation at birth has recently
been related to the development of overweight or obesity in early
childhood (Perkins et al., 2012). Interestingly, breastfeeding modi-
fied the magnitude of methylation differences between overweight
or obese children and children whose weight was within reference
range, thus suggesting an interplay between prenatal environ-
ment (nutrient transfer from mother to fetus) and early postnatal
feeding behavior which could stabilize or change the epigenetic
patterns acquired in utero (Perkins et al., 2012).

A potential clinical implication of these findings is that IGF2
methylation may represent an easily assessable marker of intrauter-
ine programming and long-term metabolic risk, thus driving the

deprogramming strategies aimed at reducing the metabolic risk in
subjects exposed to a suboptimal intrauterine environment.

IGF-II may also act as a metabolic regulator in the interplay
between mother and fetus. Specific polymorphisms in paternally
transmitted fetal IGF-II gene have recently been associated with
increased maternal glucose concentrations in the third trimester
of pregnancy and could alter the risk of gestational diabetes in
the mother (Petry et al., 2011). These findings are consistent with
the Haig’s kinship, or conflict hypothesis (Haig, 1993), according
to which the paternally expressed fetal imprinted genes will tend
to increase fetal growth, whereas maternally expressed genes will
tend to restrain it. This is thought to be achieved by modifying fetal
and placental nutritional demand and supply (Reik et al., 2003),
including altering maternal glucose concentrations to favor the
transfer of glucose from mother into fetus (Petry et al., 2007).

AN OBSCURE MECHANISM
The mechanisms underlying the observed link between IGF2
expression and metabolism are largely unknown. As IGF-I and
IGF-II share considerable structural homology with insulin (Blun-
dell et al., 1978), it is not surprising that the three peptides can
also share biological actions, likely via the IR (King et al., 1980).
Indeed, both IGF-I and IGF-II have been shown to stimulate glu-
cose uptake and exert antilipolytic activity in cell cultures (Zapf
et al., 1978). The infusion of IGF-II in fasted lambs increases glu-
cose clearance by 15%, whereas no effect was observed on net
protein loss or protein synthesis (Douglas et al., 1991).

The human IR exists in two isoforms, isoform A (IR-A) and
isoform B (IR-B). Alternative splicing of a small exon (exon 11)
of the IR gene results in two slightly different transcripts (Moller
et al., 1989). The relative expression of the two isoforms varies in a
tissue-specific manner. IR-A is expressed predominantly in central
nervous system and hematopoietic cells, while IR-B is expressed
predominantly in adipose tissue, liver, and muscle, the major target
tissues for the metabolic effects of insulin (Mosthaf et al., 1990).
However, IR-A is coexpressed with IR-B in many tissues, especially
in muscle and fat (Belfiore et al., 2009). In general, the affinity of
IGF-II for IR is low (1–5% that of insulin). However, IGF-II is able
to bind with high affinity (30–40% that of insulin) to IR-A. IR-A,
when activated by IGF-II, seems to elicit predominantly mitogenic
rather than metabolic effects (Frasca et al., 1999; Morcavallo et al.,
2011). However, microarray analysis revealed that the majority of
genes are regulated similarly by insulin and IGF-II (Pandini et al.,
2003). On the basis of these findings, it is tempting to speculate
that IR-A mediates the metabolic actions of IGF-II in tissues like
muscle and fat.

In pigs, IGF2 mutations induce changes in body composition
characterized by increased muscle mass and reduced backfat thick-
ness (Gardan et al., 2008). In particular, the subcutaneous adipose
tissue of animals carrying IGF2 mutation showed lower lipid con-
tent and smaller adipocytes (Gardan et al., 2008). It is noteworthy
that adipocytes from subcutaneous and visceral adipose tissues
express both IGF-II and IGF-II receptors (Sinha et al., 1990), thus
suggesting a physiological role of IGF-II in fat. Consistent with
this, IGF-II stimulates preadipocyte proliferation in vitro (Sid-
dals et al., 2002). In mutant mice, the loss of both IGF2 and
Myod genes induces massive brown adipose tissue hypertrophy
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FIGURE 1 | IGF-II may positively regulate metabolism by stimulating

skeletal muscle mass accrual and glucose uptake, at the same time

decreasing fat mass and triglyceride production.

compared with wild-type and single-mutant newborns. The con-
comitant Myod and IGF2 inactivation accelerates differentiation

of a brown preadipocyte cell line and induces lipid accumulation
(Borensztein et al., 2012).

Furthermore, IGF-II may regulate body composition and
affect metabolic risk factors by controlling muscle mass. IGF-II
has also been shown to stimulate skeletal myoblast differentia-
tion and myofiber hypertrophy (Florini et al., 1991; Stewart and
Rotwein, 1996; Stewart et al., 1996) thus concurring to skeletal
muscle growth and development (Van Laere et al., 2003; Alzhanov
et al., 2010).

These experimental data, obtained in animal and cellular mod-
els, argue that IGF-II may regulate metabolic homeostasis by
affecting body composition, favoring skeletal muscle accrual prob-
ably at expense of adipose tissue, and ultimately leading to a
phenotype less prone to cardiovascular risk (Figure 1).

CONCLUDING REMARKS
IGF-II was characterized almost four decades ago but its physiolog-
ical role is still largely unknown. The data reported above strongly
suggest a metabolic role of this growth factor. Although the evi-
dence is still weak, the efforts to elucidate the IGF-II metabolic
actions in tissues, especially in muscle and fat, appear worth-
while as they could open avenues for understanding the interplay
between IGF-II and insulin in both physiological and pathological
conditions. Finally, data in humans suggest that IGF2 polymor-
phisms or epigenetic changes may represent a marker of metabolic
risk to be exploited for selecting the individuals to be targeted with
specific nutritional and/or pharmacological prevention strategies.
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