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O-linked N -acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational
modification consisting in the addition of a sugar moiety to serine/threonine residues
of cytosolic or nuclear proteins. Catalyzed by O-GlcNAc-transferase (OGT) and removed
by O-GlcNAcase, this dynamic modification is dependent on environmental glucose con-
centration. O-GlcNAcylation regulates the activities of a wide panel of proteins involved
in almost all aspects of cell biology. As a nutrient sensor, O-GlcNAcylation can relay the
effects of excessive nutritional intake, an important cancer risk factor, on protein activi-
ties and cellular functions. Indeed, O-GlcNAcylation has been shown to play a significant
role in cancer development through different mechanisms. O-GlcNAcylation and OGT
levels are increased in different cancers (breast, prostate, colon. . .) and vary during cell
cycle progression. Modulating their expression or activity can alter cancer cell prolifera-
tion and/or invasion. Interestingly, major oncogenic factors have been shown to be directly
O-GlcNAcylated (p53, MYC, NFκB, β-catenin. . .). Furthermore, chromatin dynamics is mod-
ulated by O-GlcNAc. DNA methylation enzymes of the Tet family, involved epigenetic
alterations associated with cancer, were recently found to interact with and target OGT
to multi-molecular chromatin-remodeling complexes. Consistently, histones are subjected
to O-GlcNAc modifications which regulate their function. Increasing number of evidences
point out the central involvement of O-GlcNAcylation in tumorigenesis, justifying the atten-
tion received as a potential new approach for cancer treatment. However, comprehension
of the underlying mechanism remains at its beginnings. Future challenge will be to address
directly the role of O-GlcNAc-modified residues in oncogenic-related proteins to eventually
propose novel strategies to alter cancer development and/or progression.

Keywords: O-glycosylation, O-GlcNAc, post-translational modification, cancer, metastasis, cell cycle, epigenetics,
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INTRODUCTION
Excess food intake associated with modern lifestyle constitutes
an important cancer risk factor (1). Numerous epidemiologi-
cal studies indicate that obesity or diabetic conditions increase
the risk of cancer, including colon, esophageal, liver, pancreas
kidney, endometrial, and breast cancers (2, 3). Increased body
mass index (BMI) above 25 kg/m2 is associated with a signifi-
cantly increased relative risk of several cancers, and BMI higher
than 30 kg/m2 are associated with a two- to four-fold increase
in colorectal, endometrial, esophageal, liver, gallbladder, and gas-
tric cancers (4). Hyperglycemia also appears to be an important
cancer risk factor. Indeed, in a 10-year prospective study involv-
ing 1,298 million Koreans, individuals with fasting serum glucose
higher than 140 mg/dl had significant higher death rates from
all cancers combined than those with fasting glucose lower than
90 mg/dl. Sustained weight loss, improvement of insulin resis-
tance, and attenuation of metabolic syndrome observed after
bariatric surgery are associated with reduction in cancer inci-
dence (5). In mouse and rat models of diet-induced obesity,
overfeeding is associated with accelerated development of tumors
(6). In contrast, food restriction has inhibitory effects on tumor

growth in rodents (7) and reduces cancer incidence in non-human
primates (8). Interestingly, low calorie intake habits in Okinawan
population (9) is associated with reduced cancer risk compared
to mainland Japan (10), suggesting that the anti-cancer effects
of calorie restriction in rodent models may extend to primates,
including humans.

Nutritional conditions, excess body weight, and insulin resis-
tance can modulate tumor development by modifying circulating
factors that affect signaling pathways involved in cell growth,
proliferation, and apoptosis. For instance, chronic hyperinsu-
linemia is associated with increased risk of colon, pancreas,
breast, and endometrium cancers (4). These effects could be
directly mediated by insulin receptors on (pre)neoplastic tar-
get cells, or might be secondary to hyperinsulinemia. Thus,
insulin promotes the synthesis of IGF1, and inhibits the expres-
sion of insulin-like growth factor binding proteins 1 and 2
(IGFBP1 and IGFBP2), resulting in increased bioavailability of
this potent growth factor. In addition, insulin and IGF1 inhibit
the expression of sex-hormone binding globulin (SHBG), result-
ing in increase in estrogen bioavailability, a breast cancer risk
factor in post-menopausal women. Increased leptin circulating
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levels associated with excess adiposity may also constitute a
risk factor for breast cancer. Indeed, ObRb, the long form of
the leptin receptor stimulates proliferative and anti-apoptotic
pathways, and both leptin and leptin receptors are overex-
pressed in human primary and metastatic breast cancer cells
(11, 12).

