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Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides impor-
tant for regulation of metabolism, growth, differentiation, and development.The IGFs exert
their main effects through the IGF-I receptor. Although the insulin receptor is the main phys-
iological receptor for insulin, this peptide hormone can also bind at higher concentrations
to the IGF-I receptor and exert effects through it. We used microarray gene expression
profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after
stimulation of the IGF-I receptor. Fibroblasts from mice, knockout for IGF-II and the IGF-
II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but
no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations
of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts that
was not regulated by the other two ligands. Many of the functions and pathways these
regulated genes were involved in, were consistent with the known biological effects of
these ligands.The differences in gene expression might therefore account for some of the
different biological effects of insulin, IGF-I, and IGF-II. This work adds to the evidence that
not only the affinity of a ligand determines its biological response, but also its nature, even
through the same receptor.
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INTRODUCTION
Insulin and the closely related insulin-like growth factors (IGF)-I
and -II are important for the regulation of metabolism and cell
growth, survival, motility, differentiation, and development (1–
6). These ligands bind to closely related receptor tyrosine kinases.
The main physiological receptor for insulin is the insulin receptor,
while the IGFs mainly exert their effects through the IGF-I recep-
tor (7, 8). The insulin receptor exists under two isoforms, A and
B, due to alternative splicing of exon 11 of the insulin receptor
gene (9, 10).

Insulin-like growth factor-II in mammals also binds to the IGF-
II/cation-independent mannose-6-phosphate receptor, which is
thought to act as a scavenger for IGF-II rather than a signaling
receptor (11, 12). Its presence on most cells however complicates
the study of IGF-II binding and signaling mediated through the
IGF-I receptor.

Binding of the ligands to the insulin or IGF-I receptor leads
to autophosphorylation of the receptor on tyrosine residues. This
creates binding sites for SH2 and PTB domain-containing dock-
ing proteins such as IRS-1–4 and Shc, and stimulates the tyrosine

kinase activity of the receptor, enabling it to phosphorylate mul-
tiple cytoplasmic substrates, which activates signaling cascades,
resulting in ligand-specific biological effects (4, 13).

Both the ligands and the receptors are closely related (and
therefore the ligands can bind to their non-cognate receptors)
and the signaling pathways they activate are largely overlapping
(14). Microarray profiling showed that the two receptors are
capable of stimulating the same gene expression response (15).
Nevertheless, insulin is mainly a metabolic regulator, while the
IGFs exert mainly mitogenic effects (growth, proliferation . . .).
The molecular basis of this signaling specificity is still not
understood (6, 16).

As mentioned, the three ligands can also bind to their non-
cognate receptors, though with lower affinity, and by doing so
they can exert different effects in comparison to the cognate lig-
and. Frasca et al. and Morrione et al., e.g., showed independently
that IGF-II is more potent in stimulating proliferation through the
insulin receptor A isoform than insulin (17, 18). Frasca et al. also
showed that insulin is a more potent metabolic regulator through
this isoform than IGF-II (17). Pandini et al. found that insulin
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and IGF-II induce different gene expression patterns after binding
to the A isoform of the insulin receptor (19). Malaguarnera et al.
found that proinsulin binds with high affinity the insulin recep-
tor isoform A and predominantly activates the mitogenic pathway
(20). Also, insulin analogs with different residence times on the
insulin receptor have been shown to have different relative poten-
cies for mitogenic versus metabolic signaling (21–23). Previous
work from our laboratory has described an insulin mimetic pep-
tide that despite binding to the insulin receptor with an affinity
similar to insulin’s is less potent in stimulating thymidine incor-
poration and induces a different gene expression response in com-
parison to insulin (24). All in all, it is becoming increasingly clear
that various ligands acting through the same receptor may acti-
vate different patterns of end-point cellular effects (“differential
signaling”).

In this study we measured gene expression by microarray pro-
filing after stimulating mouse fibroblasts expressing the IGF-I
receptor, but devoid of insulin and IGF-II/cation-independent
mannose-6-phosphate receptors (25) with equipotent concentra-
tions of insulin, IGF-I, and IGF-II. During the analysis the focus
was on finding differences, rather than similarities, in gene expres-
sion between the three ligands. The results show that insulin, IGF-I,
and IGF-II indeed create different gene expression responses when
stimulating the IGF-I receptor. We hope that these results and
further studies will lead to a better understanding of the sig-
naling specificity and different biological effects of these three
ligands.

MATERIALS AND METHODS
MATERIALS
Fibroblasts from mice knockout for IGF-II and the IGF-II/cation-
independent mannose-6-phosphate receptor were a gift from Dr.
Kurt von Figura (25). Insulin was from Novo Nordisk A/S, Den-
mark, and IGF-I and IGF-II from Novozymes GroPep, Thebarton,
SA, Australia. 125I-IGF-I was prepared by Novo Nordisk A/S.
Unless otherwise specified all chemicals were from Sigma-Aldrich,
Denmark.

CELL LINE AND CULTURE CONDITIONS
The mouse fibroblasts were routinely cultured in 80 cm2 TC flasks
(Nunc, Denmark) in DMEM medium (with Glutamax-1 and
4.5 g/l glucose; Gibco, Invitrogen, Denmark) supplemented with
10% Fetal Bovine Serum (Gibco, Invitrogen, Denmark), 100 U/ml
Penicillin, and 100 µg/ml Streptomycin (Gibco, Invitrogen, Den-
mark). The cells were grown at 37°C in a 5% CO2 humidified
atmosphere. They were passaged three times a week by wash-
ing in D-PBS (w/o Calcium and Magnesium; Gibco, Invitrogen,
Denmark), trypsinization in Trypsin-EDTA (Gibco, Invitrogen,
Denmark), and subsequent resuspension and dilution in fresh
medium.

The mouse fibroblasts, devoid of IGF-II and the IGF-II/cation-
independent mannose-6-phophate receptor, did not bind 125I-
insulin, indicating the absence of biologically active insulin recep-
tors (results not shown), but did bind 125I-IGF-I. From the below
mentioned homologous competition assay data, we found that
approximately 75,000 IGF-I receptor sites/cell are present on this
cell line.

DETERMINING THE AFFINITIES OF IGF-I, IGF-II, AND INSULIN FOR THE
IGF-I RECEPTOR
To determine the apparent affinities of the ligands for the IGF-
I receptor on the mouse fibroblast cell line, homologous and
heterologous radioligand competition assays were performed in
quadruplets. Cells were detached with 10 mM EDTA (Gibco, Invit-
rogen, Denmark). Three million cells per milliliter were incubated
with a constant concentration of 125I-IGF-I (20,000 cpm/ml) and
increasing concentrations of cold IGF-I, IGF-II, or insulin for 2.5 h
(time needed to reach steady-state binding) at 15°C in Hepes Bind-
ing Buffer (100 mM Hepes, 120 mM NaCl, 5 mM KCl, 1.2 mM
MgSO4, 1 mM EDTA, 10 mM Glucose, 15 mM Na Acetate, and 1%
BSA). After centrifugation unbound 125I-IGF-I was removed and
cell-bound 125I-IGF-I was counted in a Wallac WIZARD gamma
counter (PerkinElmer). K d values were calculated after fitting
the data to a one-site model using a program developed in our
laboratory by Ronald M. Shymko and Andreas V. Groth.

