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Insulin-like growth factor-I (IGF-I) has been implicated in the pathogenesis of prostate can-
cer (PCa), since it plays a key role in cell proliferation, differentiation, and apoptosis. The
IGF-I actions are mediated mainly via its binding to the type I IGF receptor (IGF-IR), how-
ever IGF-I signaling via insulin receptor (IR) and hybrid IGF-I/IR is also evident. Different IGF-I
mRNA splice variants, namely IGF-IEa, IGF-IEb, and IGF-IEc, are expressed in human cells
and tissues. These transcripts encode several IGF-I precursor proteins which contain the
same bioactive product (mature IGF-I), however, they differ by the length of their signal pep-
tides on the amino-terminal end and the structure of the extension peptides (E-peptides)
on the carboxy-terminal end. There is an increasing interest in the possible different role
of the IGF-I transcripts and their respective non-(mature)IGF-I products in the regulation of
distinct biological activities. Moreover, there is strong evidence of a differential expression
profile of the IGF-I splice variants in normal versus PCa tissues and PCa cells, implying that
the expression pattern of the various IGF-I transcripts and their respective protein products
may possess different functions in cancer biology. Herein, the evidence that the IGF-IEc
transcript regulates PCa growth via Ec peptide specific and IGF-IR/IR-independent signaling
is discussed.

Keywords: apoptosis, cancer progression, cell survival, human IGF-I isoforms, IGF-I bioactivity, IGF-I peptides, IGF-I
receptors, IGF-I signaling

INTRODUCTION
A variety of cellular responses are induced by insulin-like
growth factor-I (IGF-I), including cell proliferation, differen-
tiation, migration, and survival (Jones and Clemmons, 1995;
Reyes-Moreno et al., 1998; Koutsilieris et al., 2000b; Siddle et al.,
2001; LeRoith and Roberts, 2003; Kooijman, 2006). These cellular
responses have implicated IGF-I in the pathophysiology of several
human cancers (Werner and LeRoith, 1996; Werner and Bruchim,
2009). In particular, there is an extensive body of literature sug-
gesting that the IGF system (Figure 1) is importantly involved not
only in prostate gland growth and development but also in prostate
cancer (PCa) growth and progression (Polychronakos et al., 1991;
Reyes-Moreno et al., 1998; Grimberg and Cohen, 1999; Koutsilieris
et al., 2000b; Wetterau et al., 2003; Monti et al., 2007; Werner
and Bruchim, 2009). Due to alternative splicing of the igf-1 gene,
different IGF-I mRNA transcripts are produced encoding several
IGF-I precursor proteins (isoforms), i.e., the IGF-IEa, IGF-IEb,
and IGF-IEc, which differ by the length of their signal peptides on
the amino-terminal end and the structure of their extension pep-
tides (called E domains, or E-peptides) on the carboxy-terminal
end (Siegfried et al., 1992; Gilmour, 1994; Chew et al., 1995; Wallis,
2009) (Figure 2).

However, much less is known about the expression profile
of the IGF-I splice variants and the potentially distinct bio-
logical roles of the IGF-I isoforms in the pathophysiology of
various types of cancer (Siegfried et al., 1992; Kuo and Chen,
2002; Armakolas et al., 2010; Koczorowska et al., 2011; Philip-
pou et al., 2011; Kasprzak et al., 2012). Herein, we shall focus

on the concept that the differential expression of IGF-I isoforms
are possibly involved in the pathophysiology of PCa, presenting
evidence that IGF-IEc related peptides may act via an IGF-I recep-
tor (IGF-IR)-independent and insulin receptor (IR)-independent
pathway.

IGF-I mRNA ALTERNATIVE SPLICING
Different leader sequences result in two different classes of IGF-I
mRNA isoforms. Class I transcripts use exon 1 as leader exon,
whereas class II transcripts have their initiation sites on exon
2. Alternative splicing of exon 5 results also in different mRNA
variants containing exon 5 (IGF-I Eb), or containing exon 6 and
excluding exon 5 (IGF-I Ea) (Okazaki et al., 1995; Bloor et al.,
2001; Barton, 2006). In the human igf-1 gene, alternative splic-
ing generates also a third variant, the IGF-I Ec, which contains
both exon 5 and 6 and corresponds to IGF-I Eb in rodents (Chew
et al., 1995). More specifically, IGF-I Ea transcript derives from
the splicing pattern exon 1 or 2–3–4–6 of the igf-1 gene, which
represents the main IGF-I mRNA produced in liver (Jansen et al.,
1983; Chew et al., 1995). IGF-I Eb transcript is a splice variant of
exon 1 or 2–3–4–5 (Rotwein, 1986), while IGF-I Ec transcript is an
exon 1 or 2–3–4–5–6 splice variant of the igf-1 gene (Chew et al.,
1995). Structurally, the IGF-I Ec mRNA transcript differs from
the IGF-I Ea variant by the presence of the first 49 base pairs from
exon 5 (52 bp in rodents) (Figure 2). The biological significance of
IGF-I splice variants is currently unknown, however the presence
of different transcripts is indicative of diverse responses to differ-
ent stimuli (Yu and Rohan, 2000) and they probably reflect the
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FIGURE 1 | Schematic representation of the insulin-like growth
factor-I (IGF-I) bioregulation system. Apart from IGF-I, the system
consists of the receptors IGF-IR, IGF-IIR, insulin receptor (IR), and
IGF-IR, IR hybrids, and at least six high affinity insulin-like growth factor
binding proteins (IGFBPs). IGF-I circulates mainly in an
IGF/IGFBP-3/ALS complex. Binding of IGFBPs to IGF-I prevents the
ligand to interact with the receptor(s) and IGFBPs can modulate, both