However, besides its effects on circulating hormones and
adipokines, nutritional conditions also modulate the availabil-
ity of nutrients important for growth and proliferation of cancer
cells. Among them, glucose and glutamine are considered cru-
cial, and cancer cells have been described as “addicted” to these
two nutrients, from which they obtain biosynthetic precursors
to build cell membranes, DNA, and proteins. Glucose and glu-
tamine are the two most abundant extracellular nutrients (13).
They contribute carbons to the synthesis of the three major classes
of macromolecules (nucleic acids, lipids, and proteins) in pro-
liferating tumor cells. In addition to its role as a carbon source,
glutamine also donates nitrogen to nucleotide and amino acid syn-
thesis. Thus, biosynthesis of nucleotides utilizes ribose 5-phophate
produced from the diversion of glycolytic intermediate into the
pentose phosphate pathway, and glutamine. Fatty acid synthesis,
used to produce lipids, requires acetylCoA generated from glucose.
Protein synthesis requires amino acids, tRNAs, and ribosomes.
Both glucose and glutamine are used to generate these molecules
(13). However, in addition to their role as “molecular bricks” in
building of cancer cell components, glucose and glutamine metab-
olism intervene in protein O-GlcNAcylation, a post-translational
modification that regulates most aspects of cell life (14–18). O-
GlcNAcylation of cytosolic and nuclear proteins is a reversible
post-translational modification, analogous to phosphorylation,
which controls protein subcellular localization, stability, or activ-
ity according to the nutritional environment. It corresponds to
the addition of N -acetylglucosamine (GlcNAc) on serine or thre-
onine residues. The reaction is catalyzed by O-GlcNAc-transferase
(OGT), which uses UDP-GlcNAc as a substrate (Figure 1). UDP-
GlcNAc, produced through the hexosamine biosynthetic pathway
(HBP), can be considered as a sensor for the nutritional state of the
cell, as it integrates glucose, glutamine, fatty acids (acetyl), uridine,
and ATP metabolism (14–18). O-GlcNAc is removed from pro-
teins by O-GlcNAcase (OGA), permitting dynamic regulation of
O-GlcNAcylation levels. O-GlcNAcylation can be in competition
directly or indirectly with phosphorylation on the same protein,
providing a complex cross-talk between these two PTM to control
the function of various proteins (19).

Excess of nutrients intake, hyperglycemia, and other metabolic
perturbations associated with diabetes and obesity are believed to
feed the HBP and promote abnormally elevated O-GlcNAcylation
of key signaling molecules and transcription factors. These modi-
fications have been proposed to play key roles in complications
associated with the metabolic syndrome, diabetic conditions,
neurodegenerative disease, and cancer (17, 20, 21).