PREPARATION OF THE CELLS FOR THE MICROARRAY EXPERIMENTS
Mouse fibroblasts were seeded out into 145 cm2 TC dishes (Nunc,
Denmark) at two million cells per dish and subsequently allowed
to recover for 24 h. In quadruplets, but at the same cell passage
and after washing the cells twice with D-PBS (w/o Calcium and
Magnesium; Gibco, Invitrogen, Denmark), the cells were serum
starved for 24 h and afterward either left unstimulated or stimu-
lated for 4 h with 20 nM IGF-I, 177 nM IGF-II, or 5168 nM insulin.
These concentrations compensate for the relative affinities of the
ligands for the receptor, measured as described above.

ISOLATION AND PURIFICATION OF TOTAL RNA
Total RNA was isolated by using the TRI® reagent method (Mol-
ecular Research Gene, USA) and cleaned up using the RNeasy™
Mini Kit (Qiagen) according to the manufacturers’ protocol. RNA
quality was verified by 1% agarose gel electrophoresis. Concen-
tration and purity were determined by measuring absorbance at
A260 and A280 in a spectrophotometer (Brinkmann Eppendorf
BioPhotometer, Germany).

cRNA GENERATION AND HYBRIDIZATION TO GENE CHIP
MICROARRAYS
cRNA was produced using the One-cycle Target Labeling Kit
(Affymetrix, Santa Clara, CA, USA). One-cycle Target Labeling Kit
and procedures followed protocols in the GeneChip Expression
Analysis Technical Manual (Affymetrix, Santa Clara, CA, USA).
Fragmented biotin-labeled cRNA was hybridized to Affymetrix
GeneChip® Mouse Genome 430 2.0 Arrays according to manufac-
turer’s protocol. The arrays were incubated at 45°C for 16 h under
rotation (60 rpm), washed in the GeneChip® Fluidics Station
(Affymetrix) and scanned using the GeneChip® Scanner 3000.

DATA ANALYSIS
The quality of the arrays was verified by quality control in the
R package1 from Bioconductor2. The probe level data (CEL files)
were transformed into expression values using R and the GC-RMA

1http://www.r-project.org/
2http://www.bioconductor.org/
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package from Bioconductor (see text footnote 2) (26). Briefly, the
background was subtracted, the data were normalized by the quan-
tile normalization method and the expression values of a probe set
were summarized into one expression value.

For data analysis, the expression values were imported into
the software package DNA-Chip Analyzer (dChip) (version 2008),
freeware developed by Li and Wong (27)3. When generating origi-
nal lists of transcripts, a fold change and p-value cut-off of respec-
tively 1.2 and 0.05 were chosen. The lower confidence bound of
fold changes was used for filtering and the threshold for absolute
difference between two group means was set to 35. Using these
cut-offs gave empirical median false discovery rates (FDR) of max-
imum 2% after running 100 permutations in dChip (FDRs were
0% for all but the lists of genes regulated by insulin, IGF-I,or IGF-II
in comparison to the control). dChip recommends a median FDR
of <5 or 10%. Composing a list of transcripts regulated by insulin,
IGF-I, and IGF-II together or separately was done by selecting tran-
scripts that fulfilled the above-mentioned criteria for the ligands
in comparison to the control. In order to generate lists containing
transcripts only regulated by one of the ligands, transcripts were
selected that fulfilled the criteria for one of the ligands in compar-
ison to the control and in comparison to the two other ligands.
Transcripts that also fulfilled the criteria for one of the other lig-
ands in comparison to the control were excluded. The resulting
transcripts, uniquely regulated by one of the ligands, were after-
ward filtered for a fold change of 1.5 in comparison to the control,
in order to focus the below mentioned functional analysis on the
transcripts with the highest biological relevance. In order to study
differences between one ligand and the two other ligands as a
group, transcripts were selected that fulfilled the criteria for the
two ligands in comparison to the control and to the other ligand.
The resulting transcripts were afterward filtered for a fold change
of 1.5 in comparison to the control, in order to focus the below
mentioned functional analysis on the transcripts with the highest
biological relevance.

3http://www.dchip.org

Identification of gene function themes and canonical pathways
was done using the web-based software Ingenuity Pathways Analy-
sis (IPA)4. IPA takes the gene IDs in the dataset file and maps them
to genes in the Ingenuity Pathways Knowledge Base (IPKB). The
functional and canonical pathway analyses identified the molecu-
lar and cellular functions and canonical pathways that were most
significant to the data set. This significance value is a measure
for how likely it is that genes from the dataset file under inves-
tigation participate in that function. In this method, the p-value
is calculated by comparing the number of user-specified genes
of interest that participate in a given function or pathway, rel-
ative to the total number of occurrences of these genes in all
functional/pathway annotations stored in the IPKB. Ingenuity
uses a right-tailed Fisher’s Exact Test in order to calculate a p-
value. In the right-tailed Fisher’s Exact Test, only over-represented
functional/pathway annotations, annotations which have more
Functions/Canonical Pathways Analysis Genes than expected by
chance (“right-tailed” annotations), are used.

PREPARATION OF TOTAL RNA FOR qRT-PCR
To validate the microarray data two-step RT-PCR was performed
on a subset of genes. To perform the validation on biological repli-
cates, new (in comparison to the RNA used for the arrays) total
RNA samples were prepared at three different cell passages.

qRT-PCR
The total RNA was reverse transcribed into single-stranded cDNA
using the Transcriptor First Strand cDNA Synthesis Kit (Roche
Applied Science) according to the manufacturer’s protocol. The
cDNA was transcribed using FastStart TaqMan Probe Master
(Rox) (Roche Applied Science). Probes were purchased from Uni-
versal ProbeLibrary (Roche). Probes were selected and primer
sequences designed using the ProbeFinder software (Universal
ProbeLibrary, Roche). The primers were purchased from DNA-
technologies, Denmark. Primers and probes used are listed in
Table 1. Per qRT-PCR assay the cDNA samples were run in

4http://www.ingenuity.com

Table 1 | Primers and probes used for qRT-PCR.

Transcript Accession nr. Universal probe no. Primer Sequence 5′–3′

18S 77 left gattgatagctctttctcgattcc

Right gacaaatcgctccaccaact

Ccnd1 (cyclin D1) NM_007631 67 Left gagattgtgccatccatgc

Right ctcttcgcacttctgctcct

Areg (amphiregulin) NM_009704 73 Left gacaagaaaatgggactgtgc

Right ggcttggcaatgattcaact

Egr2 (early growth response 2) X06746 60 Left ctacccggtggaagacctc

NM_010118 Right aatgttgatcatgccatctcc

HB-EGF (heparin-binding EGF-like growth factor) L07264 55 Left cgtgggacttctcatgtttagg

NM_010415 Right cgcccaacttcactttctct

Dusp6 (dual specificity phosphatase 6) NM_026268 66 Left tggtggagagtcggtcct

Right tggaacttactgaagccacctt

Jun-B (Jun-B oncogene) NM_008416 3 Left accacggagggagagaaaag

Right agttggcagctgtgcgtaa
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quadruplets with 18S as the internal control gene, in 384-well
optical plates on an ABI 7900HT Prism sequence detection sys-
tem (Applied Biosystems). Each 15 µl TaqMan reaction contained
1.5 µl cDNA, 7.5 µl 2× FastStart TaqMan Probe Master (Rox),
0.15 µl Universal Probe (10 µM), 0.15 µl left primer (20 µM),
0.15 µl right primer (20 µM), and 5.55 µl PCR-grade water. PCR
parameters were 50°C for 2 min, 95°C for 10 min, 40 cycles of
95°C for 15 s, and 60°C for 1 min. For each gene and for each
biological replicate TaqMan PCR assays were performed in tripli-
cates. The data were analyzed using Sequence Detector Software
(Applied Biosystems), where after the fold changes were calculated
by use of the ∆∆C t method (28). To compare the qRT-PCR data
with the microarray results, negative microarray fold changes were
converted into values between 0 and 1. When multiple probe sets
for one gene were regulated on the microarrays, the average fold
change was calculated. Significant differences in the qRT-PCR data
were calculated by a two-tailed t -test.