in the circulation and in the extracellular environment (ECM), the extent
of IGF-I-dependent cellular effects. Proteolysis of IGFBPs by proteases,
such as urokinase-type plasminogen activator (uPA), plasmin,
metalloproteinases (MMPs), and prostate-specific antigen (PSA),
results in an increase of bioavailability of IGF-I for interaction with the
IGF-IR. Some IGFBPs can exert also an IGF-IR-independent bioactivity.
ALS, acid-labile subunit; ECM, extracellular matrix.

complexity of the IGF-I isoforms-mediated actions in different
pathophysiological conditions (Mourkioti and Rosenthal, 2005;
Temmerman et al., 2010).

THE COMPONENTS OF THE IGF-I BIOREGULATION SYSTEM
Insulin-like growth factor-I mediates its actions through binding
to specific receptors, such as type I (IGF-IR) and type II (IGF-
IIR) IGF receptor, IR, and several atypical receptors, such as the
hybrid IGF-IR/IR (Federici et al., 1997; Le Roith et al., 2001; Nakae
et al., 2001; Taguchi and White, 2008) (Figure 1). More specifically,
IGF-IR binds IGF-I with the highest affinity and also IGF-II and
insulin with approximately 10-fold and 100-fold lower affinity,
respectively. The IGF-I is also able to interact with the IR, but with
much lower affinity (Laviola et al., 2007). IGF-IR exhibits a high
degree of homology to IR (De Meyts and Whittaker, 2002) and
both IGF-I and insulin can cross-activate these receptors, while the
IGF-IR signaling pathways share multiple intracellular mediators
with the insulin signaling cascade (Duan et al., 2010). The IGF-
IR/IR hybrid receptor binds both insulin and IGF-I, although its
binding affinity for insulin is lower than that for IGF-I it has lower
affinity for insulin than classical IR, and is thought to function
predominantly as an IGF-IR, however the functional importance
of IGF-IR/IR hybrid receptor remains poorly understood (Soos
et al., 1993; Yu and Rohan, 2000; Taguchi and White, 2008). IGF-
IIR binds IGF-II with the highest affinity, IGF-I with much lower
affinity, and it does not bind insulin (Laviola et al., 2007).

Biological actions of IGF-I are modulated by a family of at
least six insulin-like growth factor binding proteins (IGFBPs) (Oh,
1997; Baxter, 2000; Mourkioti and Rosenthal, 2005; Cohen, 2006).
In general, IGFBPs bind IGF-I and increase its half-life both in the
extracellular matrix and transfer IGFs in the circulation. Most of
the circulating IGF-I is found in a ternary complex with IGFBP-3
and the glycoprotein acid-labile subunit (ALS), and this com-
plex protects IGF-I from proteolytic degradation (Baxter et al.,
1989; Yu and Rohan, 2000). IGF-I acts primarily through the
binding and activation of IGF-IR (Le Roith et al., 2001; Laviola
et al., 2007; Philippou et al., 2007), and ligation of IGF-IR initiates
intracellular signaling cascades involved in mitogenic, cell survival,
anti-apoptotic, and transforming activities (Krueckl et al., 2004;
Tenta et al., 2005a; Samani et al., 2007; Werner and Bruchim, 2009).

Several unique processing features of IGF-I precursor protein
have been described, suggesting that post-translational processing
is a regulatory mechanism of the IGF-I activity (Duguay et al.,
1995; Duguay, 1999). In addition, the Ea-peptide of the human
IGF-IEa isoform contains an N-linked glycosylation site and this
glycosylation might also play a role in regulation of the bioavail-
ability of the mature IGF-I (Duguay, 1999; Hede et al., 2012).
The IGF-I domain which is responsible for the binding of the
IGF-IR is the mature IGF-I peptide (Figure 2); it is a biologi-
cally active product derived from post-translational processing of
each of the multiple IGF-I precursor polypeptides (Rotwein et al.,
1986; Barton, 2006; Wallis, 2009). After post-translational cleavage
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FIGURE 2 | Human igf-1 gene alternative splicing. All possible
combinations between leader sequence (signal peptide) usage and
terminal exon (5 or 6) can occur in different IGF-I mRNA isoforms. The
mature IGF-I peptide is coded by exons 3 and 4. It is a common part of the
IGF-I precursor polypeptides and it is derived from post-translational
processing of each of the multiple IGF-I precursors, by which the signal
and the E-peptides (Ea, Eb, Ec) are removed (dashed lines represent the

