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The failure of testicular descent or cryptorchidism is the most common defect in newborn
boys. The descent of the testes during development is controlled by insulin-like 3 peptide
and steroid hormones produced in testicular Leydig cells, as well as by various genetic and
developmental factors.While in some cases the association with genetic abnormalities and
environmental causes has been shown, the etiology of cryptorchidism remains uncertain.
Cryptorchidism is an established risk factor for infertility and testicular germ cell tumors
(TGCT). Experimental animal models suggest a causative role for an abnormal testicular
position on the disruption of spermatogenesis however the link between cryptorchidism
and TGCT is less clear. The most common type of TGCT in cryptorchid testes is semi-
noma, believed to be derived from pluripotent prenatal germ cells. Recent studies have
shown that seminoma cells and their precursor carcinoma in situ cells express a number of
spermatogonial stem cell (SSC) markers suggesting thatTGCTs might originate from adult
stem cells. We review here the data on changes in the SSC somatic cell niche observed
in cryptorchid testes of mouse models and in human patients. We propose that the mis-
regulation of growth factors’ expression may alter the balance between SSC self-renewal
and differentiation and shift stem cells toward neoplastic transformation.
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INTRODUCTION
Cryptorchidism, or maldescended testes, is a common clinical
diagnosis in newborn boys and one of the strongest risk fac-
tors for infertility and testicular cancer (Hutson et al., 2010). The
position of the cryptorchid testicle may vary and can be located
in the abdominal cavity, inguinal canal, or subcutaneous cavity,
which could determine the extent of the associated phenotype.
While some populations are affected at a higher frequency than
others, around 2–4% of boys are globally diagnosed with either
unilateral or bilateral cryptorchidism (Barthold and Gonzalez,
2003).

About 10% of all cases of testicular germ cell tumors (TGCT)
occur in men with a history of cryptorchidism (Mannuel et al.,
2012). Thus, a disruption of a common regulatory pathway, for
example, androgen signaling, might be an underlying reason for
the association of cryptorchidism and TGCTs. An alternative
explanation is that the abnormal testis position itself is directly
responsible for infertility and germ cell tumorigenesis. Indeed, the
causative role of an abnormal testis position in infertility has been
demonstrated in several animal experimental models. The elevated
temperature of the undescended testis inhibits the differentia-
tion of spermatogonia resulting in an arrest of spermatogenesis,
reduced seminiferous tubule size, germ cell depletion, and fibro-
sis. The link between cryptorchidism and TGCT is however less
clear. The most common type of TGCT in cryptorchidism is semi-
noma. It is commonly accepted that the precursor cancer cells are
pluripotent germ cells. Whether such cells are derived from pri-
mordial germ cells (PGCs) also known as gonocytes, that continue
to proliferate or undergo improper differentiation (Skakkebaek
et al., 1987) or are a result of spermatogonial stem cell (SSC)
transformation may be debatable. The abnormal testis position

dramatically alters the function of somatic cells providing the
niche for SSC self-renewal and differentiation. We review here the
epidemiologic, genomic, and experimental data that might explain
the higher incidence and the causes of TGCT in cryptorchidism.
Clinical aspects of this disease are beyond the scope of this review
and can be found elsewhere (Isidori and Lenzi, 2008).

TESTICULAR DESCENT
During embryonic development, the gonads differentiate from the
genital ridges. After completion of sex determination, both ovary
and testis remain in a high pararenal position attached to the
body walls by a mesenterial ligamentous complex derived from
the mesonephric mesenchyme (Hutson et al., 1997; Barteczko and
Jacob, 2000). At this stage, the cranial mesonephric ligament and
the caudal genitoinguinal ligament (or gubernaculum) connect
the gonads to the abdominal wall. The development and reorga-
nization of these two ligaments, along with the differentiation of
the epididymis, growth, and orientation of the gonads and repro-
ductive tracts and finally the intra-abdominal pressure, direct the
movement of the testis to the scrotum.