RESULTS
AFFINITIES OF IGF-I, IGF-II, AND INSULIN FOR THE IGF-I RECEPTOR
In order to stimulate the IGF-I receptor on mouse fibroblasts with
concentrations that are adjusted for the relative affinities of IGF-I,
IGF-II, and insulin for the receptor, the apparent affinities of the
three ligands were measured by allowing the cold ligands to com-
pete with 125I-IGF-I for binding to the IGF-I receptor (Figure 1).
IGF-I had a K d value of 1.49± 0.14 nM, IGF-II a K d value of
13.11± 0.69 nM, and insulin of 383± 27 nM. These results are in
accordance with the known relative affinities of the ligands for the
IGF-I receptor (29). Taking these relative affinities into account,
it was decided to stimulate the cells for 4 h with 20 nM IGF-I,
177 nM IGF-II, or 5168 nM insulin, concentrations then are near
saturation of the receptor with either ligand.

GLOBAL GENE REGULATION PATTERNS
A total of 698 transcripts were regulated by both insulin and the
IGFs (fold changes and p-values for these transcripts are in Table
S1 in Supplementary Material). Table 2 shows the number of
transcripts regulated by each ligand in comparison to the con-
trol and the number of transcripts commonly regulated between
ligands. Fold changes and p-values for these transcripts can be
found in Table S2 in Supplementary Material (IGF-I), Table S3
in Supplementary Material (IGF-II), and Table S4 in Supplemen-
tary Material (insulin). All the transcripts regulated in common
between ligands were either up-regulated by all regulating ligands
or down-regulated by all regulating ligands. Even though the three

ligands stimulate similar responses, the overlap is partial and we
identified transcripts selectively regulated by each ligand.

TRANSCRIPTS SELECTIVELY REGULATED BY IGF-I, IGF-II, OR INSULIN
Transcripts selectively regulated by IGF-I
A total of 75 transcripts were only regulated by IGF-I (Table 3;
fold change cut-off 1.5). Fold changes and p-values for insulin
and IGF-II can be found in Table S5 in Supplementary Material.

According to IPA the top five molecular and cellular functions
these transcripts are involved in are molecular transport, protein
trafficking, post-translational modification, protein folding, and
cell morphology.

Transcripts selectively regulated by IGF-II
Eight transcripts were only regulated by IGF-II (see Table 4; fold
change cut-off 1.5; for fold changes and p-values for insulin and
IGF-I: see Table S6 in Supplementary Material). Two of these
transcripts were TNF receptor-associated factor 1 (Traf1) and
TRAF and TNF receptor-associated protein (Ttrap), which are
functionally related proteins.

FIGURE 1 | Affinities of insulin, IGF-I, and IGF-II for the IGF-I receptor. To
determine the apparent affinities of the ligands for the IGF-I receptor on the
mouse fibroblasts, homologous and heterologous radioligand competition
assays were performed in quadruplets. Three million cells/ml were
incubated with a constant concentration of 125I-IGF-I (20,000 cpm/ml) and
increasing concentrations of cold IGF-I, IGF-II, or insulin for 2.5 h (time
needed to reach steady-state binding) at 15°C. After centrifugation unbound
125I-IGF-I was removed and bound 125I-IGF-I was counted in a gamma
counter. Specifically bound 125I-IGF-I/specifically bound 125I-IGF-I at 0 nM cold
ligand was plotted versus the concentration of cold ligand. K d values were
calculated after fitting the data to a one-site model using a program
developed by Ron M. Shymko and Andreas V. Groth. Results are
averages± standard deviations.

Table 2 | Global gene regulation patterns.

Transcripts regulated in

comparison to control

Fraction of transcripts also

regulated by IGF-I

Fraction of transcripts also

regulated by IGF-II

Fraction of transcripts also

regulated by insulin

IGF-I 2715 1213 754

IGF-II 1779 1213 956

Insulin 1215 754 956

The number of transcripts regulated by each of the three ligands in comparison to the control and the number of transcripts commonly regulated between ligands (in

comparison to the control) are shown. Cut-offs for fold change and p-value are 1.2 and 0.05 respectively.
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Table 3 |Transcripts selectively regulated by IGF-I.

Transcript Probe set

(Affymetrix)

Accession nr. Fold

change

p-Value

Eif5: eukaryotic translation initiation factor 5 1415723_at BQ176989 1.54 0.000187

Srp54a /// Srp54b /// Srp54c: signal recognition particle 54a /// signal recognition particle 54b

/// signal recognition particle 54C

1416153_at NM_011899 1.55 0.003558

Pafah1b1: platelet-activating factor acetylhydrolase, isoform 1b, beta1 subunit 1417086_at BE688382 1.69 0.005799

Dnaja2: DnaJ (Hsp40) homolog, subfamily A, member 2 1417182_at C77509 1.67 0.000129

Orc2l: origin recognition complex, subunit 2-like (S. cerevisiae) 1418226_at BB830976 1.77 0.000088

Ctcf: CCCTC-binding factor 1418330_at BB836888 1.53 0.026056

AI837181: expressed sequence AI837181 1418775_at NM_134149 −1.86 0.007512

Il17rc: interleukin 17 receptor C 1419671_a_at NM_134159 −1.80 0.006468

Supt16h: suppressor of Ty 16 homolog (S. cerevisiae) 1419741_at AW536705 1.52 0.002900

Nap1l1: nucleosome assembly protein 1-like 1 1420477_at BG064031 1.51 0.000989

Shoc2: soc-2 (suppressor of clear) homolog (C. elegans) 1423129_at BQ032685 1.51 0.000692

Lin7c: lin-7 homolog C (C. elegans) 1423322_at BQ176612 1.68 0.000844

Stk17b: serine/threonine kinase 17b (apoptosis-inducing) 1423452_at AV173139 1.64 0.000103

Usp1: ubiquitin specific peptidase 1 1423675_at BC018179 1.55 0.008911

Nop14: NOP14 nucleolar protein homolog (yeast) 1423991_at BC024998 1.75 0.001692

Uso1: USO1 homolog, vesicle docking protein (yeast) 1424274_at BC016069 1.77 0.002483

Flad1: RFad1, flavin adenine dinucleotide synthetase, homolog (yeast) 1424421_at BC006806 −1.59 0.004350

