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Diabetes and hyperglycemia create a proinflammatory microenvironment that progresses
to microvascular complications such as nephropathy, retinopathy, and neuropathy. Diet-
induced insulin resistance is a potential initiator of this change in type 2 diabetes which
can increase adipokines and generate a chronic low-grade inflammatory state. Advanced
glycation end-products and its receptor, glycation end-products AGE receptor axis, reactive
oxygen species, and hypoxia can also interact to worsen complications. Numerous efforts
have gained way to understanding the mechanisms of these modulators and attenuation
of the inflammatory response, however, effective treatments have still not emerged. The
complexity of inflammatory signaling may suggest a need for multi-targeted therapy. This
review presents recent findings aimed at new treatment strategies.
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INTRODUCTION
Inflammation plays an essential role in the progression of dia-
betic microvascular complications. Proinflammatory cytokines
C-reactive protein, tumor necrosis factor (TNF)-α, and inter-
leukin (IL)-6 all demonstrate increased expression in diabetes
(Peters et al., 1986; Ford, 1999; Festa et al., 2000; Müller et al., 2002;
Temelkova-Kurktschiev et al., 2002). In chronic hyperglycemia,
cytokines infiltrate vascular tissues and inhibit function and
repair. Obesity is a major risk factor for diabetes and can induce
inflammation by Toll-like receptor (TLR) activation to recruit
proinflammatory cytokines and chemokines (Kwon et al., 2012).
With the onset of diabetes, adipokines such as TNF-α and IL-6 may
contribute to insulin resistance (Rajala and Scherer, 2003; Sug-
anami et al., 2005). Adiponectin is initially upregulated to increase
glucose uptake, and nitric oxide (NO) production; however, con-
tinued obesity may reduce adiponectin leading to complications
observed in type 2 diabetes (T2D; Berg et al., 2001; Matsuzawa,
2005). Obesity is also associated with hyperlipidemia with ele-
vated levels of cholesterol and triglycerides which may contribute
to inflammation and diabetic retinopathy (DR; Dodson et al.,
1981). The Fenofibrate Intervention and Event Lowering in Dia-
betes (FIELD) study found no relationship between serum lipid
levels and DR (Keech et al., 2007; Chew et al., 2010). Fenofibrate
is known to lower lipid levels, but it can also activate peroxisome
proliferator-activated receptors (PPARs) and suppress inflamma-
tion by inhibiting nuclear factor kappa B (NF-κB; Tomizawa
et al., 2011). As metabolic syndrome and inflammation persist,
oxidative stress, hypoxia, and advanced glycation end-products
(AGEs)/AGE receptor (RAGE) converge to exacerbate the problem
(Brownlee, 2005; Vincent et al., 2011). A schematic summarizing
the pathogenesis of diabetic microvascular complications is pre-
sented (Figure 1). The focus of this review is to overview the most
recent findings relevant to treating nephropathy, retinopathy, and
neuropathy.

DIABETIC NEPHROPATHY
Diabetic nephropathy (DN) is the leading cause of end-stage renal
disease (Nilsson et al., 2008). DN results in basement membrane
thickening, expansion of the mesangium, reduced filtration, albu-
minuria, and ultimately renal failure (Graves and Kayal, 2008).
Inflammatory cells can accumulate in glomeruli and interstitium
to worsen DN (Lim and Tesch, 2012). Recent findings have iden-
tified a few key receptors involved in renal protection. Studies
targeting these pathways along with other known mediators of
inflammation have revealed the importance of inflammation in
worsening DN.

Peroxisome proliferator-activated receptors are activated in
response to fatty acids and regulate lipid and glucose homeosta-
sis (Wahli and Michalik, 2012). In the kidney, PPARγ expression
has been found in medullary collecting ducts, pelvic urothelium,
and isolated glomeruli and cultured mesangial cells (Iwashima
et al., 1999; Yang et al., 1999; Asano et al., 2000; Kume et al., 2008).
Pioglitazone, a PPARγ agonist, increased anti-oxidant activity
and reduced inflammation in hyperoxaluric rats (Taguchi et al.,
2012). This suggests activation of PPARγ may have renoprotec-
tive functions. Similarly, the same agonist treated in T2D diabetic
rats showed improved insulin resistance, glycemic control, and
lipid profile while reducing inflammation by reducing macrophage
infiltration and NF-κB expression (Ko et al., 2008).