On the other hand,O-GlcNAcylation regulates cell cycle, signal-
ing intermediates, and transcription factors involved in the control
of cell proliferation or cell death (22–27). A growing amount of
studies indicates that O-GlcNAcylation may constitute an impor-
tant regulator of cancer growth and invasion, providing a potential
link between obesity, diabetes, and cancer (28, 29).
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FIGURE 1 |The hexosamine biosynthetic pathway and protein
O-GlcNAcylation. The hexosamine biosynthetic pathway (HBP) controls
O-GlcNAc glycosylation (O-GlcNAcylation) of nuclear and cytosolic proteins.
This dynamic and reversible post-translational modification controls activity,
localization, or stability of substrate proteins, according to the rate of
glucose availability. A fraction (2–3%) of glucose entering the cell is directed
to the HBP. In this pathway, fructose-6-phosphate is converted to
glucosamine-6-phosphate by the glutamine:fructose-6-phosphate
amidotransferase (GFAT), the rate-limiting enzyme of the pathway. After a
subset of reactions, UDP-N -acetylglucosamine (UDP-GlcNAc) is generated
and used by the O-GlcNAc-transferase (OGT) as a substrate to add GlcNAc
to serine or threonine residues of target proteins. O-GlcNAc moiety is
removed from O-GlcNAc-modified proteins by the O-GlcNAcase (OGA).
Experimentally, the level of O-GlcNAc-modified proteins in cells can be
manipulated by exposing cells to high glucose concentrations or to
glucosamine which enters the HBP downstream the rate-limiting
GFAT-mediated reaction, as glucosamine-6-phosphate. In addition, OGA can
be inhibited by pharmacological agents such as O-[2-acetamid-O-2-
deoxy-D-glucopyranosylidene] amino-N -phenylcarbamate (PUGNAc) or
1,2-dideoxy-2′-propyl-alpha-D-glucopyranoso-[2,1-D]-Delta 2′-thiazoline
(NButGT), resulting in an accumulation of O-GlcNAc-modified proteins in
the cell.

O-GLcNACYLATION AND O-GLcNAc-CYCLING ENZYMES IN
CANCER
Increased protein O-GlcNAcylation and changes in OGT and/or
OGA expression have now been described in different cancer types
including breast (30–32), lung (33), colon (33), liver (34), blad-
der (35), endometrial (36) prostate (37), and chronic lymphocytic
leukemia (CCL) cells (38).

BREAST CANCER
Breast cancer is the most common cancer in women. The link
between nutritional conditions, obesity, and breast cancer is
well established (39). Initial studies by Slawson et al. suggested
increased OGA activity in primary breast tumors compared to
matched adjacent breast tissues (30). However, because the data set
was relatively small, no clear correlation could be established with
tumor grade or type. Moreover, these results contrasted with those
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obtained by other groups in more recent investigations. Dahl et al.
defined a set of 40 candidate genes that are predominantly local-
ized in the most frequently altered chromosomal regions known
to be important in the pathogenesis of breast and ovarian can-
cers (40). Systematic characterization of these candidate genes by
both cDNA dot plot using cancer profiling array and real-time
RT-PCR analysis revealed differential expression in breast can-
cer for nine genes, including MGEA5, the gene coding for OGA,
which expression was reduced by about 56% in breast tumors
(40). In agreement with decreased OGA in breast cancer, Gu et
al. using immunohistochemistry analysis, observed that the global
O-GlcNAcylation level in breast tumor tissues was significantly
elevated compared to the corresponding adjacent normal tissue
(31). Moreover, O-GlcNAcylation was also significantly enhanced
in metastatic lymph nodes compared with their corresponding
primary breast tissues, suggesting a potential influence of O-
GlcNAcylation on malignant properties of the breast cancer cells
(31). More recently, Krzeslak et al. observed increased OGT and
decreased OGA mRNA expression in breast tumors (32), with
poorly differentiated tumors (grade II and III) having signifi-
cantly higher OGT and lower OGA mRNA expression than grade
I tumors, respectively. Lymph node metastasis status was also sig-
nificantly associated with decreased OGA mRNA expression, but
not with OGT mRNA expression. OGT and OGA expression pro-
files showed no significant differences in association with different
estrogen and progesterone status (32). These results have been
confirmed very recently by Champattanachai and colleagues who
analyzed breast tumors from grade I to III and observed increased
total O-GlcNAc protein levels along with OGT levels compared
to healthy tissue. This increase was also proportional to tumor
grades (41).

Finally, a role for O-GlcNAcylation in tamoxifen sensitivity was
recently described (42). In breast cancer, tamoxifen remains largely
used as endocrine therapy, but resistance to this drug often occurs
(43). Kanwal et al. observed that O-GlcNAcylation-inducing treat-
ment protected MCF-7 cells from tamoxifen-induced cell death,
whereas siRNA-mediated OGT inhibition had opposite effects.
These data suggest that targeting OGT might be an interesting
approach to overcome tamoxifen resistance in breast cancer (42).