Rbm26: RNA binding motif protein 26 1426803_at BM120471 1.71 0.031929

Ythdf3: YTH domain family 3 1426841_at BB183208 1.68 0.014072

Rbbp8: retinoblastoma binding protein 8 1427061_at BB167067 1.56 0.000050

Zc3h15: zinc finger CCCH-type containing 15 1427876_at BB703070 1.65 0.000917

Zmpste24: zinc metallopeptidase, STE24 homolog (S. cerevisiae) 1427923_at BM233793 1.52 0.005861

Spin4: spindlin family, member 4 1427985_at BC027796 2.17 0.001115

Fip1l1: FIP1 like 1 (S. cerevisiae) 1428280_at BM199874 1.59 0.022198

2810026P18Rik: RIKEN cDNA 2810026P18 gene 1428529_at AK012825 1.57 0.016748

Uba6: ubiquitin-like modifier activating enzyme 6 1428945_at BB417360 1.73 0.001773

Cep57: centrosomal protein 57 1428968_at AW457682 1.58 0.006762

Nat13: N -acetyltransferase 13 1428970_at AV113878 1.82 0.000018

1300003B13Rik: RIKEN cDNA 1300003B13 gene 1429690_at AK004870 1.56 0.012148

9030419F21Rik: RIKEN cDNA 9030419F21 gene 1433101_at AK018519 −1.70 0.026402

Ddx52: DEAD (Asp-Glu-Ala-Asp) box polypeptide 52 1434608_at BB132474 1.71 0.001952

Ankle2: ankyrin repeat and LEM domain containing 2 1434721_at AV378849 1.50 0.009946

Wapal: wings apart-like homolog (Drosophila) 1434835_at BM230523 1.59 0.006908

Tsr2: TSR2, 20S rRNA accumulation, homolog (S. cerevisiae) 1435170_at BQ177187 1.89 0.021023

Ube2n: ubiquitin-conjugating enzyme E2N 1435384_at BE980685 1.79 0.000704

Trpm4: transient receptor potential cation channel, subfamily M, member 4 1435549_at BI685685 −1.59 0.007237

Scyl2: SCY1-like 2 (S. cerevisiae) 1436313_at BM249802 1.91 0.003117

Mmgt1: membrane magnesium transporter 1 1436705_at BB262218 1.89 0.000040

Exoc5: exocyst complex component 5 1436817_at AV025913 1.70 0.003981

B230380D07Rik: RIKEN cDNA B230380D07 gene 1436841_at AV229336 1.84 0.040661

Arl13b: ADP-ribosylation factor-like 13B 1437021_at AV225959 1.59 0.000559

Eif1ay: eukaryotic translation initiation factor 1A, Y-linked 1437071_at BB471576 1.55 0.024542

Slc18a2: solute carrier family 18 (vesicular monoamine), member 2 1437079_at AV334638 2.71 0.002010

Rnps1: ribonucleic acid binding protein S1 1437359_at BI793607 −1.55 0.017189

Acvr2a: activin receptor IIA 1437382_at BG066107 1.71 0.005407

Mm.138561.1 1438307_at AV317732 1.54 0.008071

Fars2: phenylalanine-tRNA synthetase 2 (mitochondrial) 1439406_x_at BB530332 −1.56 0.015768

Sgol1: shugoshin-like 1 (S. pombe) 1439510_at BB410537 1.56 0.000354

Mm.44035.1 1440222_at BB530180 −1.87 0.004195

Mm.33045.1 1440272_at BB232473 1.58 0.001142

(Continued)
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Table 3 | Continued

Transcript Probe set

(Affymetrix)

Accession nr. Fold

change

p-Value

Sbno2: strawberry notch homolog 2 (Drosophila), mRNA (cDNA clone IMAGE:3376209) 1441840_x_at BB533975 −2.24 0.002180

Mm.37220.1 1444785_at AI503808 −1.72 0.011949

. . . Predicted gene/similar to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) . . . 1447999_x_at AI840508 −1.53 0.005202

Rab1: RAB1, member RAS oncogene family 1448210_at AW108405 1.65 0.000205

Lrrfip1: leucine rich repeat (in FLII) interacting protein 1 1448487_at NM_008515 1.60 0.002779

Pafah1b1: platelet-activating factor acetylhydrolase, isoform 1b, beta1 subunit 1448578_at BE688382 1.66 0.001433

Siah1a: seven in absentia 1A 1449733_s_at AA982064 1.66 0.006169

Kpna3: karyopherin (importin) alpha 3 1450386_at BM213828 1.53 0.006954

Twsg1: twisted gastrulation homolog 1 (Drosophila) 1450388_s_at BC004850 1.54 0.003421

Stk17b: serine/threonine kinase 17b (apoptosis-inducing) 1450997_at AV173139 2.04 0.003338

Yipf3: Yip1 domain family, member 3 1451284_at BC019384 −1.64 0.026951

LOC100044383 /// Pnpt1: similar to polynucleotide phosphorylase-like protein ///

polyribonucleotide nucleotidyltransferase 1

1452676_a_at BB777815 1.67 0.000248

6820431F20Rik: RIKEN cDNA 6820431F20 gene 1452997_at BE692399 1.85 0.009694

Gas2l3: growth arrest-specific 2-like 3 1453416_at BE199211 2.05 0.004200

Usp15: ubiquitin specific peptidase 15 1454036_a_at AK014891 1.57 0.028362

Arfip1: ADP-ribosylation factor interacting protein 1 1454916_s_at AV087417 1.59 0.000091

Alg10b: asparagine-linked glycosylation 10 homolog B (yeast, alpha-1,2-glucosyltransferase) 1454917_at BB795206 1.63 0.007541

Mm.24436.1 1455206_at BQ175276 1.51 0.014053

Ccdc127: coiled-coil domain containing 127 1455248_at AW542786 1.71 0.000473

Map3k7: mitogen-activated protein kinase kinase kinase 7 1455441_at AW547374 1.77 0.003661

Mm.178349.1 1456547_at BM119402 −2.02 0.026517

Lyrm5: LYR motif containing 5 (Lyrm5), mRNA 1459793_s_at AV301944 1.72 0.009359

Dnaja1: DnaJ (Hsp40) homolog, subfamily A, member 1 1460179_at BF141076 1.75 0.000232

Sfrs2ip: splicing factor, arginine/serine-rich 2, interacting protein 1460445_at AK012092 1.63 0.000533

AI848100: expressed sequence AI848100 1460573_at BM240684 1.51 0.000521

Transcripts that fulfilled the criteria of 1.2 and 0.05 for fold change and p-value respectively for IGF-I versus the control and versus insulin and IGF-II were selected.

Transcripts also regulated by insulin or IGF-II versus the control were excluded.The transcripts were then filtered for a fold change of 1.5 in comparison to the control.

Table 4 |Transcripts selectively regulated by IGF-II.