The two-stage model of testicular descent (Hutson et al., 1997),
distinguishes the transabdominal phase characterized by the
descent of the testis into the lower abdominal position, and the
inguinoscrotal phase during which the testis moves through the
inguinal canal and into the scrotum. During the transabdominal
phase, the gubernacular cord and bulb are formed followed by
the differentiation of muscle layers around the bulb. In humans,
the first stage of testicular descent occurs between 10–15 weeks
of gestation (Hutson et al., 1997). Transgenic studies in mice
have identified INSL3 as the major factor in transabdominal
testicular descent (Nef and Parada, 1999; Zimmermann et al.,
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1999; Overbeek et al., 2001; Gorlov et al., 2002; Huang et al.,
2012) INSL3 is a small peptide hormone that belongs to the
relaxin/insulin-like subfamily. It is expressed in testicular Ley-
dig cells and is first detected right before the onset of testicular
descent (Adham and Agoulnik, 2004). INSL3 signals through a
G protein-coupled receptor called the Relaxin Family Receptor
2 (RXFP2). Transgenic overexpression of INSL3 in female mice
leads to gubernaculum differentiation and ovary descent to a low
abdominal position (Adham et al., 2002). Combined with the
fact that an androgen deficiency does not affect transabdomi-
nal descent, one can assume that INSL3 is the primary peptide
responsible for this process. Analysis of mutant gubernaculum
development and the comparisons of gene expression in mutant
and wild-type tissues performed in our laboratory, indicated that
the NOTCH and WNT/beta-catenin cell signaling pathways might
mediate the INSL3 effects at the cellular level (Kaftanovskaya et al.,
2011). The effect of INSL3 deficiency is multifold; it causes sup-
pression of myoblast differentiation in the muscle layers of the
gubernaculum, apoptosis, and reduction of androgen receptor
(AR)-positive cells within the base of the gubernaculum, and a
failure of processus vaginalis development (Kaftanovskaya et al.,
2011).

The second inguinoscrotal stage of testicular descent is clearly
androgen-dependent (Hutson et al., 2010; Kaftanovskaya et al.,
2012). Suppression of androgen production or AR deficiency has
been linked to cryptorchidism in humans and various other species
(Bay et al., 2011). Interestingly, an increase in testosterone produc-
tion in human embryos precedes inguinoscrotal testicular descent
(Hutson et al., 2010). The level of serum testosterone peaks at
15–18 weeks of fetal life and declines thereafter, whereas the testis
remains in the same position for 5–10 weeks after the completion
of transabdominal descent. In addition, several other processes
occur during this time. Starting at about 8–10 weeks the scro-
tum anlage is formed and the floor of the gubernaculum base
inverts to become the tunica of the sac-like processus vaginalis
peritonei. The muscle layers at the rim of the gubernaculum fur-
ther develop to become the wall of the cremasteric sac and the
testes glide along the newly formed inguinal canal and into the
scrotum (Van Der Schoot, 1996). Because the majority of these
processes are androgen-sensitive, it is not surprising that many
abnormalities that lead to a compromised differentiation or func-
tion of stereogenic Leydig cells as well as the failure of androgen
signaling result in various degrees of cryptorchidism (Hutson et al.,
1997).

A non-functional hypothalamo-pituitary-gonadal (HPG) axis
results in hypogonadotrophic hypogonadism. The homozygous
mutant mice for gonadotropin-releasing hormone (GNRH, hpg ),
GNRH-receptor (Gnrhr), and the LH receptor knockout mouse
(LuRKO) devoid of LH stimulation, all have impaired inguino-
scrotal testicular descent (Klonisch et al., 2004; Pask et al.,
2005; Feng et al., 2006). A number of human syndromes
related to testicular feminization or genitourinary dysplasia
have the hallmarks of androgen deficiency as well (Klonisch
et al., 2004). Estrogen-like and anti-androgen compounds have
been shown to affect testicular descent through the suppres-
sion of the functional activity of Leydig cells and decreased
testosterone and INSL3 production (Klonisch et al., 2004). Little

is known, however, about local cell signaling pathways activated
by androgen signaling in the developing gubernaculum, scrotum,
cranial ligament, and epididymis. The link between inguino-
scrotal cryptorchidism detected in the transgenic mouse and
in some cases human mutants for several transcriptional fac-
tors, such as homeobox genes HOXA10 or HOXA11; Wilms
tumor 1 (WT1); ARID domain-containing protein 5B (ARID5B),
and androgen signaling in gubernaculum development still need
to be determined (Klonisch et al., 2004; Kaftanovskaya et al.,
2013).

EPIDEMIOLOGY OF CRYPTORCHIDISM
The prevalence of cryptorchidism varies somewhat from coun-
try to country with the highest incidence reported in Denmark
(9.0%) compared to that of the lowest, found in Finland (2.4%)
(Boisen et al., 2004). Global cryptorchidism rates of around 2–
4% are generally accepted (Barthold and Gonzalez, 2003). Several
studies reported an increase in incidence during the 1970s and
1980s including Lithuania and the USA (Paulozzi, 1999; Preiksa
et al., 2005), however in England rates have been declining since
the 1990s (Jones et al., 1998).

Variations in rates of cryptorchidism over the years and also
between countries such as the difference between Finland and
Denmark, may reflect the impact of many contributing environ-
mental factors. Man-made environmentally used chemicals such
as pesticides, phthalates, bisphenol A (BPA), and polychlorinated
biphenyls (PCBs) are known endocrine disrupters (Acerini and
Hughes, 2006). Pregnant women treated with DES gave birth to
boys with a higher incidence of cryptorchidism than non-treated
women (Stillman, 1982).