Resveratrol (trans-3,4′,5-trihydroxyestilbene, RSV) is a
polyphenolic compound found in grapes and other plants pro-
viding anti-oxidant effects (Chang et al., 2011). RSV improved
renal function and reduced oxidative stress in type 1 diabetic
(T1D) rats (Sharma et al., 2006; Dhaunsi and Bitar, 2012). Sim-
ilarly, RSV treatment showed significant decreases in superoxide
anion and protein carbonyl oxidative stress markers (Chang et al.,
2011). RSV was shown to reduce renal lipotoxicity and mesangial
cell glucotoxicity in diabetic mice mediated through activation
of PPARγ co-activator 1α (Kim et al., 2012). In another study,
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FIGURE 1 | General pathway in the progression of diabetic

microvascular complications.

RSV reduced IL-1β in streptozotocin (STZ)-diabetic rat kidneys,
but there was a significant increase in TNF-α and IL-6 levels
independent of NF-κB activation, suggesting RSV has both stim-
ulatory and inhibitory effects on cytokines simultaneously and
achieving the optimal dose may be critical to establishing efficacy
(Chang et al., 2011).

Fcγ receptors (FcγR) are present in leukocytes, glomerular,
and mesangial cells (Gómez-Guerrero et al., 1994, 2002; Radeke
et al., 2002). FcγR can bind to immunoglobulin G (IgG). Circu-
lating oxidized LDL-containing immune complexes (oxLDL-IC)
are increased in diabetes stimulate synthesis of IgGs in addition to
other proinflammatory cytokines such as IL-1β, IL-6, IL-18, and
TNF-α in Mono Mac 6 cells and primary human macrophages
(Saad et al., 2006; Abdelsamie et al., 2011). Increased oxLDL-
ICs also increases matrix production in mesenchymal mesangial
cells through activation of FcγRI and FcγRIII to increase col-
lagen IV production in nephropathy (Abdelsamie et al., 2011).
Attenuating FcγR activity may reduce the development of a
proinflammatory environment and enhanced matrix produc-
tion. A genetic defect in FcγR attenuated diabetic renal injury
based on histological analyses and reduced leukocyte accumu-
lation in glomeruli and interstitium (Lopez-Parra et al., 2012).
There was also a reduction in intracellular superoxide generation
in vivo and oxidative response to oxLDL-ICs in vitro (Lopez-Parra
et al., 2012).

Dietary lipids preceding diabetes have been shown to upreg-
ulate proinflammatory cytokines and TLR transcriptional levels

along with downregulation of transcripts involved in glucose
metabolism in epididymal and mesenteric white adipose tissue
(Kwon et al., 2012). TLR are innate immune receptors that have
been implicated in T1D, T2D, and its associated complications
(de Kleijn and Pasterkamp, 2003; Park et al., 2004; Rudofsky
et al., 2004; Wen et al., 2004; Lang et al., 2005). In DN, TLR4
expression was increased in T2D and uremic patients and in
mouse mesangial cells, suggesting its role in monocyte recruitment
(Kaur et al., 2012; Yang et al., 2012). Studies confirmed increased
TLR4 activation when cells were incubated with high glucose
(Kaur et al., 2012). Monocytes displaying CD14+CD16+surface
markers in the kidney can associate with TLR and activate
NF-κB, and STAT expression to further promote a proinflamma-
tory microenvironment (Yang et al., 2012). Therapeutic targets
correcting dysregulated TLR signaling may therefore be an impor-
tant target against inflammation and complications within the
kidney.

Advanced glycation end-product production is widely associ-
ated with diabetic microvascular complications. Recent studies
showed little benefit using benfotiamine, a lipophilic thiamine-
derivative that activates transketolase to reduce AGE precursors
(Babaei-Jadidi et al., 2003; Karachalias et al., 2010). Benfotiamine
had no effect in decreasing existing plasma AGE or increasing AGE
excretion (Alkhalaf et al., 2012). Similarly, evaluation of benfoti-
amine in cerebral cortex of STZ-induced diabetic rats showed little
effect on reducing AGEs and TNF-α, however, it slightly attenu-
ated oxidative stress (Wu and Ren, 2006). Despite the outcome,
this approach remains active and a recent proposal has aimed at
modifying the delivery to have dual targets instead of singular tar-
geting. Using a nanoparticle shell, both AGE and RAGE inhibitors
will be encased within the shell to suppress both axes and redun-
dancy not addressed with a single therapy (Zhou et al., 2012). The
exterior of the shell will contain RAGE analogs, which can also
provide specificity to AGEs and delivery of therapeutics (Zhou
et al., 2012). This dual therapy approach is still in its infancy, but
it may have potential benefits if pursued to target both receptors
and its ligands.