cleavage sites). The different E-peptides are encoded by three mRNA
variants produced by alternative splicing of the 3′ end of the pre-IGF-I
mRNA. The first 16 amino acids of the amino-terminal portion of the IGF-I
E-peptides are coded by exon 4. Exons 5 and 6 encode, by alternative
splicing, distinct portions of the E-peptides with alternative
carboxy-terminal sequences. An N-linked glycosylation site, contained only

in the Ea-peptide, is also represented ( ).

of the pro-IGF-I isoforms, the IGF-I E-peptides are proteolyti-
cally removed (Rotwein et al., 1986; Duguay et al., 1995; Denley
et al., 2005; Shavlakadze et al., 2005). It has been previously pro-
posed that they are also biologically active and elicit functions
that are distinct to the mature IGF-I in bronchial epithelial and
neuroblastoma cells (Siegfried et al., 1992; Kuo and Chen, 2002).

Thus, a growing interest has arisen with regard to the aspect
of the differential expression of IGF-I mRNA isoforms or respec-
tive post-translational E-peptides actions in various in vitro (Mills
et al., 2007; Pfeffer et al., 2009; Quesada et al., 2011; Brisson and
Barton, 2012) and in vivo (Dluzniewska et al., 2005; Philippou
et al., 2009; Stavropoulou et al., 2009; Armakolas et al., 2010; Bar-
ton et al., 2010; Gentile et al., 2010; Milingos et al., 2010) models
and pathologies. Furthermore, there has been increasing focus on
the potential of differential IGF-I isoforms actions through a puta-
tive E-peptide-specific signaling (Philippou et al., 2009; Quesada
et al., 2009; Stavropoulou et al., 2009; Deng et al., 2011; Brisson
and Barton, 2012) and particularly in PCa (Armakolas et al., 2010).

IGF-I SYSTEM AND ITS INVOLVEMENT IN PCa BIOLOGY
IGF-I ACTIONS IN PCa
An intricate balance between cell proliferation factors and
apoptosis-inducing and apoptosis-inhibiting factors is critical in
regulating prostate growth (Reyes-Moreno et al., 1998; Reynolds
and Kyprianou, 2006; Tenta et al., 2007; Pitulis et al., 2009). Dis-
ruptions in the balance between apoptotic and cell growth factors
is a mechanism that triggers the evasion of apoptosis and the
over-expression of factors that promote cell proliferation and
survival leading, thus, to carcinogenesis and cancer progression

(Reyes-Moreno et al., 1998; Reynolds and Kyprianou, 2006). In
particular, during PCa progression, PCa biology is characterized
by blockade of apoptosis (survival),uncontrolled proliferation and
increased invasive and metastatic potential (Mitsiades et al., 2000;
Reynolds and Kyprianou, 2006).

The IGF system has been implicated in several human can-
cers (Werner and LeRoith, 1996) and a significant amount of data
suggests that it plays an important role in PCa initiation and pro-
gression (Werner and Bruchim, 2009). Specifically, IGF-I exerts
a highly mitogenic and anti-apoptotic activity in cells (Wu et al.,
2001) and the relative contribution of endocrine versus tissue IGF-
I in growth control has been an essential question (Le Roith et al.,
2001). Several prospective studies have suggested that high circu-
lating IGF-I levels were associated with increased mitogenic and
anti-apoptotic effects and an increased risk of developing PCa
(Chan et al., 1998; Grimberg and Cohen, 1999; Khosravi et al.,
2001; Monti et al., 2007; Werner and Bruchim, 2009). In addi-
tion, meta-analysis studies have shown that IGF-I is significantly
associated with a high relative risk for developing PCa (Harman
et al., 2000; Shaneyfelt et al., 2000) and that PCa patients had sig-
nificantly higher circulating levels of IGF-I (Stattin et al., 2000;
Shi et al., 2001). Thus, the positive correlation between high cir-
culating IGF-I levels and PCa progression has implicated IGF-I
as an etiologic factor of PCa (Stattin et al., 2004; Reynolds and
Kyprianou, 2006). However, there is also evidence that does not
support a causal association between serum IGF-I (or IGFBP-3,
discussed below) and the risk of PCa (Woodson et al., 2003), and
it was hypothesized that high-grade PCas are more autonomous
and less sensitive to the action of IGF-I than low-grade cancers
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(Nimptsch et al., 2011). Moreover, the results from a recent study,
which provides the largest assessment of the role of the IGF system
in the development of prostate-specific antigen (PSA)-detected
PCa, suggested that circulating IGF-I has a limited role in the
development of early PCa but it may remain an important risk fac-
tor for disease progression (Rowlands et al., 2012). Furthermore,
IGFBP-3 levels have been inversely associated with prostate car-
cinogenesis and the negative correlation between IGFBP-3 levels
and cancer risk is consistent with a protective role of IGFBP-3, i.e.,
high IGFBP-3 concentrations may lead to reduced IGF-I bioavail-
ability (Koutsilieris et al., 1995; Bogdanos et al., 2003; Papatsoris
et al., 2005; Werner and Bruchim, 2009).