Transcript Probe set

(Affymetrix)

Accession nr. Fold

change

p-Value

Jun oncogene 1417409_at NM_010591 1.72 0.002886

LOC100046232 /// Nfil3: similar to NFIL3/E4BP4 transcription factor /// nuclear factor,

interleukin 3, regulated

1418932_at AY061760 1.55 0.007144

expressed sequence AI467606 1433465_a_at BB234337 1.99 0.004292

MOB1, Mps one binder kinase activator-like 2A (yeast) 1434388_at BB023868 1.50 0.006665

LOC632433: ADP-ribosylation factor-like 4C /// similar to ADP-ribosylation factor-like protein 7 1436512_at BI964400 1.75 0.005263

LOC634417: fos-like antigen 2 /// similar to fos-like antigen 2 1437247_at BM245170 1.78 0.007075

TNF receptor-associated factor 1 (Traf1), mRNA 1445452_at BB218245 1.77 0.022057

Traf and TNF receptor-associated protein 1448706_at NM_019551 −1.68 0.000103

Transcripts that fulfilled the criteria of 1.2 and 0.05 for fold change and p-value respectively for IGF-II versus the control and versus insulin and IGF-I were selected.

Transcripts also regulated by insulin or IGF-I versus the control were excluded. The transcripts were then filtered for a fold change of 1.5 in comparison to the control.

Transcripts selectively regulated by insulin
Four transcripts were only regulated by insulin (see Table 5;
fold change cut-off 1.5; for fold changes and p-values
for IGF-I and IGF-II: see Table S7 in Supplementary
Material).

GENE REGULATION PATTERNS OF LIGAND PAIRS
Transcripts selectively or more potently regulated by the IGFs than
by insulin
Sixty five transcripts fulfilled the set criteria for IGF-I and IGF-II
in comparison to the control and to insulin. The IGFs regulated
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Table 5 |Transcripts selectively regulated by insulin.

Transcript Probe set (Affymetrix) Accession nr. Fold change p-Value

Solute carrier family 39 (zinc transporter), member 10 1433751_at BM250411 −2.01 0.001528

Mm.168098.1 1444326_at BB414484 1.55 0.030559

Kruppel-like factor 6 1447448_s_at C86813 −2.35 0.009036

Kruppel-like factor 6 1433508_at AV025472 −1.59 0.011606

Transcripts that fulfilled the criteria of 1.2 and 0.05 for fold change and p-value respectively for insulin versus the control and versus IGF-I and IGF-II were selected.

Transcripts also regulated by IGF-I or IGF-II versus the control were excluded. The transcripts were then filtered for a fold change of 1.5 in comparison to the control.

46 transcripts that were not regulated by insulin in comparison
to the control (Table 6). Interestingly, the 19 transcripts that were
also regulated by insulin were always more regulated by the IGFs
than by insulin.

The top five molecular and cellular functions in IPA for these
genes were cellular development, cellular growth and prolifer-
ation, cell cycle, gene expression, and cell death and survival.
Two of the top five canonical pathways represented by these
genes were ErbB signaling and neuregulin signaling. The reg-
ulated transcripts in these pathways were amphiregulin, epireg-
ulin, heparin-binding EGF-like growth factor, FBJ osteosarcoma
oncogene, and Jun oncogene for ErbB signaling and amphireg-
ulin, epiregulin, heparin-binding EGF-like growth factor, ERBB
receptor feedback inhibitor 1, and myelocytomatosis oncogene for
neuregulin signaling.

Selective gene regulation by insulin and IGF-II
Twenty transcripts fulfilled the criteria for insulin and IGF-II in
comparison to the control and to IGF-I (Table 7). Fourteen of
these were not influenced by IGF-I in comparison to the control,
while they were either down-regulated or up-regulated by insulin
and IGF-II.

The top five molecular and cellular functions in IPA for the 14
genes specifically regulated by insulin and IGF-II were cell cycle,
cellular assembly and organization, DNA replication, recombi-
nation and repair, cellular function and maintenance, and cell
morphology.

Gene regulation by insulin and IGF-I
Eleven transcripts fulfilled the criteria for insulin and IGF-I in
comparison to the control and to IGF-II (Table 8). In contrast to
the selective gene regulation by the IGFs and by insulin and IGF-II,
10 of these 11 transcripts were also, and more strongly, influenced
by IGF-II.

VALIDATION OF THE MICROARRAY DATA BY qRT-PCR
To validate the microarray data qRT-PCR was performed for six
transcripts on the total RNA of three independent biological repli-
cates. These RNA samples are independent of the RNA used to
generate the microarray data. Fold changes were calculated in
comparison to the control and plotted in Figure 2. For the IGFs,
the regulation trends from the microarray experiments (Table 6)
are confirmed by qRT-PCR for all six genes: the IGFs regulate
these genes more potently than insulin. For insulin, gene regula-
tion (Table 6) was confirmed for four out of six genes (Areg, Egr2,
HB-EGF, and Jun-B). In addition, for Ccnd1 the fold change was

1.51 on the array and 1.46 by qRT-PCR, two values that lay very
close and are only just separated by the 1.5 fold change cut-off. In
conclusion, the qRT-PCR data validate very well the microarray
results.

DISCUSSION
We compared the gene expression responses stimulated by insulin,
IGF-I, and IGF-II through the IGF-I receptor using Affymetrix
gene expression profiling. In order to eliminate the influence of
the affinity of the ligands stimulating the receptor, we stimulated
the IGF-I receptor on a mouse fibroblast cell line with concen-
trations of insulin, IGF-I, and IGF-II that compensated for the
relative affinities of the ligands for the receptor on this cell line. Our
analyses revealed that these three ligands stimulate overlapping but
specific gene expression responses.

Some of the regulated transcripts that appeared in our analyses
were also found by Mulligan et al. who studied the gene expres-
sion pattern after stimulating a chimeric receptor containing the
intracellular domain of the IGF-I receptor (30), and Dupont et
al. who studied gene expression after stimulation of the IGF-I
receptor with IGF-I (31). As in our study, Mulligan et al., e.g.,
found the up-regulation of heparin-binding EGF-like growth fac-
tor and Dupont et al. found the up-regulation of early growth
response 1 and Jun oncogene. The fact that transcripts regulated
after stimulation of the IGF-I receptor with IGF-I found in our
study and, e.g., the one by Dupont et al. only partially overlap, is
most likely due to the differences in experimental set-up. We used
a different cell line, concentrations of ligands, stimulation time,
microarray platform and normalization, and analysis methods and
criteria.

Boucher et al. recently showed that IGF-I and insulin, at equal
concentrations, regulate the expression of the same genes through
the IGF-I receptor (15). Insulin does that with a smaller magnitude
of response than IGF-I. We show here that when compensating
for the different affinities of the ligands, each ligand does specifi-
cally influence the expression of certain genes through the IGF-I
receptor.

Each ligand specifically regulated a group of transcripts that
was not regulated by the other two ligands. When stimulat-
ing the IGF-I receptor with IGF-II for example, two of the
eight specifically regulated genes were Traf1 and Ttrap. Traf1
was up-regulated by IGF-II and is an inhibitor of apoptosis,
which may be due to increased activation of nuclear factor-
kappa B (NF-κB), an anti-apoptotic transcription factor (32–34).
Ttrap was down-regulated by IGF-II and inhibits the transcrip-
tional activation of NF-κB (35). These results are consistent with
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Table 6 |Transcripts selectively or more potently regulated by the IGFs than by insulin.

Transcript Probe set

(Affymetrix)

Accession

nr.