COLORECTAL CANCER
Colorectal cancers (CRCs) are one of the leading causes of mortal-
ity and morbidity by cancer, the second for women and the third
for men, in Europe and the United States of America. Unhealthy
lifestyle and nutrient excess favor emergence of CRCs and, more
generally, these cancers are intimately linked to metabolic diseases
that themselves reach epidemic proportions in the Western soci-
eties. As an example, type-2 diabetes doubles CRC emergence (44).
Evaluation of O-GlcNAc in CRC using immunohistochemical
analyses revealed that O-GlcNAcylation level and OGT expression
are increased in colon tissues in comparison with the correspond-
ing adjacent tissues, whereas no significant difference was observed
for OGA (33).

LIVER CANCER
Although liver cancers (LCs) only represent the fifth and the
seventh most common cause of cancer in men and women

respectively, their frequency has been increasing steadily for
20 years. Indeed, as for CRCs, unhealthy lifestyle favors emergence
of LCs, and diabetes and obesity increase the risk of LCs through
the development of a non-alcoholic steatosis (45).

Zhu et al. (34) analyzed O-GlcNAcylation level and expression
of OGT and OGA by real-time PCR in tissues of patients suf-
fering hepatocellular carcinoma, the most common primary liver
malignancy (600,000 new cases diagnosed each year). Immuno-
histochemistry analyses of patients having undergone a liver trans-
plantation, that remains at the present time the best treatment for
LC and cirrhosis despite the high incidence of tumor recurrence,
indicate that O-GlcNAcylation was higher in cancer tissues com-
pared to healthy tissues. Moreover, O-GlcNAcylation was higher
again in patients diagnosed a recurrence of hepatocarcinoma.
The authors tried to correlate OGT and OGA expression with
the prognosis of patients who underwent liver transplantation.
The 60 tumors used were segregated into two groups according
to low/high amounts of OGT/OGA transcripts. More than three
quarters of the recurrent tumor tissues show low OGA expression
while the non-recurrent ones have high OGA levels. Intriguingly,
no significant correlation for OGT was found. The recurrence-
free survival was significantly better for patients showing high
OGA than patients with low OGA, while OGT expression did
not allow predicting the prognosis. The authors proposed that
low expression of OGA may constitute an additional independent
prognostic factor for the recurrence-free survival following liver
transplantation.

BLADDER AND ENDOMETRIAL CANCERS
Krzeslak et al. measured the level of OGA and OGT mRNA in blad-
der (35) and endometrial (36) cancers. Rozanski et al. observed
that OGA mRNA was present in the urine (cells pelleted from
centrifuged urines) of healthy and bladder cancer patients with
almost the same proportion (47.1% of healthy and 52.3% of blad-
der cancers patients). OGT mRNA was found in 50% of patients
suffering bladder cancer while it was not detected in healthy indi-
viduals. OGA mRNA level was higher in grade I tumors compared
to grade III, whereas OGT mRNA was lower in grade I than in
grades II and III. The authors concluded that measurement of
OGT and OGA mRNA in urine might be an interesting parameter
for the diagnosis bladder cancers (35).

Regarding the endometrial carcinomas, it appeared that OGT
and OGA mRNA were significantly more elevated in grades II and
III tumors than in grade I. In addition, OGT and OGA expres-
sion was higher in case of cancers with deep myometrial invasion.
Although both OGT and OGA mRNA were increased, the rela-
tive expression of OGT was much higher than OGA. However, no
significant differences in enzymes messengers were found for the
different lymph nodes metastasis (36).

OTHER CANCERS
Changes in O-GlcNAc levels and/or expression of O-GlcNAc-
cycling enzymes have also been described in leukemia, lung, and
prostate cancers (33, 37, 38).

Increased protein O-GlcNAcylation and OGT expression were
observed in CCL cells compared to normal circulating and ton-
sillar B cells (38). However, higher O-GlcNAc levels in CCL cells
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were associated with a favorable outcome, while lower levels were
associated with more aggressive disease.