Consumption of liver or smoked products, which have been
found to contain a higher concentration of PCB has been impli-
cated in higher rates of cryptorchidism (Giordano et al., 2008).
Likewise,maternal consumption of more than five alcoholic drinks
a week has been linked to an increase in the risk of cryptorchidism
in one study (Damgaard et al., 2007), however disputed by others
(Moller and Skakkebaek, 1997; Biggs et al., 2002; Kurahashi et al.,
2005).

Similar disputes are also a factor in the contribution of maternal
smoking to cryptorchidism. One study found that smoking more
than 10 cigarettes a day during pregnancy (Jensen et al., 2007),
increased the risk, whereas other studies have found no viable link
(Mongraw-Chaffin et al., 2008). The discrepancies in the results
of studies looking at maternal dietary and lifestyle factors may be
a result of inconsistent data collection methods or inaccuracies
from maternal questionnaires.

Given that the inguinal stage of testicular descent is between
weeks 26 and 35, premature birth and low birth weight often asso-
ciated with prematurity are contributing factors to an increased
risk of cryptorchidism (Boisen et al., 2004; Jensen et al., 2007).
However spontaneous correction is seen more frequently in boys
who reach average weight within 1 year after birth, than in those
who remain smaller (Preiksa et al., 2005; Jensen et al., 2007).
Lifestyle factors that contribute to reproductive birth defects
such as cryptorchidism may therefore have an indirect con-
tribution to the formation of testicular germ cells in affected
individuals.
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GERM CELL TUMORS IN CRYPTORCHIDISM
Testicular cancer afflicts 1% of the male population and is the
most common solid tumor to affect young men between the ages
of 15–34. The association between cryptorchidism and TCGT
has been well documented since the 1940s. Cryptorchidism is an
accepted risk factor with a relative risk of 3.7–7.5 times higher than
the scrotal testis population (Thorup et al., 2010). Conversely, it
has been shown that 5–10% of men who develop testicular can-
cer, were or are cryptorchid (Thorup et al., 2010). There is an
increased cancer risk in bilateral as opposed to unilateral cryp-
torchidism. Some studies have indicated that there is a direct
correlation between how long the testis was subjected to a cryp-
torchid position and TGCT incidence. This can be seen from the
data on surgical correction of cryptorchidism and the reduction
of the risk of testicular cancer. One particular study found 13
out of 14 uncorrected cryptorchid patients between 1934 and
1975 developed TGCT in their abdominal testes (Batata et al.,
1980). A Swedish group studied almost 17,000 men treated for
cryptorchidism between 1964 and 1999 with the average age of
surgery being 8.6 years. In this group, 56 individuals developed
testicular cancer. Individuals who had corrective surgery before
the age of 13 had an incidence rate of 2.23%, whereas those
who were treated after 13 had an incidence rate of 5.4% (Pet-
tersson et al., 2007). Based on such data in recent years, the
recommended age of surgical correction was reduced and now
is usually performed before the age of 2 (Pettersson et al., 2007).
It should be mentioned however that some other reports did not
find correlation between the time of surgery and risk of TGCT
(Hack et al., 2007). In any case, even after early surgical cor-
rection the risk of TGCT is somewhat higher in patients with
cryptorchidism.

The other factor that appears to play a role in TGCT incidence
is the relative position of the cryptorchid testes, and hence the
degree of environment insults on the gonads, such as heat. It was
shown that an abdominal testis presents a greater risk for TGCT
than an inguinal testis (Cortes et al., 2001).

Although corrective surgery has been found to reduce the
risk from fivefold to twofold, in some cases the formerly cryp-
torchid testis becomes cancerous, indicative of permanent epi-
genetic changes in the cryptorchid testes (Hutson et al., 2010).
Indeed, differences in promoter methylations and corresponding
gene expression of several genes have been reported in TGCT.
Apart from cell transformation such changes might be a result of
environmental insults in cryptorchid testis. The other aspect that
was extensively studied is the risk of TGCT in normally descended
contralateral testes in men with unilateral cryptorchidism. Recent
meta-analysis of such data indicated that the TGCT risk factor is
much higher in affected testes than in scrotal one (6.33 vs. 1.74)
(Akre et al., 2009).

It should be noted, that in many epidemiologic association
studies the relative position of testes, age of surgical or spontaneous
correction,presence of additional developmental abnormalities,or
even variable definitions of cryptorchidism were not always taken
into account. However a large majority of data indicates that age
of surgery and the relative position of the cryptorchid testis are
contributing factors to a greater risk of TGCT.