FC

IGF-I

p-Value

IGF-I

FC

IGF-II

p-Value

IGF-II

FC

insulin

p-Value

insulin

Dusp6: dual specificity phosphatase 6 1415834_at NM_026268 2.96 0.000037 4.45 0.000114 1.66 0.024401

Jun-B: Jun-B oncogene 1415899_at NM_008416 1.97 0.000470 3.03 0.000185 1.22 0.107818

Klf10: Kruppel-like factor 10 1416029_at NM_013692 2.28 0.006007 2.58 0.000466 1.34 0.004550

Errfi1: ERBB receptor feedback inhibitor 1 1416129_at NM_133753 2.48 0.000009 3.30 0.000797 1.50 0.002918

Nfe2l2: nuclear factor, erythroid derived 2, like 2 1416543_at NM_010902 1.77 0.000045 1.59 0.000011 1.10 0.286909

Egr1: early growth response 1 1417065_at NM_007913 2.06 0.000005 2.51 0.000152 1.37 0.002267

Ptgs2: prostaglandin-endoperoxide synthase 2 1417262_at M94967 5.01 0.002321 5.83 0.001415 1.88 0.001026

Ptgs2: prostaglandin-endoperoxide synthase 2 1417263_at M94967 5.12 0.004035 5.86 0.003544 1.82 0.010523

Klf4: Kruppel-like factor 4 (gut) 1417394_at BG069413 2.93 0.000277 2.91 0.001910 1.34 0.019087

Klf4: Kruppel-like factor 4 (gut) 1417395_at BG069413 2.38 0.000136 2.36 0.001509 1.10 0.330387

Ccnd1: cyclin D1 1417420_at NM_007631 2.19 0.000812 2.49 0.000605 1.53 0.008594

Ddit3: DNA-damage inducible transcript 3 1417516_at NM_007837 3.90 0.000022 3.52 0.007483 1.95 0.003623

Bhlhe40: basic helix-loop-helix family, member

e40

1418025_at NM_011498 2.42 0.000026 3.46 0.000576 1.66 0.005081

Rbpj: recombination signal binding protein for

immunoglobulin kappa J region

1418114_at NM_009035 1.64 0.001503 1.64 0.042760 −1.01 0.869918

HB-EGF: heparin-binding EGF-like growth factor 1418349_at L07264 2.93 0.000389 4.11 0.003861 1.67 0.016481

HB-EGF: heparin-binding EGF-like growth factor 1418350_at L07264 2.37 0.000879 3.43 0.002878 1.39 0.003493

Fzd2: frizzled homolog 2 (Drosophila) 1418533_s_at BB371406 −2.73 0.002491 −2.72 0.001879 −1.74 0.008244

Snai2: snail homolog 2 (Drosophila) 1418673_at NM_011415 2.55 0.003833 2.43 0.016438 1.45 0.039762

Arc: activity regulated cytoskeletal-associated

protein

1418687_at NM_018790 3.46 0.004766 5.51 0.014618 1.72 0.065388

Phlda1: pleckstrin homology-like domain, family

A, member 1

1418835_at NM_009344 2.50 0.000016 3.42 0.000137 1.45 0.006783

Ereg: epiregulin 1419431_at NM_007950 3.81 0.003989 4.98 0.007224 1.59 0.013385

Errfi1: ERBB receptor feedback inhibitor 1 1419816_s_at AI788755 2.18 0.000303 2.82 0.003084 1.43 0.013860

Vegfa: vascular endothelial growth factor A 1420909_at NM_009505 3.57 0.003003 3.60 0.001070 2.14 0.049047

Areg: amphiregulin 1421134_at NM_009704 18.39 0.004443 32.85 0.001366 6.46 0.018404

Hmga2: high mobility group AT-hook 2 1422851_at X58380 2.17 0.012765 2.90 0.015282 1.20 0.178787

Fos: FBJ osteosarcoma oncogene 1423100_at AV026617 2.79 0.000301 3.58 0.000988 1.43 0.011280

Spred1: sprouty protein with EVH-1 domain 1,

related sequence

1423160_at BQ044290 1.65 0.002015 1.79 0.003587 1.18 0.246347

Spred1: sprouty protein with EVH-1 domain 1,

related sequence

1423161_s_at BQ044290 2.04 0.003684 1.95 0.004457 1.24 0.055176

Socs5: suppressor of cytokine signaling 5 1423350_at AA510713 1.74 0.000238 2.15 0.001624 1.25 0.041765

Eif1a: eukaryotic translation initiation factor 1A 1424344_s_at BM200591 2.33 0.004717 1.79 0.023539 1.12 0.358396

Myc: myelocytomatosis oncogene 1424942_a_at BC006728 2.57 0.001522 3.41 0.001457 1.57 0.004404

Ppm1a: protein phosphatase 1A, magnesium

dependent, alpha isoform

1425537_at AF259672 1.91 0.021188 1.70 0.022908 1.02 0.912487

Egr2: early growth response 2 1427682_a_at X06746 2.39 0.000571 3.21 0.001597 −1.03 0.747696

Egr2: early growth response 2 1427683_at X06746 2.35 0.000002 3.19 0.000841 −1.16 0.214812

Cdc42ep2: CDC42 effector protein (Rho GTPase

binding) 2

1428750_at BF453885 −2.77 0.000119 −2.53 0.000292 −1.30 0.080566

Dusp4: dual specificity phosphatase 4 1428834_at AK012530 3.66 0.005728 5.33 0.003373 1.53 0.118230

Zbtb2: zinc finger and BTB domain containing 2 1434901_at BB484975 1.71 0.008994 1.68 0.004970 1.19 0.019503

Btaf1: BTAF1 RNA polymerase II, B-TFIID

transcription factor-associated (Mot1 homolog,

S. cerevisiae)

1435249_at BG917504 2.28 0.001543 1.99 0.003586 1.34 0.009186

Prkg2: protein kinase, cGMP-dependent, type II 1435460_at BB363188 2.41 0.000317 2.39 0.010622 1.26 0.091109

Tmcc3: transmembrane and coiled-coil

domains 3

1435554_at BB771888 2.94 0.000570 2.85 0.000256 1.80 0.009428

(Continued)
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Table 6 | Continued

Transcript Probe set

(Affymetrix)

Accession

nr.