The deregulation of growth factors activity, such as of IGF-I
(Koutsilieris, 1993; Koutsilieris et al., 2000b), transforming growth
factor-β (TGF-β) (Koutsilieris, 1993), urokinase-type plasmino-
gen activator (uPA) (Koutsilieris, 1993; Koutsilieris et al., 2000b),
and basic fibroblast growth factor (bFGF), have an important
role in PCa disease progression (Koutsilieris et al., 1990) and
castration-resistant growth mainly in bone (Reyes-Moreno et al.,
1998; Mitsiades et al., 2000; Karamanolakis et al., 2002; Bogdanos
et al., 2003; Katopodis et al., 2009) and lymph nodes metastasis
(Koutsilieris et al., 1986, 1987; Sourla et al., 1996; Reynolds and
Kyprianou, 2006). In particular, PCa cells that have metastasized to
bone have an upregulated IGF-I regulatory system (Ozkan, 2011).
Thus, the growth factor signaling pathways that regulate apoptosis
and proliferation offer significant molecular targets for thera-
peutic intervention of castration-resistant PCa (Bogdanos et al.,
2003; Reynolds and Kyprianou, 2006; Sachdev and Yee, 2007), and
such interventions include anti-IGF-I therapy (Koutsilieris et al.,
2000a; Tenta et al., 2004), anti-survival factor therapy (Koutsilieris
et al., 2000b), anti-bone microenvironment-related growth fac-
tors therapy (Tenta et al., 2004, 2005b), or a dexamethasone and
somatostatin analog combination therapy (Koutsilieris et al., 2001;
Dimopoulos et al., 2004).

IGF-I/IGF-IR/IGFBPs SYSTEM IN PCa
Previous studies have focused on the use of in vitro primary cell
cultures in order to characterize the expression of IGF-I separately
in each cellular compartment of the prostate; the initial find-
ings suggested that prostatic epithelial cells, whether from normal,
benign prostatic hyperplasia, or malignant tissues, do not synthe-
size or secrete significant amounts of IGF-I (Peehl et al., 1996).
However, established PCa cell lines such as PA-III, PC-3, LNCaP,
and DU145, have been shown to express IGF-IR and sometimes
IGF-I (Polychronakos et al., 1991; Nickerson et al., 2001; Kawada
et al., 2006; Armakolas et al., 2010). In benign prostatic tissue, IGF-
I expression was observed only in a small percentage and at a weak
staining intensity in the tissue, while high-grade tumor showed a
stronger reaction (Ozkan, 2011). Also, staining in epithelial cells of
both prostatic intraepithelial neoplasia (PIN) and invasive tumors
confirmed that neoplastic epithelial cells and also PIN express
IGF-I (Ozkan, 2011).

Regardless of the extent of IGF-I secretion, PCa cells do express
IGF-IR (Peehl et al., 1996). In addition, it has been demonstrated
that over-expression of IGF-IR can potentiate tumor growth and
can behave like an oncogene (Kaleko et al., 1990; Polychronakos
et al., 1991; Ozkan, 2011). There is much evidence showing the

relationship of IGF-IR and its ligands with the development and
progression of PCa (Baserga et al., 1997; Hellawell and Brewster,
2002; Hellawell et al., 2002), which has been summarized as fol-
lows: IGF-IR plays a important role in cellular transformation, it
has a critical role in the protection of cells from apoptosis, and
its activation or over-expression mediates many aspects of malig-
nant phenotype-like metastatic potential (Ozkan, 2011). IGF-IR-
induced cell growth and survival are both conductive to increased
tumor growth, while inversely, down-regulation of the IGF-IR
leads to apoptosis of tumor cells and inhibition of tumor growth
(Baserga et al., 2003). IGF-IR is expressed in normal prostate tis-
sue, benign hyperplasia, neoplastic prostate tissues and metastases,
as well as in cultured cell lines (Djakiew, 2000; Ryan et al., 2007).
Specifically, it is more strongly expressed in epithelial malignant
cells than PIN and normal cells, acting as an autocrine signal to
the epithelial compartment (Cardillo et al., 2003). A more intense
staining for IGF-IR has been also reported in the stromal tissue
surrounding the tumor compared with the surrounding benign
tissue (Ryan et al., 2007). Nevertheless, there are studies that did
not find appreciable differences in IGF-IR levels between normal
prostate and PCa, or showed a decreased IGF-IR expression in
primary tumors compared with benign tissues (Chott et al., 1999;
Dhanasekaran et al., 2001; Werner and Bruchim, 2009). Interest-
ingly, during transformation of prostate epithelial cells from a
benign to a metastatic state, a marked reduction in IGF-IR levels
has been reported (Plymate et al., 1997; Chott et al., 1999).