GENETIC FACTORS IN TGCT
The genetic factors and mutations involved in the potential
predisposition to TGCT in the cryptorchid testis are not entirely
clear as most studies do not differentiate between individuals with
a history of cryptorchidism and those without. Genome-wide
studies have identified six susceptibility loci, KITLG and ATF7IP
on chromosome 12, SPRY4 on chromosome 5, BAK1 on chro-
mosome 6, TERT-CLPTM1l on chromosome 5, and DMRT1 on
chromosome 9 (Rapley et al., 2009; Turnbull and Rahman, 2011).
The KITLG-KIT pathway has been implicated in PGC devel-
opment and is consistent with a role in contributing to TGCT
(Kanetsky et al., 2009). SPRY4 a downstream target of the KITLG-
KIT pathway and an inhibitor of the protein kinase pathway was
linked to TGCT. Similarly, BAK1 was also associated with TGCT
in the same GWAS study. BAK1 is repressed by the KITLG path-
way and acts as a germ cell apoptosis promoting factor by binding
to the apoptosis repressor BCL2 (Turnbull and Rahman, 2011).
Significantly, mice with mutations in Kitl genes require a specific
genetic background to develop testicular cancer. Mice harboring a
mutation of the Steel locus, which deletes Kitl, bred on a 129 back-
ground have a higher incidence of testicular cancer than wild-type
controls. These mice also exhibit PGC defects in proliferation,
migration, and survival demonstrating a possible link between
pluripotent cell differentiation and TGCT (Heaney et al., 2008).

The telomerase encoding TERT locus and its transcription fac-
tor regulator ATF7IP are often overexpressed in cancers. Both
alleles were associated with a predisposition for TGCT in a UK
based whole genome association study (Turnbull et al., 2010). A
similar study conducted in the USA, identified two SNPs within the
DMRT1 allele – a zinc finger-like DNA-binding motif, significantly
linked to TGCT. DMRT1 is expressed in the male gonad during
Sertoli cell maturation and the deletion of this gene is associated
with gonadoblastoma (Kanetsky et al., 2011).

Other genetic abnormalities were found to be associated with
TGCT, however the causative nature of such mutations is not clear.
Among these, the alleles of AR gene with short GGN repeats were
linked to an increased risk of metastatic disease (Vastermark et al.,
2011).

SOMATIC MUTATIONS AND GENE MISEXPRESSION
The role of somatic mutations in p53, PTEN, and other classical
tumor suppressor genes in TGCT remains contradictory, however
TGCT response to cisplatin-based chemotherapy indicates cancer
cell sensitivity to p53 activation (Gutekunst et al., 2011). In some
studies, a downstream target of p53, DAPK-1 was hypermethy-
lated in seminomas compared to normal testes and was found to
be clinically useful for testicular germ cell tumor stage diagnosis
(Christoph et al., 2007). In contrast, a study that looked at 31 pri-
mary germ cell tumors found no mutations in p53 however 9 of
14 tumors tested positive with a p53 antibody (Lothe et al., 1995).

Platelet derived growth factors (PDGFs) and their receptors
expressed in the pre- and postnatal testis, have also been implicated
in testicular tumor formation (Basciani et al., 2010). An aberrant
1.5 kb transcript of the PDGF α-receptor was detected in TGCT
and testis parenchyma with carcinoma in situ and was completely
absent in normal testicular tissue. Moreover, this same aberrant
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transcript was detected in biopsies taken from cryptorchid testes
containing CIS or germ cell tumor prior to corrective surgery. The
expression of this transcript in TGCTs positively correlated with
expression of the embryonic transcription factor OCT4/POU5F1.
The chromosomal imbalances affecting the region containing
OCT3/4 and KIT genes involved in SSC maintenance, were also
found in TGCT (Goddard et al., 2007; Gilbert et al., 2011).

Finally, another mouse model of TGCT is related to the overex-
pression of the growth factor glial cell line-derived neurotrophic
factor (GDNF). GDNF is produced by Sertoli cells and targets
GFRα1/RET co-receptors expressed by undifferentiated spermato-
gonia. It is well-established that this factor is crucial for self-
renewal of SSCs. A mouse model expressing a full-length human
GDNF transgene specifically in spermatogonia, began to develop
tumors from 1 year of age (Meng et al., 2001). These tumors
expressed the transgene, were derived from early germ cells, were
alkaline phosphatase positive, and most closely resembled classical
human seminomas.

Thus, several genes involved in SSC self-renewal, differentia-
tion, and apoptosis were linked to TGCT. The association of these
factors with cryptorchidism associated TGCT is less clear. It is
important to note that none of the mouse mutants with an ablation
of these genes exhibited cryptorchidism.