FC

IGF-I

p-Value

IGF-I

FC

IGF-II

p-Value

IGF-II

FC

insulin

p-Value

insulin

1810011O10Rik: RIKEN cDNA 1810011O10 gene 1435595_at AV016374 2.14 0.001640 2.01 0.002508 1.01 0.959922

Egr3: early growth response 3 1436329_at AV346607 3.82 0.000013 5.32 0.005082 1.23 0.105988

Marveld1: MARVEL (membrane-associating)

domain containing 1

1436830_at BB324084 −1.91 0.000054 −1.68 0.007970 −1.07 0.296806

Mex3b: mex3 homolog B (C. elegans) 1437152_at BG072837 2.66 0.000721 3.02 0.018407 1.21 0.436275

Bmp2k: BMP2 inducible kinase 1437419_at BB329439 2.35 0.003344 2.02 0.000029 1.39 0.033634

Zfp36l2: zinc finger protein 36, C3H type-like 2 1437626_at BB031791 2.15 0.000301 2.53 0.011093 1.43 0.036717

C130039O16Rik: RIKEN cDNA C130039O16

gene

1444107_at BB091357 1.60 0.010486 1.69 0.022667 −1.02 0.894938

Snai2: snail homolog 2 (Drosophila) 1447643_x_at BB040443 3.22 0.010688 2.43 0.003249 1.48 0.071908

Pogk: pogo transposable element with KRAB

domain

1447864_s_at AV377712 2.20 0.016223 2.04 0.003467 1.31 0.014693

Myd116: myeloid differentiation primary

response gene 116

1448325_at NM_008654 2.00 0.000179 2.01 0.006734 1.24 0.070585

Jun: Jun oncogene 1448694_at NM_010591 1.78 0.008793 1.90 0.011924 1.04 0.807786

Atf3: activating transcription factor 3 1449363_at BC019946 2.88 0.001391 2.90 0.004451 1.92 0.005831

Ces1: carboxylesterase 1 1449486_at NM_021456 −2.01 0.018317 −1.96 0.023919 −1.16 0.351288

Hmga2: high mobility group AT-hook 2 1450780_s_at X58380 2.74 0.006298 3.29 0.010165 1.43 0.035048

Hmga2: high mobility group AT-hook 2 1450781_at X58380 2.36 0.018209 3.22 0.007611 1.31 0.019092

Gtpbp4: GTP binding protein 4 1450873_at AI987834 3.10 0.000236 2.75 0.006583 1.87 0.002062

Pvr: poliovirus receptor 1451160_s_at BB049138 2.21 0.011238 2.13 0.002468 1.47 0.001190

Arl4c /// LOC632433: ADP-ribosylation factor-like

4C /// similar to ADP-ribosylation factor-like

protein 7

1454788_at BQ176306 1.70 0.005522 1.57 0.022003 1.00 0.976940

Zbtb11: zinc finger and BTB domain

containing 11

1454826_at BM195115 2.04 0.001240 1.78 0.015361 1.11 0.277271

Foxn2: forkhead box N2 1454831_at AV221013 2.85 0.000516 2.85 0.004267 1.71 0.037944

Tmcc3: transmembrane and coiled-coil

domains 3

1454889_x_at BB711990 1.99 0.000120 1.89 0.003292 1.29 0.001608

Spty2d1: SPT2, Suppressor of Ty, domain

containing 1 (S. cerevisiae)

1455130_at BM242524 2.06 0.000339 2.04 0.000495 1.34 0.043771

Plcxd2: phosphatidylinositol-specific

phospholipase C, X domain containing 2

1455324_at BQ176176 4.03 0.000971 3.50 0.005766 2.21 0.007254

LOC631639 /// Lonrf1: similar to CG32369-PB,

isoform B /// LON peptidase N-terminal domain

and ring finger 1

1455665_at BB705689 4.56 0.003239 4.17 0.002087 2.17 0.008852

Nfkbie: nuclear factor of kappa light polypeptide

gene enhancer in B-cells inhibitor, epsilon

1458299_s_at BB820441 1.71 0.000989 1.94 0.002873 1.24 0.053832

Transcripts that fulfilled the criteria of 1.2 and 0.05 for fold change and p-value respectively for IGF-I and IGF-II versus the control and versus insulin were selected.The

transcripts were then filtered for a fold change of 1.5 in comparison to the control. Transcripts that also fulfilled the criteria for insulin versus the control are in italic.

FC, fold change.

the known anti-apoptotic activity of IGF-II through the IGF-I
receptor.

In order to identify common gene regulation patterns between
ligands, we studied the gene expression induced by two ligands
in comparison to the control and to the third ligand. Interest-
ingly, a group of 65 transcripts was identified to be selectively or
more potently regulated by the IGFs than by insulin. ErbB signal-
ing and neuregulin signaling were significant canonical pathways
over-represented in the data set; regulated transcripts in common

between the two pathways were amphiregulin, epiregulin, and
heparin-binding EGF-like growth factor (HB-EGF). These were
up-regulated more potently by the IGFs than by insulin. Pandini
et al. showed that amphiregulin, HB-EGF, and epiregulin were
similarly up-regulated by insulin and IGF-II through the insulin
receptor isoform A in mouse fibroblasts (19). Mulligan et al.
showed that HB-EGF transcript expression was up-regulated more
potently after signaling through the IGF-I receptor than through
the insulin receptor in fibroblasts (30). Amphiregulin, HB-EGF,
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Table 7 | Selective gene regulation by insulin and IGF-II.

Transcript Probe set

(Affymetrix)

Accession

nr.

FC

insulin

p-Value

insulin

FC

IGF-II

p-Value

IGF-II

FC

IGF-I

p-Value

IGF-I

Dusp6: dual specificity phosphatase 6 1415834_at NM_026268 1.66 0.024401 4.45 0.000114 2.96 0.000037

Nusap1: nucleolar and spindle associated protein 1 1416309_at BC009096 −1.61 0.000141 −1.61 0.000022 −1.14 0.097812

Ndc80: NDC80 homolog, kinetochore complex

component (S. cerevisiae)

1417445_at NM_023294 −1.73 0.000121 −1.61 0.000253 −1.16 0.056240

Ghr: growth hormone receptor 1417962_s_at NM_010284 −1.67 0.008693 −1.69 0.008944 −1.15 0.197168

Bhlhe40: basic helix-loop-helix family, member e40 1418025_at NM_011498 1.66 0.005081 3.46 0.000576 2.42 0.000026

Nfyb: nuclear transcription factor-Y beta 1419267_at AV250496 1.53 0.007996 1.60 0.005883 2.43 0.005169

Areg: amphiregulin 1421134_at NM_009704 6.46 0.018404 32.85 0.001366 18.39 0.004443

PQlc2: PQ loop repeat containing 2 1425632_a_at BC019216 2.31 0.001027 2.12 0.001076 1.40 0.029326

Cebpb: CCAAT/enhancer binding protein (C/EBP),

beta

1427844_a_at AB012278 1.74 0.018553 1.80 0.005586 1.13 0.445063

Sema3c: sema domain, immunoglobulin domain (Ig),

short basic domain, secreted (semaphorin) 3C

1429348_at AK004119 −1.70 0.006766 −1.72 0.008802 1.03 0.733222

Cyld: cylindromatosis (turban tumor syndrome) 1429617_at BM119209 −1.61 0.005787 −1.50 0.003897 −1.03 0.807135

Bop1: block of proliferation 1 1430491_at AV128350 1.78 0.013556 1.93 0.006039 1.04 0.820081

Rhobtb3: Rho-related BTB domain containing 3 1433647_s_at BM942043 −1.62 0.027000 −1.64 0.022981 −1.02 0.890963

Sc5d: sterol-C5-desaturase (fungal ERG3,

delta-5-desaturase) homolog (S. cerevisae)

1434520_at AU067703 2.18 0.006626 2.25 0.001725 3.34 0.000004

Foxp1: forkhead box P1 1435222_at BM220880 −2.10 0.010890 −1.94 0.017867 −1.44 0.055486

Kif11: kinesin family member 11 1435306_a_at BM234447 −1.92 0.003119 −1.76 0.006149 −1.20 0.115116

Ppm2c: protein phosphatase 2C, magnesium

dependent, catalytic subunit

1438201_at AV290622 −2.18 0.000445 −1.54 0.028117 1.05 0.650024

Matr3: Matrin 3, mRNA (cDNA clone MGC:28206

IMAGE:3989914)

1441272_at BI249188 2.63 0.004643 2.78 0.000614 1.72 0.006058

Kif11: kinesin family member 11 1452314_at BB827235 −2.02 0.003923 −1.54 0.017306 1.11 0.406989

Kif11: kinesin family member 11 1452315_at BB827235 −1.85 0.000158 −1.83 0.000706 −1.13 0.347961

Transcripts that fulfilled the criteria of 1.2 and 0.05 for fold change and p-value respectively for insulin and IGF-II versus the control and versus IGF-I were selected.The

transcripts were then filtered for a fold change of 1.5 in comparison to the control. Transcripts that also fulfilled the criteria for IGF-I versus the control are in italic. FC,

fold change.