Both normal prostate epithelial cells and PCa cells exhibit IGF-I
responsiveness in vitro (Cohen et al., 1991; Peehl et al., 1996; Nick-
erson et al., 2001). Moreover, over-expression of human IGF-I in
prostate epithelial cells in a transgenic mouse model led to acti-
vation of the IGF-IR and spontaneous tumorigenesis in prostate
epithelium (DiGiovanni et al., 2000), while suppression of IGF-IR
inhibited prostate tumor cell growth and invasion in rats (Burfeind
et al., 1996). In addition, it has been shown that IGF-I from the
prostate stromal cells mediates the tumoral stromal cell growth
and accelerates tumor growth in the prostate (Wang and Wong,
1998; Kawada et al., 2006). IGF-I, produced by prostatic stro-
mal cells in response to androgen stimulation, has been shown
to act in a paracrine manner, stimulating the surrounding pro-
static epithelial cells, and resulting in increased proliferation and
prostatic carcinogenesis (Wang and Wong, 1998; Bogdanos et al.,
2003; Reynolds and Kyprianou, 2006). Stromal cells also express
IGF-IR and therefore it has been proposed that they should be pre-
sumably responsive to the mitogenic activity of IGF-I (Peehl et al.,
1996; Ozkan, 2011). Thus, targeting the igf-1 gene in the prostatic
stromal cells has emerged as a potentially attractive modality for
treating PCa (Reynolds and Kyprianou, 2006).

IGF-I receptor has been suggested to play an important role
not only in PCa progression but also, possibly, in the progression
to castration-resistant disease (Wu et al., 2006). Receptor kinases
are important determinants of neoplastic behavior (Blume-Jensen
and Hunter, 2001) and it was suggested that expression of genes
related to receptor tyrosine kinase systems, such as the IGF-
I/IGF-IR, may confer castration-resistance (Nickerson et al., 2001;
Mitsiades et al., 2006). By using in vitro model(s) which mim-
ics events that occur during the natural progression of PCa, i.e.,
the androgen dependence to androgen independence transition, it
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was indicated that increased IGF-IR expression is associated with
androgen-independent anti-apoptotic and mitotic IGF signaling
in the progression of PCa (Nickerson et al., 2001; Krueckl et al.,
2004).

Interactions between the IGF-I/IGFBPs bioregulation system
pathways and other pathways can modulate the development and
progression of PCa (Reyes-Moreno and Koutsilieris, 1997; Reyes-
Moreno et al., 1998; Reynolds and Kyprianou, 2006). In normal
cells, the IGF-I pathway is inhibited by the IGFBPs since they
bind to IGF-I and prevent pathway activation through the inter-
action of IGF-I with its receptor, while about 99% of the free
IGF is bound to IGFBPs and mostly to IGFBP-3 (Djavan et al.,
2001; Stewart and Weigel, 2005; Reynolds and Kyprianou, 2006).
A direct correlation has been demonstrated between the inhibi-
tion of IGF-IR gene expression and up-regulation of IGFBP-3 in
the androgen-independent PC-3 cells, while this inhibition led
to inhibition of cell proliferation and invasion, and to enhanced
spontaneous apoptosis, indicating an important role for both IGF-
IR and IGFBP-3 in the homeostasis of prostate carcinoma cells
(Grzmil et al., 2004). In addition, activation of TGF-β signal-
ing pathway in the normal prostate induces the up-regulation of
IGFBP-3 expression, which could lead to the binding of IGFBP-
3 with any excess IGF-I, thus preventing the activation of the
IGF-I growth and survival pathways (Koutsilieris, 1995; Nicker-
son et al., 1997; Bogdanos et al., 2003). Conversely, dysfunction of
the TGF-β signaling can lead to increased activation of the IGF-
I pathways, eventually leading to tumorigenesis (Reyes-Moreno
and Koutsilieris, 1997; Reyes-Moreno et al., 1998; Reynolds and
Kyprianou, 2006). It has been shown that IGFBP-3 can block IGF-
induced proliferation of prostatic epithelial cells in culture, while
the addition of PSA restored proliferation by proteolytic cleavage
of IGFBP-3, thus freeing IGF-I for interaction with IGF-IR (Cohen
et al., 1994) (Figure 1).