CONCEPT OF TESTICULAR DYSGENESIS SYNDROME
First proposed back in 2001 (Skakkebaek et al., 2001), Testicular
Dysgenesis Syndrome (TDS) suggests an existence of a develop-
mental disorder resulting from a disruption of embryonic pro-
graming and gonadal development during fetal life. By definition
it can be manifested as one or any combination of any of the four
of the following developmental abnormalities: cryptorchidism,
hypospadias, testicular cancer, and reduced semen quality. The
current understanding of TDS includes both the hypothesis of
a common environmental cause (Sharpe and Skakkebaek, 1993;
Sharpe, 2003), as well as the existence of a common genetic factor
responsible for all four abnormalities.

Some groups have reported an increase in the occurrence of
cryptorchidism, hypospadias, infertility, and testicular cancer and
several epidemiological studies indeed have shown an associa-
tion of these symptoms. Skakkebaek et al suggested a role for an
endocrine disruptor, responsible for the decline in male reproduc-
tive health (Boisen et al., 2001). During fetal development, such
disruptors may have a detrimental effect on Leydig cells which
could impair INSL3 or testosterone production, and thus affect
gubernaculum development, testicular descent, or cause the mal-
formation of the external male reproductive organs. Hormonal
imbalance or direct endocrine disruptor effects on the Sertoli cells
may also disrupt germ cell development resulting in infertility or
TGCT. Thus, according to the TDS concept its symptoms are due
to a common defect that affects a cell signaling pathway involved
in a multitude of developmental and differentiation events in
males. This might be the case in AR signaling deficiency, which
has repercussions in testicular descent, infertility, and the mas-
culinization of the genital tract (Miyagawa et al., 2009). Indeed,
both experimental and epidemiologic studies show a link between
cryptorchidism and infertility as well as an epidemiologic asso-
ciation between cryptorchidism and testicular cancer. It should

be noted however that individuals presenting three or all four of
the symptoms are extremely rare, and are usually associated with
a 45X/46XY genotype or some forms of androgen insensitivity.
Manifestations of one or two symptoms (such as cryptorchidism
and infertility, or cryptorchidism and testicular cancer) are much
more common.

In recent years, the common entity hypothesis of TDS has been
the subject of debate. The critical evaluation of epidemiologic
studies has brought into question the existence of widespread
TDS due to the absence of non-casual associations between its
different manifestations (Akre and Richiardi, 2009; Thorup et al.,
2010). Most affected individuals exhibit one or two features, bring-
ing into question whether one factor may be accountable for the
occurrence of the abnormalities with such vastly diverse develop-
mental etiology. On the other hand, the experimental data indicate
that causative relationships can explain some of the epidemiologic
correlation.

Since the TDS concept was proposed multiple attempts have
been undertaken to identify genetic factors responsible for such
a syndrome. The most recent genome-wide study investigated
genetic variants affecting Danish males with at least one symp-
tom of TDS in an attempt to attribute symptoms to a specific
region of the genome. The study identified an association of sub-
sets of these symptoms to genetic factors, in particular between
cryptorchidism and testicular cancer (Dalgaard et al., 2012). The
analysis highlighted a single nucleotide polymorphism in TGFBR3
mildly associated with all four symptoms of TDS. This gene
encodes the TGFβ receptor type III found to be expressed in tes-
ticular Leydig cells and peritubular cells and when silenced in
mouse, impedes Leydig cell function and normal cord formation
(Sarraj et al., 2010). A member of the TGFβ superfamily, BMP7
was found to contain genomic variants in some patients with TDS
symptoms, most notably those with cryptorchidism and testicu-
lar cancer. Likewise, mutations in the KITLG locus were mostly
closely linked to an increased risk of testicular cancer and were not
connected to any other TDS symptoms. Mutations in this gene
have previously been associated with infertility as well as germ
cell tumors (Galan et al., 2006). It should be pointed out how-
ever, that currently no mouse mutations in the genes encoding
members of BMP/TGFβ signaling are known to cause isolated
cryptorchidism.

The identification of a single or pairs of features of symptoms
of TDS, as opposed to finding all four symptoms consistently run-
ning together, has further fueled speculation that the phenotypes
of TDS are not due to a single cause. The occurrence of testicular
cancer has increased over the last 40 years in Western countries
along with rates of infertility, however rates of cryptorchidism
remain unchanged. Hypospadias, most commonly associated with
low birth weight, have shown a marginal increase in some studies
since the 1950s but show wide epidemiological variation between
countries. Interestingly, hypospadias are found isolated from cryp-
torchidism in 95% of cases and men with hypospadias alone do not
suffer from reduced semen quality unless their symptom is accom-
panied with cryptorchidism. A much greater correlation between
an undescended testis and a high risk of infertility or testicular can-
cer is supported by the alleviation offered by early orchiopexy. With
5% of germ cell tumors arising in previously cryptorchid testes, it

Frontiers in Endocrinology | Cancer Endocrinology March 2013 | Volume 4 | Article 32 | 4

http://www.frontiersin.org/Cancer_Endocrinology
http://www.frontiersin.org/Cancer_Endocrinology/archive


Ferguson and Agoulnik Testicular cancer and cryptorchidism

is apparent that many genetic and pathologic factors interplay in
each feature associated with TDS (Thorup et al., 2010).