Table 8 | Gene regulation by insulin and IGF-I.

Transcript Probe set

(Affymetrix)

Accession

nr.

FC

insulin

p-Value

insulin

FC

IGF-I

p-Value

IGF-I

FC

IGF-II

p-Value

IGF-II

Dusp6: dual specificity phosphatase 6 1415834_at NM_026268 1.66 0.024401 2.96 0.000037 4.45 0.000114

Slc40a1: solute carrier family 40 (iron-regulated

transporter), member 1

1417061_at AF226613 −2.63 0.000644 −2.99 0.000973 −4.48 0.000804

Fosl1: fos-like antigen 1 1417487_at U34245 3.85 0.002671 4.54 0.000291 7.87 0.003065

Fosl1: fos-like antigen 1 1417488_at U34245 4.48 0.001278 5.31 0.001160 8.69 0.001387

Bhlhe40: basic helix-loop-helix family, member e40 1418025_at NM_011498 1.66 0.005081 2.42 0.000026 3.46 0.000576

Rgs2: regulator of G-protein signaling 2 1419248_at AF215668 1.69 0.003144 1.99 0.033929 1.04 0.849605

Areg: amphiregulin 1421134_at NM_009704 6.46 0.018404 18.39 0.004443 32.85 0.001366

LOC100047324 /// Sesn1: similar to Sesn1 protein

/// sestrin 1

1433711_s_at BG076140 −1.63 0.016249 −1.71 0.017257 −2.64 0.002200

Plk3: polo-like kinase 3 (Drosophila) 1434496_at BM947855 2.74 0.002507 2.21 0.007719 4.79 0.000021

Mm.52043.1 1437199_at BB442784 2.05 0.035779 2.27 0.022600 4.81 0.000445

D8Ertd82e: DNA segment, Chr 8, ERATO Doi 82,

expressed

1442434_at BM195829 2.17 0.008597 2.55 0.004759 4.47 0.001872

Transcripts that fulfilled the criteria of 1.2 and 0.05 for fold change and p-value respectively for insulin and IGF-I versus the control and versus IGF-II were selected.The

transcripts were then filtered for a fold change of 1.5 in comparison to the control. Transcripts that also fulfilled the criteria for IGF-II versus the control are in italic. FC,

fold change.
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and epiregulin are all EGF receptor (also named ErbB-1 or HER1)
ligands (36). HB-EGF acts both as a regulated autocrine/paracrine
and a juxtacrine growth factor (36, 37). Amphiregulin has been
suggested to have both growth inhibitory and stimulatory effects
(38). Epiregulin is a growth promoter in primary rat hepatocytes
(39, 40) and an autocrine growth factor in human keratinocytes
(41). HB-EGF and amphiregulin also bind and activate ErbB-3 and
HB-EGF binds and activates ErbB-4 (42), just like the neuregulins,
which bind ErbB-3 and ErbB-4. HB-EGF induces chemotaxis after
stimulation of ErbB-4 (43).

As for the IGFs, we identified 14 transcripts selectively regu-
lated by insulin and IGF-II. Using the same analysis criteria, this
was however not the case when looking at insulin and IGF-I as a
group. Ten of the 11 transcripts that were regulated by insulin and
IGF-I in comparison to the control and IGF-II were also regulated
by IGF-II. So the IGFs on one hand and insulin and IGF-II on the
other hand seem to provoke more similar gene expression patterns
than insulin and IGF-I. This is in accordance with the numbers
presented in Table 2. Of all the transcripts regulated by insulin in
comparison to the control, a larger fraction was also regulated by
IGF-II than by IGF-I, even though IGF-I overall regulated more
transcripts than IGF-II.

Although some of the transcripts identified in this study were
involved in metabolic functions, the overall biological patterns
were of a non-metabolic nature. This is not surprising, consider-
ing the tissue origin of the cell line used. From this study,no general
conclusions could thus be drawn on whether certain ligands cre-
ated a more metabolic or mitogenic response in comparison to the
other ligands.

Many of the functions, pathways, and genes mentioned above
are consistent with the known effects of insulin, IGF-I, and IGF-II.
One could thus speculate that these differences in gene expres-
sion might account for some of the different biological effects of
these three ligands. It should be mentioned that these gene expres-
sion patterns were measured after stimulating the receptor with
supraphysiological concentrations of ligands. Therefore studying
the concentration dependence of these gene expression profiles,
together with performing time series of gene expression, could
provide a more subtle picture.

Since the influences of affinity of the three ligands were largely
accounted for in this study, it is likely that the differences in gene
expression are due to intrinsic properties of each ligand. Different
suggestions have been made to explain the mechanism responsi-
ble for this signaling specificity. Both differences in ligand binding
kinetics and internalization properties have been correlated with
different responses after stimulating the insulin receptor with dif-
ferent ligands (21–23, 44–46). More studies are needed in order
to clarify at which level the cellular signal of different ligands
stimulating the same receptor diverges.

CONCLUSION
We studied the gene expression patterns after stimulating the IGF-
I receptor with equipotent concentrations of IGF-I, IGF-II, and
insulin by microarray gene expression profiling and found signifi-
cant differences in responses between the three ligands. Each ligand
specifically regulated a group of transcripts that was not regulated

FIGURE 2 | Validation of microarray data by qRT-PCR. Two-step RT-PCR
was performed on a subset of transcripts. 18S was used as an internal
control. The results are expressed as fold change in comparison to the
control (unstimulated samples). Full bars represent the microarray data
(Table 6). Bars with patterns represent the average qRT-PCR
results± standard deviations. Black: insulin, gray: IGF-I, light gray: IGF-II.
Significant differences in the qRT-PCR data were calculated by a two-tailed
t -test. ∧Significantly up-regulated by insulin in comparison to the control at
the 1.5 fold change and 0.05 p-value level. *Significantly more up-regulated
by this IGF than by insulin at the 0.05 p-value level.

by the other two ligands. Also, insulin and IGF-I seemed to stimu-
late the least overlapping response. The different gene expression
profiles for the three ligands might explain some of their differ-
ent biological effects. These results also add to the accumulating
evidence that different ligands can bind to the same receptor and
stimulate different cellular responses and that the nature of a ligand
bound to a receptor, and not just its concentration and affinity, is
determinant for the downstream cellular response. Further studies
should help bringing a mechanistic understanding to the different
functional consequences of different ligands activating the same
receptor.
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