IGF-I mRNA ISOFORMS IN PCa
The data from in vivo and in vitro studies reviewed above, regard-
ing the IGF system components and their role in the development
and progression of PCa, show a differential expression profile dur-
ing the transformation of prostate epithelial cells from a benign
to malignant or metastatic state. It remains to be verified whether
those differential profiles reflect different regulatory roles of the
IGF-I system components during the transition of the normal
prostate tissue to a precancerous or malignant state. Interest-
ingly, a differential expression particularly of the IGF-I mRNA
isoforms has been recently documented in human normal and
PCa tissues, as well as in human androgen-independent (PC-3)
and androgen-dependent (LNCaP) cells (Armakolas et al., 2010).
Specifically, the IGF-IEc isoform was found to be expressed, not
only at the mRNA but also, by using an IGF-IEc specific anti-
body (Philippou et al., 2008), at the protein level, in PCa tissues
and in the cancer PC-3 and LNCaP cells. Moreover, the expres-
sion/localization of this isoform was remarkably higher in PCa
and PIN than in normal prostate tissues (Armakolas et al., 2010).
Normal human prostate epithelial cells (HPrEC) did not express
IGF-IEc transcript (Armakolas et al., 2010).

A differential expression profile of the IGF-I isoforms between
normal and cancerous tissues has been also observed in other

human cancers in vivo, such as in cervical (Koczorowska et al.,
2011) and colorectal cancer (Kasprzak et al., 2012), and in osteosar-
coma cells in vitro (Philippou et al., 2011). Similarly, a differen-
tial IGF-I isoforms expression has been found in other human
pathologies, such as in skeletal muscle after exercise-induced dam-
age (Philippou et al., 2009) and in endometriosis (Milingos et al.,
2010), implying the potentially different roles of the IGF-I iso-
forms in the pathophysiology of all those conditions. Interestingly
and particularly in cancer, IGF-I splice variants appear to be sensi-
tive to the specific cancer type and the state of the disease, showing
a differential regulation of specific isoform(s) (Armakolas et al.,
2010; Koczorowska et al., 2011; Kasprzak et al., 2012).

Furthermore, it was documented that a synthetic Ec peptide,
which comprised the region beyond the common sequence of
the human E domains (i.e., a synthetic peptide similar to the
C-terminal 24-residues of the human Ec domain), possesses bioac-
tivity in PCa cells. This activity was shown to be mediated possibly
via an IGF-IR-independent and IR-independent mechanism, not
only in the PCa cells PC-3 and LNCaP (Armakolas et al., 2010) but
also in MG-63 osteosarcoma cells (Philippou et al., 2011) and in
KLE endometrial-like cells (Milingos et al., 2010). Specifically, the
mitogenic action of the synthetic Ec peptide on these human cell
lines, induced after its exogenous administration, was not blocked
by either a neutralizing anti-IGF-IR antibody or the siRNA knock-
out of IGF-IR or IR, which are involved in the IGF-I-mediated
actions. At the same time, IGF-I action on these cells was com-
pletely abolished (Armakolas et al., 2010; Milingos et al., 2010;
Philippou et al., 2011). Hence, it was concluded that the prolifera-
tive activity of the synthetic Ec peptide is not propagated through
the IGF-IR, IR, or the hybrid IGF-IR/IR receptor (Armakolas et al.,
2010).

Similarly, unique and autonomous activities of synthetic
human Eb peptide(s) have been also reported, regulating growth
and differentiation of human normal and malignant bronchial
epithelial cells, as well as neuroblastoma cells, potentially through
binding to putative membrane receptor sites distinct from those
for IGF-I and insulin (Siegfried et al., 1992; Kuo and Chen, 2002,
2003). In addition, an antitumor activity of human Eb peptide, in
terms of inhibition of cell growth and invasion, and of angiogen-
esis, has also been reported for human breast cancer cells (Chen
et al., 2007). The possible IGF-IR- and IR-independent action par-
ticularly of the synthetic human Ec peptide was also indicated by
its distinct signaling compared to mature IGF-I signaling, and this
concept is discussed in the next section.

IGF-IR SIGNALING IN PCa: EVIDENCE FOR A NOVEL Ec PEPTIDE
SIGNALING
According to the IGF signaling models, effective binding of the
IGF-I ligand to IGF-IR leads to the activation of signaling path-
ways that contribute up to 50% of cell growth and proliferation
(Baserga et al., 2003). Moreover, ligand activation of the IGF-IR
results in a variety of biological effects, including mitogenesis,
cell survival, and transformation (Baserga, 1999; Yu and Rohan,
2000; Krueckl et al., 2004; Papageorgiou et al., 2007, 2008). Dif-
ferent domains in the IGF-IR are required for specific functions
such as mitogenesis, cell differentiation, transformation, and sur-
vival. Thus, TK domain is necessary and sufficient to promote
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mitogenesis, with lysine 1003 being required for any function of
IGF-IR; tyrosine Y950 domain and C-terminus of the receptor
are necessary for cell differentiation, while all receptor domains
are required for anchorage-independence and transformation. For
cell survival, the tyrosine kinase domain,Y950 and a third domain,
which resides in a serine quartet at 1280–1283 and binds 14.3.3,
are involved (Baserga, 2000).