Current standard treatment of DN targets the renin–
angiotensin system (RAS) through usage of angiotensin converting
enzyme (ACE) inhibitors to limit systemic blood pressure to
control intraglomerular pressure (Bonegio and Susztak, 2012).
Upstream targeting may further decrease RAS activity. Aliskiren,
a direct renin inhibitor, has been recently evaluated in DN. Treat-
ment using aliskiren showed a significant reduction in TNF-α and
transforming growth factor (TGF)-β (Gandhi et al., 2012). Some
studies have shown that TGF-β may have a role in influencing renal
growth and inflammation as well as fibrosis and renal dysfunction
(Ziyadeh et al., 2000; Phillips and Steadman, 2002).

DIABETIC RETINOPATHY
Diabetic retinopathy is one of the leading causes of blindness
in adults of working age adults. Background DR is character-
ized by ischemic injury which creates a hypoxic environment in
ocular tissues. Hypoxia has been shown to induce microglia acti-
vation and recruitment to ischemic sites in retinas (Kielczewski
et al., 2011). Vascular injury in background DR and prolif-
erative DR (PDR) increases proinflammatory cytokines which
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can promote leukostasis and vascular endothelial growth fac-
tor (VEGF) mediated permeability in the retinal vasculature
(Chistiakov, 2011).

The retinal pigment epithelium (RPE) provides functional bar-
riers for the exchange of nutrients to photoreceptor cells. Under
hyperglycemia, microglia and macrophages accumulate in the RPE
in Goto Kakizaki rats (Omri et al., 2011). Increases in transepithe-
lial pores compromise tight junction integrity and allow materials
to enter the choroidal space (Omri et al., 2011). Presence of inflam-
mation can reduce transepithelial resistance (TER) and impact ion
gradient generation between membrane transporters and tight
junctions (Rizzolo et al., 2011). TNF-α exposure to human RPE
cells showed decreased TER (Peng et al., 2012). GPR109A is a G
protein-coupled receptor (GPCR) present in RPE that is upregu-
lated in diabetic mouse and human retina (Gambhir et al., 2012).
GPR109A has immunomodulatory effects in adipose tissue and
progression of atherosclerosis (Digby et al., 2010; Montecucco
et al., 2010; Lukasova et al., 2011). Two ligands of GPR109A,
niacin and β-hydroxybutyrate, was shown to suppress IL-6 and
chemokine ligand-2 (CCL2) induced by TNF-α (Gambhir et al.,
2012). Additional studies should explore potential value of modu-
lating GPR109A activity with its ligands to suppress inflammation
in the retina of those discussed as well as other proinflammatory
cytokines (Gambhir et al., 2012).

β-catenin is a downstream effector of the Wnt pathway and
is found to be increased in several diabetic rodent models and
in humans (Chen et al., 2009). Increased β-catenin may be due
to sustained Wnt signaling where it can also activate NF-κB to
induce inflammation (Dale, 1998; Yamashina et al., 2006; Yan et al.,
2008). DR is characterized by hypoxia and oxidative stress, which
contribute to Wnt activation. Blockage of Wnt led to reduced
inflammation through decreased ICAM-1 in the retina (Chen
et al., 2009). Mab2F1, a monoclonal antibody targeting Wnt co-
receptor LDL receptor-related protein 6 resulted in reduced retinal
vascular leakage, inflammation, and attenuation of leukostasis
(Lee et al., 2012).

Comparing cytokine levels of peripheral blood in diabetic
patients revealed that levels of IL-22 expressed by T-helper (Th)
22 was significantly increased compared to controls, however, the
differences were not significant between NPDR, PDR, and in dia-
betic patients without DR (Chen et al., 2012). IL-22 levels were
also positively correlated with duration of diabetes (Chen et al.,
2012). TNF-α has been shown to be increased in serum of dia-
betic patients. The results from this study suggest a potential role
of Th22 expressing IL-22 levels in the pathogenesis of diabetic
complications.