Mi et al. constructed a tissue microarray comprising 31
paraffin-embedded lung cancer tissues and their corresponding
adjacent normal lung tissues (33). Using immunohistochemistry,
the authors observed increased O-GlcNAcylation level and OGT
expression in cancer tissues, whereas OGA expression level was not
modified. In agreement with their results, examining Oncomine™
database, Mi et al. found increased OGT mRNA expression in lung
cancers (33).

Lynch et al. (37) analyzed Oncomine™ database to deter-
mine whether OGT was overexpressed in tumors, and found four
microarray gene expression studies showing elevated OGT mRNA
levels in human prostate carcinoma as compared to adjacent tis-
sue samples. In addition, a survey of the National Center for
Biotechnology Information Gene Expression Omnibus indicated
a positive correlation between high OGT expression and metasta-
tic progression between normal, primary tumor, and metastatic
tumor tissues. Moreover, an additional study of 94 patient tumor
samples, which when stratified by level of OGT expression, indi-
cated that disease-free survival 5 years post-treatment was higher
in patients with low OGT expression profile compared to patients
with increased OGT expression. In agreement with these data,
using a panel of normal and prostate carcinoma cell lines, Lynch
et al. observed an increased O-GlcNAc level and OGT expression
associated with malignant properties in prostate cancer cells (37).

In summary, studies on different types of cancer generally indi-
cate increased expression in O-GlcNAc level and OGT expression.
However, contradictory results were obtained concerning OGA,
with either decreased (31, 32, 34, 35, 40), no change (33), and even
increased in OGA levels in some studies (30, 36, 46). These dis-
crepancies in OGA results may originate from the fact that OGA
expression itself is upregulated upon increase O-GlcNAcylation
level in the cell (47), complicating the interpretation of the data.

From the literature reviewed in the previous sections, it appears
that cancer cells display both increased uptake of nutriments
involved in O-GlcNAc biosynthesis and increased capacity to O-
GlcNAcylate proteins. As we shall see in the following sections,
alteration in O-GlcNAcylation may directly affect important steps
in tumorigenesis.

O-GLcNACYLATION AND MITOGENIC SIGNALING
PATHWAYS
As mentioned previously, the nutritional status impacts tumor
development. Thus, several studies in rodent showed that dietary
restriction can inhibit tumor growth. Mitogenic signals elicited by
various receptors often involve common signaling cascades such as
PI3K/Akt or MAPK pathways. Interestingly, when grown as tumor
xenografts in mice, cancer cells bearing mutations that induce
constitutive PI3K activation are resistant to dietary restriction,
whereas cancer cells with mutations that constitutively activate
the Ras/Raf/MAPK pathway remain sensitive to calorie restric-
tion (48, 49). These observations suggest that the activity of
the PI3K/Akt pathway is central to sensitivity of cancer cells to
nutritional conditions. Interestingly, O-GlcNAcylation has been
implicated in modulation of PI3K/Akt activity. For instance, in
thyroid anaplastic cancer 8305C cells, increased O-GlcNAcylation

induced by OGA inhibition resulted in an increase in basal and
IGF1 stimulated Akt activity (32). In MCF-7 breast cancer cells,
Olivier-Van Stichelen et al. showed that serum-induced Akt activa-
tion was markedly impaired by siRNA-mediated OGT inhibition
(27). Moreover, Kanwal et al. showed that treating MCF-7 cells
with O-GlcNAcylation-inducing agents stimulated Akt phospho-
rylation (42). Interestingly, using a BRET-based assay which mon-
itors PIP3 production at the plasma membrane in living cells (50),
Kanwal et al. demonstrated that O-GlcNAcylation-inducing treat-
ments stimulated the production of phosphatidylinositol 3,4,5-
trisphosphate (PIP3) by PI3K in MCF-7 cells, suggesting that
stimulation of Akt by these treatments resulted from activation
of early steps in the signaling cascade (42). Several anti-cancer
drugs targeting PI3K are under clinical development (51). Note-
worthy, in a cancer cell line collection (60 diverse human cancer cell
lines representing multiple tumor types), resistance to treatment
with the PI3K inhibitor GDC-0941 correlated with OGT expres-
sion level (52). These authors also showed in different cell lines
that silencing OGT increased sensitivity to GDC-0941, whereas
increasing O-GlcNAc levels using PUGNAc promoted resistance
to this drug (52).