More specifically, phosphorylated IGF-IR activates signal-
ing adaptor proteins including IRS-1, IRS-2, and Src homol-
ogy/collagen (Shc) (Figure 3); the recruitment of IRS-1 is pri-
marily required for mitogenic signaling, and IRS-2 plays a key role
in cellular motility responses (Byron et al., 2006; Ozkan, 2011).
Particularly for cell survival, three different pathways, originat-
ing from different domains of the IGF-IR, are used. The tyrosine
kinase domain acts through the IRS-1/PI3K/Akt/p70 pathway, the
second domain (preponderantly Y950) activates Shc and leads to
the activation of MAPK pathway, while the third domain activates
Raf (Figure 3). The operation of any two of these three pathways
is sufficient to protect cells from apoptosis (Peruzzi et al., 1999;
Baserga, 2000). However, the primary cell survival pathway acti-
vated by IGF-I is the PI3K/Akt signaling pathway (Papageorgiou
et al., 2008; Ozkan, 2011). Phosphorylation of PI3K activates the
Akt pathway and inhibition of PI3K signaling would prevent the
completion of the cell cycle, leading potentially to cell apoptosis
or differentiation. However, there is evidence indicated that PI3K
inhibition can be overcome by Akt-independent mechanism(s) of
protection from apoptosis in PCa cells (Carson et al., 1999). Akt

is a kinase activating molecule that causes the induction of anti-
apoptotic proteins (Meinbach and Lokeshwar, 2006) and it blocks
apoptosis also by phosphorylating, and thus deactivating, the pro-
apoptotic Bad protein, a member of the Bcl-2 family of proteins
(Moschos and Mantzoros, 2002; Reynolds and Kyprianou, 2006).
Bad protein is also a downstream target of the Ras/MAPK/ERK
pathway, which is activated by IGF-I and leads both to cell sur-
vival and proliferation (Moschos and Mantzoros, 2002; Tenta et al.,
2005a; Balmanno and Cook, 2009) (Figure 3).

The Ras/Raf/MEK/MAPK is the second principal pathway
associated with activation of IGF-IR. This downstream cascade
includes the activation of the small G protein Ras followed by the
activation of protein serine kinase Raf, which in turn activates
the MEK/MAPK pathway (Figure 3). The final products of this
pathway modulate cell proliferation and differentiation via trans-
duction of mitogenic signals through activation of transcription
factors (Davis, 1995; Papatsoris et al., 2007; Ozkan, 2011), such
as ELK-1, CREB, Gata-1, Fos (Garcia et al., 2006; Steelman et al.,
2011), and AP-1 (Kajanne et al., 2009). At the cellular level, IGF-
IR increases DNA synthesis and stimulates, through activation of
MAPK pathway, the expression of cyclin D1, which accelerates the
progression of the cell cycle from G1 to S phase (Furlanetto et al.,
1994; Yu and Rohan, 2000; Papatsoris et al., 2007) (Figure 3).

More specifically, MAPKs are a family of serine/threonine pro-
tein kinases and are activated in a variety of transformed cells,
while the MAPK pathway also mediates, if not totally, cell trans-
formation induced by Ras, Raf, and other oncoproteins (Bodart,

FIGURE 3 | Signaling pathways and the cellular processes downstream
of IGF-I are shown (described in detail in the text). The IGF-IR- and
IR-independent signaling of the Ec peptide, mediated by a putative Ec peptide

receptor, which in its turn can activate ERK1/2, is postulated. The arrows
indicate an activating effect and the dashed lines represent an inhibitory
effect.

Frontiers in Endocrinology | Experimental Endocrinology March 2013 | Volume 4 | Article 31 | 6

http://www.frontiersin.org/Experimental_Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology/archive