CRYPTORCHIDISM AS THE UNDERLYING CAUSE OF INFERTILITY AND
GERM CELL APOPTOSIS
An alternative explanation to TDS, at least, with regard to cryp-
torchidism, is that the undescended testis itself causes an increased
disposition for infertility and spermatogonial arrest, which in
some cases may lead to abnormal germ cell differentiation and the
formation of TGCT. This notion is strongly supported by the ben-
eficial effects of surgical correction of cryptorchidism on future
infertility and cancer risk. Experimental animal data also sup-
port this possibility. Induced cryptorchidism in animal models
has been shown to lead to a depletion of germ cells, eventually
resulting in infertility (Agoulnik et al., 2012), whereas orchiopexy
restored spermatogenesis in several cryptorchid mouse mutants
(Bogatcheva and Agoulnik, 2005).

The cause of germ cell depletion is strongly linked to the ele-
vated environmental temperature of 37˚C within the body cavity
compared to the optimal temperature of 32˚C for germ cells in the
scrotum, although the mechanism behind this cause is not clear
(Kumagai et al., 2000; Yin et al., 2002; Izu et al., 2004). Later stage
haploid germ cells have been shown to be the most susceptible
germ cells when exposed to abdominal temperature.

Apoptosis in the testis is essential for the establishment and
maintenance of germ cell populations. In the cryptorchid testis,
temperature induced apoptosis is responsible for the depletion of
germ cells, however the molecular mechanisms behind this have
not been fully determined. In the p53 knockout model, apoptosis
is delayed by 3 days, from day 7 to 10 in the cryptorchid induced
mouse, compared with the wild-type cryptorchid group. Thus it
can be deduced that p53 is responsible for the initial phase of apop-
tosis in the germ cells (Yin et al., 1998). However, the initiation of
apoptosis from day 10 is indicative of a p53-independent path-
way after the initial phase of germ cell loss. In p53−/− and lpr/lpr
double mutant mice, apoptosis is further delayed compared to the
cryptorchid control group, showing that Fas is responsible for the
later stage germ cell loss (Yin et al., 2002). In addition, the occur-
rence of testicular apoptosis despite the delay, suggests that a third
pathway is activated in the cryptorchid testis.

SOMATIC CELL CHANGES IN CRYPTORCHIDISM
Spermatogonial cells are less affected by higher temperatures than
all other germ cells and in the cryptorchid testis they survive the
longest, however with time they are also eventually depleted. The
question then arises, why do the spermatogonia cells decrease
in the cryptorchid testis? Can it be linked to the changes in the
somatic cell niche in seminiferous tubules?

The abnormal effects of the intra-abdominal environment in
cryptorchid testes are not limited only to germ cells; somatic cells
have also been shown to display dramatic changes in morphol-
ogy, function, and gene expression. Sertoli cell vacuolization and
abnormal cell adhesion are some of the most common conse-
quences of cryptorchidism. Sertoli cells in an induced cryptorchid
testis of the Rhesus monkey were found to have significant changes
in the cytoskeleton (Zhang et al., 2004). Reactivation of cytokeratin
18 in adult Sertoli cells and increased expression of vimentin with

disorganized staining characterized the heat stressed Sertoli cells
in these primates with similar findings in the Sertoli cells of exper-
imentally induced cryptorchid testes in rats (Wang et al., 2002).

In another study, rats with induced cryptorchidism showed dis-
rupted actin filaments in the basal junction regions of the Sertoli
cells compared to the regular lattice structures seen in the con-
trol rats (Maekawa et al., 1995). The morphological changes in
the somatic cells of cryptorchid testes were also accompanied by
changes in multiple genes’ expression of these cells.

In mice, Ribosomal Binding Protein Motif 3 (Rbm3) expression
in adult Sertoli cells was reduced within 12 h of induced cryp-
torchidism (Danno et al., 2000). Likewise, the expression of FSH
and ARs was dramatically reduced in cryptorchid lambs (Monet-
Kuntz et al., 1987). While surgical correction restored their expres-
sion, up to 50% of seminiferous tubules did not recover, indicative
of cryptorchidism-induced permanent damage.