On the other hand, growth factor signaling may also influ-
ence the O-GlcNAcylation pathway. For instance, it has been
shown that upon insulin stimulation, OGT is recruited to the
plasma membrane through a PIP3-binding domain, leading to O-
GlcNAcylation and inhibition of insulin signaling intermediates
(53). This is consistent with results from another study showing
that insulin stimulation increased OGT shuttling from nucleus
to cytoplasm. This was associated with OGT interaction with IR,
allowing the latter to phosphorylate OGT on tyrosine residues and
stimulate its catalytic activity (54). Very recently, OGT recruitment
in response to insulin was shown to occur in lipid rafts through a
PI3K/Akt dependent pathway in HepG2 cells. Notably, expression
of OGT is required for proper IR expression and insulin signaling
in HepG2 cells, illustrating the complex interconnections between
these two pathways (55).

Growth factors can also affect O-GlcNAc signaling by reg-
ulating the expression of important enzymes of pathway. For
instance, one of the first links between mitogenic signals and
hexosamine pathway was provided by the observation that in
MDA-468 breast cancer cells, epidermal growth factor activated
the expression of the rate-limiting enzyme GFAT (56). More
recently, serum stimulation was shown to increase OGT protein
levels in MCF-7 cells through a post-transcriptional dependent
pathway, and this effect appears to be necessary for cell growth
(27). However, besides these specific examples, no systematic
approaches on growth factors or hormones in relation to their abil-
ity to control O-GlcNAcylation and/or O-GlcNAc-cycling enzyme
expression have been conducted. Clearly, the relevance of these
mechanisms in breast cancer pathophysiology still deserves further
investigations.

O-GLcNACYLATION AND CELL CYCLE REGULATION
THE FIRST OBSERVATIONS
Independent reports conducted during the 1990s supported that
OGT and O-GlcNAc dynamics interfere with cell cycle progression
of germinal and somatic cells.
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It was first highlighted dynamic O-GlcNAcylation changes in
response to mitogens (57). Activation of murine T lymphocytes
with the lectin concanavalin A resulted in a rapid decrease in
cytosolic proteins O-GlcNAc level and, conversely, an enhance-
ment of O-GlcNAcylation of nuclear proteins. These observations
suggested that O-GlcNAc cycling was necessary for the activa-
tion of T cells. In the human colon adenocarcinoma cell line
HT29, colcemid or nocodazole-induced G2/M cell cycle arrest
induced a concomitant enhancement in phosphorylation and
O-GlcNAcylation of keratins K8 and K18 (two intermediate fil-
ament proteins overexpressed in cancer cells) (58). Removal of
nocodazole slowly returned keratins O-GlcNAc to baseline lev-
els, suggesting that O-GlcNAcylation of these proteins is cell cycle
dependent. At this time, because of the lack of techniques allowing
specific visualization of O-GlcNAcylated proteins, the impact of
O-GlcNAcylation on cell cycle progression was largely minimized.
Since then, it appeared that O-GlcNAcylation actively contributes
in cell cycle proceeding at different steps. For instance, inhibition of
OGA using the non-selective hexosaminidase inhibitor PUGNAc

indicated that treated-cells progressed more slowly through the
cell cycle than untreated ones (47).

G0/G1
Most of the cells of the organism are in the G0 phase, a quiescent
stage of non-division. Entry into G1 phase (the first phase of the
cell cycle) requires the presence of exogenous mitogenic signals
that lead to activation of the MAP kinase and PI3K pathways, and
to transcription of the cyclin D1 gene, a key regulator of the G1
phase (Figure 2).