Increased RAGE levels and its ligand S100B are found in rat dia-
betic retinas and also found in cultured Müller glial cells exposed
to high glucose (Limb et al., 2002; Zong et al., 2010). S100B has
been shown induce inflammatory cytokines such as TNF-α and
vascular CAM (VCAM)-1 in human microvascular endothelial
cells (Valencia et al., 2004). Similarly, Müller glial cells treated with
exogenous S100B showed increased levels of TNF-α, IL-6, IL-8,
VEGF, and CCL2 (Zong et al., 2010). Treatment of S100B in cells
showed a dose-dependent activation of mitogen-activated protein
kinase pathway (MAPK) (Zong et al., 2010). In vivo studies should
assess the relevant concentrations of S100B in pathogenesis of DR.

The RAS plays a vital role in regulating many physiologi-
cal processes of the vascular system. Elevated levels of renin,
prorenin, and Angiotensin II (Ang II) are found in patients with
DR (Wilkinson-Berka, 2008). In PDR, prorenin and its receptor
[(P)RR] are upregulated in retinal endothelial cells (Kanda et al.,
2012). Increased (P)RR, prorenin, and activated prorenin were
found in human vitreous fluid which can promote inflamma-
tory angiogenesis in the eye (Satofuka et al., 2008; Kanda et al.,
2012). (P)RR can activate extracellular signal-regulated kinases
(ERK) and induce inflammatory responses in the eye (Kanda et al.,
2012). Blockage of (P)RR reduced ERK activity and decreased
diabetes-induced retinal inflammation (Satofuka et al., 2012).

Downstream effectors also have important functions in DR.
Ang II, a product of ACE, activates the AT1 receptor to induce
vasoconstriction, proliferation, fibrosis, and inflammation. The
protective arm of the RAS involves ACE2, which produces
Ang-(1-7). As a vasodilator peptide with anti-hypertensive, anti-
hypertrophic, anti-fibrotic, and anti-thrombotic functions (3),
Ang-(1-7) stimulates NO production by activating endothelial
NO synthase (eNOS) in an Akt-dependent manner and decreases
ROS production by attenuating NADPH oxidase. Ang-(1-7)
mediates its effects by activating the GPCR, the Mas receptor
(Sampaio et al., 2007; Benter et al., 2008). Chronic Ang-(1-7)
treatment preserves endothelial function in rat models of myocar-
dial ischemia and in-stent restenosis (Loot et al., 2002; Langeveld
et al., 2005). Treatment with ACE2 or Ang-(1-7) corrected diabetic
defects in therapeutic angiogenesis (Oudit et al., 2010; Figure 2).
Intraocular administration of adeno-associated virus express-
ing ACE2/Ang-(1-7) significantly reduced CD45+ macrophages,
CD11b+ microglial cells, and oxidative damage in mice (Verma
et al., 2012). Targeting both upstream and downstream compo-
nents of the RAS axis may provide synergistic effects in treating
microvascular complications.

DIABETIC NEUROPATHY
Diabetic neuropathy (DNO) is the most common complication
of diabetes, where population-based studies have indicated more
than half of the patients with either T1D or T2D develop DNO,
and as much as 30% of those manifestations are painful (Harati,
2007; Ramos et al., 2007; Farmer et al., 2012). Recent reviews
have emphasized the importance of targeting oxidative stress and
inflammation in the treatment of DNO (Vincent et al., 2011;
Farmer et al., 2012).

Tumor necrosis factor-α has been implicated in contributing
to insulin resistance in obesity due to its increased expression in
adipose tissue. Obese mice with a TNF-α−/−mutation displayed
improved insulin sensitivity and lowered circulating fatty acids,
improving obesity-induced glucose tolerance (Uysal et al., 1997).
Increased plasma TNF-α and macrophages are also associated
with the progression of DNO, suggesting continued expression
of these cytokines contribute to diabetic microvascular complica-
tions (Purwata, 2011). Similar experiments evaluating TNF-α null
mice showed that they are less susceptible to developing diabetic
complications (Gao et al., 2007). Targeting TNF-α through phar-
macological means can potentially reverse the deleterious effects
in DNO. Infliximab, a monoclonal anti-TNF-α antibody approved
for treatment of autoimmune diseases such as rheumatoid arthritis
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FIGURE 2 | Activation of RAS can lead to progressive or protective effects depending on the signaling mechanisms.

and psoriasis has been explored (Lin et al., 2008). Administration
of infliximab into T1D mice showed significant improvement in
neural function comparable to non-diabetic controls (Yamakawa
et al., 2011).