Hadziselimovic et al. (2011) looked at differentially expressed
transcripts in testis RNA isolated from patients with cryp-
torchidism with or without type Ad spermatogonia (A dark sper-
matogonia are believed to be SSCs in human) and therefore at
a low or a high risk of developing azoospermia later in life. In
the latter group, a number of genes involved in Ad spermato-
gonia self-renewal were not expressed, but were expressed in
patients with a low risk and in the control groups. These factors
included FGF9 which is essential for SSC self-renewal and acts as
an inhibitor of meiosis through regulation of pluripotent genes,
and FGFR3, expressed in prepubertal spermatogonia in the con-
trol and completely absent in the high risk group (Hadziselimovic
et al., 2011).

Disruption of the blood-testis-barrier (BTB) enforced by Ser-
toli cells has also been reported in cryptorchid mice by breakdown
of inter-Sertoli cell tight junctions which may have repercussions
on the later stage germ cells. It was recently shown that cys-
tic fibrosis transmembrane conductance regulator (CFTR) which
enhances Sertoli cell tight junctions is significantly downregulated
in cryptorchid testes and may contribute to the disruption of the
BTB (Chen et al., 2012). This was also supported by the discovery
that incubation of primary Sertoli cell cultures at 37˚C, results in
a decrease of CFTR expression compared to those incubated at
32˚C. Breakdown of the BTB in both cases was shown by diffu-
sion of injected tracker dye into the interstitial space (Chen et al.,
2012). The physiological separation between pre and post meiotic
germ cells, maintained by Sertoli cells in the testis, ensures that
regulatory products are targeted to specific germ cell populations.
Disruption of their cellular morphology, BTB, and expression of
growth factors may lead to the misregulation of germ cells and
abnormal differentiation, potentially leading to the formation of
TGCTs.

ORIGIN OF TGCT
The TGCT most commonly associated with cryptorchidism is
seminoma. It is generally accepted that the classical seminomas
develop from a precursor lesion, intratubular germ cell neo-
plasia (or carcinoma in situ, CIS). It is proposed to develop
in utero from PGCs or early gonocytes (Skakkebaek et al., 1987).
After remaining quiescent during infancy, the CIS is thought to
proliferate at puberty and later progress to an invasive disease
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under the influence of factors such as gonadotrophins and/or tes-
ticular steroids (Skakkebaek et al., 1987). Contrary to the classical
seminoma, the spermatocytic seminoma is believed to derive from
differentiating spermatogonia. Recent data however showed that
CIS and spermatocytic seminoma share a number of common
markers with embryonic stem cells, for example, KIT, OCT3/4,
SOX17, LIN28, NANOG, FGFR3, DMTR1, and others (Looijenga
et al., 2003; Rajpert-De Meyts et al., 2003; Almstrup et al., 2004;
Houldsworth et al., 2006; Gillis et al., 2011; Ryser et al., 2011). Thus,
according to this hypothesis, expression of stem-related markers is
a reflection of their origin from gonocytes. It should be pointed out
however, that the expression of some of these genes is maintained
and characteristic for adult SSCs (Waheeb and Hofmann, 2011).

The alternative theory of CIS transformation initiated during
meiosis postulates that the common duplication of chromosome
12p in TGCT occurs due to abnormal recombination during
meiosis (Chaganti and Houldsworth, 1998). The amplification of
genes in this genomic region including NANOG, DPPA3, GDF3
may provide a selective proliferation advantage and subsequent
reactivation of a stem-like phenotype (Houldsworth et al., 2006).

It is difficult to test experimentally which model is correct. One
indirect approach is to evaluate the incidence of CIS as a precur-
sor TGCT in cryptorchid boys. If CIS is derived from embryonic
gonocytes then the CIS should be detectable long before cancer
development. In a study by Cortes et al. (2004), one invasive
TGCT and six CISs were found in testicular biopsies of 182 cryp-
torchid patients with intra-abdominal testes, abnormal genitalia,
and/or abnormal karyotype, but no cases were found in any of
the 1281 cryptorchid patients without these additional character-
istics. The absence of neoplasm detection in patients with isolated
cryptorchidism might therefore indicate that CIS and TGCT are
derived from adult germ cells.