Recently, two independent groups reported that OGT is sig-
nificantly increased following serum stimulation (G0/G1 tran-
sition) (59, 60). Blockade of OGT activity or interfering with
its expression delays serum-stimulated cyclin D1 synthesis and
cell proliferation (27). Kwei et al. observed also in the ovarian
cancer cell line OVCAR-4 that cyclin D1 is down-regulated in
siOGT-transfected cells (52). A decrease in the HBP flux also
reduces the cell proliferating rate, while inhibiting OGA accel-
erates this process. OGT silencing diminishes PI3K and MAPK

MAPK
PI3K

G1

S

G2
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M

Cyclin D1

 OGT expression and O-GlcNAcylation 
Inhibiting OGT:

- prevents MAPK and PI3K pathway activation
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FIGURE 2 | O-GlcNAcylation and cell cycle. A quiescent cell enters the
cell cycle upon mitogenic signals. Cell cycle is divided into four phases: the
G1 (Gap1) phase, during which cell grows, followed by the S phase of DNA
replication, then the G2 (Gap2) phase which prepares the cell for the
proper division phase called M phase. Progression of the cell through the
different phases is highly controlled: at the G1/S and G2/M transitions a
checkpoint exists to ensure that DNA is not damaged respectively before
and after its replication. The G2/M checkpoint also controls that replication
is ended before division of the cell into two daughter cells genetically
identical. O-GlcNAcylation levels have been found to vary all along the cell
cycle suggesting that it could regulate this process. OGT and
O-GlcNAcylation levels increase when quiescent cells are stimulated by
mitogenic signals to enter into the cell cycle (G0/G1 transition). On the
contrary, OGA activity is increased at the G1/S transition leading to a
decrease in global O-GlcNAcylation levels. At the G2/M checkpoint, a burst

in O-GlcNAcylation occurs. In agreement with these observations,
O-GlcNAcylation has been demonstrated to be crucial for cell cycle entry
and progress. Inhibition of OGT delays serum-stimulated MAPK and PI3K
pathways activation and cell cycle entry whereas OGA inhibition
accelerates the process. Moreover, inhibiting OGT in G2-like Xenopus
laevis oocytes prevents entry into M phase. In addition, the levels of cyclin
D1 and cyclin B1, two key regulators of the G1 and the M phase
respectively, decrease when OGT is inhibited. Finally, O-GlcNAcylation
could take part in the control of DNA replication since it modifies several
histones and three proteins of the MCM (Mini Chromosome Maintenance
Complex) 3, 6, and 7 that belong to the DNA pre-replication complex. As a
consequence, deregulation of O-GlcNAcylation processes could contribute
to perturbation in cell cycle control leading to anarchic proliferation, but
also in accumulation of DNA mutations, two well established
characteristics of cancer cells.
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activation (27), demonstrating that OGT is indispensable for
G0/G1 transition.

Therefore, studies that focused on G0/G1 transition indi-
cate that OGT synthesis and a subsequent O-GlcNAcylation
increase are required for cell cycle entry. It might be interest-
ing to establish whether cyclin D is itself O-GlcNAcylated, and
to determine its potential consequences on its expression and
activity.

G1/S
The S phase is the second phase of the cell cycle during which
DNA replicates. At the G1/S boundary a checkpoint is set up to
make sure that the DNA is not damaged. OGT, OGA, and O-
GlcNAcylation levels were measured during the G1/S transition
and throughout S-phase progression (59). A global decrease in O-
GlcNAcylated proteins was observed during the G1/S transition
and this change correlates with an increase in OGA expression
and activity. In agreement with this observation, inhibition of HBP
accelerated the S phase (47). Drougat et al. identified more than 50
proteins which O-GlcNAc status varies among which Minichro-
mosome Maintenance (MCM) 3, 6, and 7, which are localized
in the multiprotein pre-replicative complex needed for helicase
activity and are involved in the replication of DNA (59). Zhang et
al. showed that O-GlcNAcylation of histones is lower in S phase
in comparison with G1, late S, and G2 phases (61) (see below
for details). Accordingly, reduction of histones O-GlcNAcylation
during S phase may help the pre-replicative complex to reach the
chromatin.

Therefore, the few studies relating to the impact of O-
GlcNAcylation on G1/S transition indicate that contrary to G0/G1,
a global decrease in O-GlcNAcylation is observed. Intriguingly,
not only OGA but also OGT levels increase during G1/S (59). It is
tempting to hypothesize that OGT plays a function independent
of its GlcNAc transferase activity as exemplified by its interaction
with p38MAPK (62).