Tumor necrosis factor-α can also influence AGE/RAGE activity
making it a relevant target in DNO. In the progression of DNO,
RAGE expression was increased in diabetic peripheral nerves and
dorsal root ganglia (DRG; Toth et al., 2008). Mice models defi-
cient in RAGE attenuated the structural and electrophysiological
changes in peripheral nerves and DRG after prolonged diabetes
of 5 months and also reduced NF-κB and protein kinase C acti-
vation (Toth et al., 2008). NF-κB can induce apoptosis, cell cycle,
and plasticity, neurogenesis, and differentiation in the central ner-
vous system (Foehr et al., 2000; Kumar et al., 2004; Fraser, 2006).
RSV has been shown to inhibit NF-κB activity and TNF-α, IL-
6, and cyclooxygenase-2 levels (Kumar and Sharma, 2010). BAY
11-7082, an inhibitor of kappa B (IκB) phosphorylation, down-
regulated NF-κB and led to improved sensory response, motor
nerve conduction velocity, and nerve blood flow (Kumar et al.,
2012). Similarly, there was a significant reduction in the oxidative
stress marker, malondialdehyde, IL-6, and TNF-α levels (Kumar
et al., 2012). While IL-6 is generally regarded as proinflammatory,
its role in DNO is still unclear since IL-6 administration may have
neurotrophic effects (Cotter et al., 2010).

Bradykinin B1 receptor (B1R) of the kallikrein–kinin system
has been shown to be upregulated in response to increases of
oxidative stress in diabetes (Dias et al., 2010). In another study,
minocycline has been shown to exhibit anti-inflammatory and
anti-oxidant effects by inhibiting microglia activation (Pabreja
et al., 2011). Inhibition of microglia activation in STZ-diabetic rats
using either fluorocitrate or minocycline reduced B1R expression
along with IL-1β and TNF-α proinflammatory cytokines in spinal
dorsal horn (Talbot et al., 2010). Microglia inhibitors may have an
effect on thermal hyperalgesia and allodynia which support a role
of B1R in pain neuropathy (Talbot et al., 2010). Antagonists to B1R
showed a reversal of allodynia in STZ-diabetic rats, suggesting the
mediation of early DNO due to inflammation (Talbot et al., 2010).
However, in Akita mice, loss of B1R and bradykinin B2 receptor
(B2R) appears to exacerbate nephropathy and neuropathy, sug-
gesting that its activation in this diabetes model may be protective
(Kakoki et al., 2010). Further studies should assess the role of B1R
in different animal models of diabetes.

Angiopoietin-1 (Ang-1) has been demonstrated to have ben-
efits against vascular leakage and endothelial cell survival (Cho
et al., 2004). Variants have been developed to improve on
solubility and potency (Cho et al., 2004). Matrilin-1-Ang-1
(MAT-Ang-1) has been demonstrated to have anti-inflammatory
protection against cytokines IL-1α, IL-1β, IL-6, and TNF-α
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in sepsis (Alfieri et al., 2012). Another variant, cartilage oligomeric
matrix protein (COMP)-Ang-1, has been hypothesized to improve
regeneration of nerve fibers and endoneural microvessels in
leptin-deficient obese (ob/ob) mice, a model for T2D (Kosacka
et al., 2012). COMP-Ang-1 treatment was capable of reducing
macrophage infiltration and T-cell number in sciatic nerves of
ob/ob mice by 45 and 47%, respectively (Kosacka et al., 2012).
Upstream effectors of Ang-1 have also recently been explored.
Thymosin β4 improved diabetes-induced vascular dysfunction in
sciatic nerve, nerve function and can mediate this through upreg-
ulation of Ang-1 in diabetic mice (Wang et al., 2012). Regulators
of Ang-1 may therefore have benefits against neural and vascular
dysfunction.

CONCLUSION
The worldwide increase in prevalence of obesity and diet-
induced insulin resistance increases the need to reduce chronic

inflammation. Diabetic microvascular complications progress due
to inflammation which originates from multiple pathways and
mechanisms. This complexity warrants the need for effective ther-
apies that target more than one signaling cascade. Inhibition of
both inflammatory cytokines and their activators/regulators may
provide additional coverage to treating nephropathy, retinopathy,
and neuropathy. Similarly, this can be combined and optimized
with anti-oxidant and AGE/RAGE therapies to mitigate compen-
satory mechanisms. As further studies emerge to address current
limitations, improved therapies targeting diabetic microvascu-
lar complications may ultimately transition from treating the
pathology to prevention.
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