The SSC niche is tightly regulated between proliferation and
differentiation by factors supplied by testicular somatic cells.
GDNF acts upon the spermatogonial receptors RET and GFRα1.
GDNF is critical for self-renewal; overexpression of GDNF in
mouse spermatogonial cells leads to the formation of germ cell

tumors (Meng et al., 2001), whereas a GDNF knockout model
results in an absence of germ cells (Naughton et al., 2006). Activa-
tion of GDNF and RET/GFRα1 complex leads to the activation of
two signaling pathways, which in turn up-regulate the transcrip-
tion factors MYCN (Braydich-Stolle et al., 2007) and FOS (He et al.,
2008). GDNF has also been linked to the upregulation of FGF2
and it was demonstrated that the addition of FGF2, along with
GDNF and GFRα1 to a serum-free culture of SSCs, provided the
optimal conditions for SSC colony number (Kubota et al., 2004).
Long-term survival and proliferation of SSCs in culture have been
tested with different concentrations and complements of growth
factors. High concentrations of leukemia inhibitory factor (LIF)
and FGF2 were found to have a detrimental effect on the coloniza-
tion of SSCs (Kubota et al., 2004). KITLG secreted by Sertoli cells
and also found to be mutated in some seminomas, facilitates the
differentiation of spermatogonial cells (Pellegrini et al., 2008). In
addition, colony-stimulating factor (CSF) secreted by Leydig cells
and its receptor CSF1R located on undifferentiated spermatogo-
nia have also been implicated for the sufficient proliferation of
spermatogonia (Kokkinaki et al., 2009).

Changes in the expression of somatic factors in cryptorchid
testes in humans have been detected using whole genome studies
as previously mentioned, and interestingly, many of these differen-
tially expressed genes such as NY-ESO, FGFR3, UTF1, and DSG2
are aberrantly expressed in seminomas (Waheeb and Hofmann,
2011). One study found that ERK1/2 – an intermediate of the
GDNF pathway that leads to activation of FOS and other tar-
get genes, was increasingly phosphorylated in more than half of
26 seminomas potentially altering expression of downstream tar-
gets of the RAS/ERK1/2 pathway including FOS and ATF (Goriely
et al., 2009). Taken in conjunction with the finding that GDNF
overexpression in mice leads to the formation of seminomas in
advanced age, it is conceivable to suggest that changes in somatic
cells in the testis can lead to the deregulation of the SSC somatic
niche (Clark, 2007; Kristensen et al., 2008). Instead of self-renewal
and differentiation, SSCs in this scenario will be preferentially
forced into the differentiation pathway (Figure 1). In an abnormal

FIGURE 1 | Schematic representation of the origin of testicular germ cell
tumors (TGCTs) in humans. Normal spermatogonial stem cells (SSCs) Adark

and Apale either undergo a cycle of self-renewal or begin to differentiate and

are controlled by the expression of somatic growth factors. Classical
seminomas are derived from carcinoma in situ cells (CIS). Spermatocytic
seminomas originate from differentiating spermatogonia.
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cryptorchidism-induced somatic niche environment most of the
differentiating germ cells will be eliminated due to arrest of sper-
matogenic differentiation, lack of proper cell signaling, abnormal
cell junction, and increased apoptosis. The depletion of the SSC
pool will eventually lead to the complete loss of germ cells in the
cryptorchid testis, which would explain the infertility in patients
with surgical correction performed later in life. Accumulation
of additional mutations or chromosome rearrangements, includ-
ing amplification of chromosome 12p, might provide a selective
growth advantage for SSC or differentiating germ cells. Instead of
the spermatogenetic pathway the cells can now escape into a pre-
neoplastic state. Depending on the differentiation stage when such
an event occurs, this might give rise either to CIS further progress-
ing to a classical seminoma or the development of a spermatocytic
seminoma, derived from more differentiated spermatogonial cells.
This scenario does not rely on a common factor causing two
seminoma phenotypes with dramatically different etiology, but
rather defines cryptorchidism only as an independent causative
risk factor in the development of TGCT.

CONCLUSION
Testicular cancer is accountable for 1% of all cancers in men and
is the most common in men between the ages of 15 and 34. The

risk of developing testicular cancer due to a cryptorchid testis is
increased to 5–10 times that of the general male population. This
increased risk for a cryptorchid or previously cryptorchid indi-
vidual is indicative of long-term damage, despite early orchiopexy
in many cases. Very little is known about mechanisms of TGCT
tumorigenesis and at present there is no animal model that devel-
ops testicular cancer as a result of an undescended testis pheno-
type. Gene expression studies on cryptorchid patients and animal
models have indicated that growth factors known to be impor-
tant for the balance of self-renewal and the proliferation of germ
cells are deregulated. The aberrant testicular environment also has
a detrimental effect on Sertoli and Leydig cells that may lead to
an inability to support the stem cell population. Accumulation
of mutations in the somatic cells may lead to misexpression of
important growth factors and morphological breakdown. Con-
sequently, in the cryptorchid testis, an alternative differentiation
pathway for SSCs is proposed which can result in the formation
of TGCT. Identification of new markers specific for fetal germ
cells and SSCs in human patients will help to delineate the ori-
gin of TGCT. The detailed analysis of changes induced in the SSC
somatic cell niche by cryptorchidism and the fate of SSCs will be
crucial for our understanding of the link between cryptorchidism
and TGCT.
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