Philippou et al. IGF-I splicing in prostate cancer

2010). MAP kinases are key mediators of eukaryotic transcrip-
tional responses to extracellular signals and control gene expres-
sion via the phosphorylation and regulation of co-regulatory
proteins and transcription factors (Papatsoris and Papavassiliou,
2001; Papatsoris et al., 2007; Whitmarsh, 2007; Kaminska et al.,
2009; Kim and Choi, 2010). Specifically, one of the pathways that
leads from growth factor receptor tyrosine kinases to MAP kinases
involves Shc, Grb2, Sos, Ras, Raf, and MKKs; Shc binds to phos-
phorylated tyrosines on activated IGF-IR tyrosine kinases and the
subsequent phosphorylation of Shc generates a binding site for the
Grb2, while this binding is thought to generate a Shc/Grb2/Sos
complex. Sos is a guanine nucleotide exchange factor that acti-
vates Ras which is located at the plasma membrane and in its
turn associates with and activates Raf (Crews and Erikson, 1993).
The activation of Ras/Raf signals to MKKs (specifically MEK1/2)
and these kinases phosphorylate and activate ERKs (ERK1/2),
which then can activate by phosphorylation both, other protein
kinases and several transcription factors (Figure 3). Ras medi-
ates the activation of various effector pathways that modulate cell
proliferation, apoptosis, and other cellular processes (Papatsoris
et al., 2007), while further, the ability of the Ras/MAPK pathway to
regulate cell proliferation, differentiation, and survival in prostate
appears to be dependent upon the amplitude and duration of the
MAPK activation (Maroni et al., 2004; Papatsoris et al., 2007).
MAP kinase cascades include three major groups of signaling cas-
cades in humans, namely ERK1/2, JNK, and p38 cascade. The
ERK cascade is a highly conserved signaling pathway throughout
eukaryotic cells, integrating signals that modulate many cellular
processes such as cell cycle, proliferation, survival, differentiation,
and cell migration (Bodart, 2010). Upon their activation (phos-
phorylation), ERK1/2 phosphorylate transcription factors present
in the cytoplasm or nucleus, thus leading to expression of tar-
get genes and resulting in biological responses (Papatsoris and
Papavassiliou, 2001; Papatsoris et al., 2007; Kaminska et al., 2009).
In this context, the ERK signaling pathway also plays a role in
several other steps of tumor development, including the cancer
cell migration and tumor invasion, by inducing the expression of
matrix metalloproteinases and thereby promoting the degradation
of extracellular matrix proteins (Kim and Choi, 2010). The effects
of phosphorylated ERK1/2 on PCa cells can be particularly the
enhancement of cellular proliferation as well a reduction of apop-
tosis and, thus, the relative activation of ERK1 and ERK2 could
have variable cellular effects in prostate carcinogenesis (Papatsoris
et al., 2007). However, growth, survival, or androgen responsive-
ness of PCa cells are not exclusively mediated by the Ras/MAPK
cascade and other molecular mechanisms also converge to this
pathway (Papatsoris et al., 2007).

Obviously, the ERK1/2 as well as the Akt signaling path-
way, both associated with the ligation of IGF-I to IGF-IR, are
involved in PCa development and progression, regulating mainly
mitogenic and anti-apoptotic signaling (Papatsoris et al., 2005;

Papageorgiou et al., 2007, 2008; Pitulis et al., 2009). Interestingly,
however, a distinct signaling of the synthetic human Ec pep-
tide compared to IGF-I ligand (mature peptide) signaling, pre-
viously revealed in myoblast-like cells (Philippou et al., 2009)
and myocardial-like cells (Stavropoulou et al., 2009), was demon-
strated in PC-3 and LNCaP PCa cells (Armakolas et al., 2010).
While exogenous administration of the synthetic Ec peptide did
activate ERK1/2, it did not activate Akt, suggesting that its mode
of action may be different compared with that of mature IGF-I
(Armakolas et al., 2010). Moreover, this distinct activation pattern
induced by the synthetic Ec peptide was not suppressed after the
silencing of either IGF-IR or IR, which are both signaling mole-
cules upstream of ERK1/2 and Akt activation (Kojima et al., 2009).
These findings further suggest a bioactivity of human Ec domain in
PCa cells which is possibly mediated via an autonomous, IGF-IR-
and IR-independent mechanism (Figure 3).

Collectively, it would be of great interest to further confirm the
growing body of evidence that the IGF-I mRNA isoforms result in
an E domain-specific bioactivity in the pathophysiology of can-
cer, whether uniquely or in combination with that of the mature
IGF-I, and to determine the signaling pathways through which
they exert such activity. Given the critical role of IGF-I in can-
cer, such putative activities of IGF-I Ec peptide could comprise
an important potential for illuminating the mechanisms of con-
trolling PCa development and/or progression and for defining
candidate targets for therapeutic intervention.

CONCLUDING REMARKS
The important role of the IGF-I bioregulation system in the
pathophysiology of PCa is well established, as it regulates various
cellular processes such as cell proliferation, differentiation, migra-
tion/invasion, and survival. In particular, there is an extensive body
of evidence suggesting that the IGFs/IGFBPs/IR system is impor-
tantly involved not only in prostate gland growth and development
but also in PCa initiation and progression. Due to alternative splic-
ing of the igf-1 gene, different IGF-I mRNA isoforms are produced
and a growing interest has arisen with regard to the aspect of Ec
products in various pathologies. More specifically, a shift to the
up-regulation of the IGF-IEc isoform has been observed, along
with other components of the IGF-I system, during the develop-
ment and progression of PCa, both in in vivo and in vitro models,
implying possible distinct roles of the IGF-I mRNA isoforms in
the pathophysiology of the disease. Moreover, a synthetic peptide
similar to a C-terminal part of the human Ec domain was shown
to possess mitogenic bioactivity in PCa cells and exhibit a dis-
tinct signaling pathway as compared to mature IGF-I. It remains
a challenge to identify the mechanisms that modulate the IGF-I
mRNA isoforms expression and processing during the progres-
sion of PCa and to determine whether the PCa cellular responses
are regulated both by IGF-I-dependent and Ec peptide-dependent
mechanisms.
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