G2/M
The S phase is followed by G2, a phase during which the cell grows
and prepares for the proper division M phase (mitosis in the case
of somatic cells and meiosis of germ cells). A second checkpoint
exists at the G2/M transition to ensure that the DNA replication is
ended and that the DNA is not damaged.

The Xenopus laevis oocyte has been widely used as a model for
the characterization and the identification of many key-cell cycle
components, such as the M-phase promoting factor (MPF) and
the cytostatic factor (CSF) (63, 64) and for studying the regula-
tion of the cell cycle, especially events occurring at G2/M. At the
end of oogenesis, the oocyte is physiologically blocked in prophase
of the first meiotic division in a G2-like stage; it is called imma-
ture oocyte. Upon progesterone stimulation, the oocyte resumes
meiosis in a G2/M analog transition phase.

The micro-injection into Xenopus oocytes of bovine galactosyl-
transferase, an enzyme enabling the capping of terminal GlcNAc
residues inhibited M-phase entry and blocked M to S-phase transi-
tion (65). Slawson and co-workers showed that the perturbation of
Xenopus oocyte O-GlcNAcylation levels either by glucosamine or
PUGNAc treatment modified the maturation kinetics (66). A few

years later, a set of studies conducted by the same group showed
that hormonal stimulation of physiologically G2-blocked Xenopus
laevis oocytes triggers a quick increase in O-GlcNAcylation lev-
els and that inhibition of OGT impairs G2/M transition (67–70).
OGT and O-GlcNAc localized on the meiotic spindle and chromo-
somes in metaphase-II Xenopus laevis oocytes. It was also observed
that OGT expression and O-GlcNAcylation peaked at the M phase
of the cell cycle of MEF and HEK293 cells (60). Slawson et al.
observed that OGT localized to the mitotic spindle and midbody
during mitosis and that its overexpression resulted in supernumer-
ary chromosomes (47). In a second report, these authors showed
that OGT and OGA interact with Aurora B and protein phos-
phatase 1 (PP1) to regulate the stability of the midbody and the
phosphorylation and/or O-GlcNAcylation of vimentin at M phase
(71). Regarding G2/M transition, both OGA and OGT knockdown
decrease cyclin B1 expression, indicating that a correct expression
of the two enzymes are necessary for cell cycle progression (27, 60).

As for cell cycle entry, O-GlcNAcylation increase is crucial for
the cell to start mitosis. The cell cycle is a very complex process that
requires a plethora of enzymes and regulatory components. These
proteins were widely described to be regulated by PTM like phos-
phorylation, acetylation, methylation, ubiquitination, and many
others. Recently, O-GlcNAcylation has joined this list of PTM,
and manipulating OGT and OGA level or activity affects the
progression of the cell cycle.

Altogether, the available data indicate that O-GlcNAcylation
tends to increase all along the cycle with a drop at G1/S. The
pattern of O-GlcNAcylation levels after the M phase and during
cell cycle exit remains unknown. One could expect a dramatic
decrease, a hypothesis that needs to be experimentally addressed.

O-GLcNACYLATION AND EPIGENETIC REGULATIONS
Recent whole-exon sequencing of human cancers has shown a high
proportion of mutations in genes involved in regulation of DNA
methylation, histone modification, and/or nucleosome remodel-
ing (72). These discoveries firmly establish that interferences in
epigenetic processes can lead to cancer and add credence to the
idea that epigenetics is a major player in this disease. As described
below, it is now clear that O-GlcNAcylation plays a part in the
regulation of the epigenome.

Over the last 4 years, several groups focused on O-GlcNAc-
mediated regulation of chromatin dynamics, a process crucial for
DNA replication, DNA repair, gene expression, and mitosis (DNA
compaction) (33, 73–75).

Chromatin condensation and relaxation is managed by histones
that form octamers by assembling two copies of each core nucle-
osomal histone, H2A, H2B, H3, and H4. These oligomers interact
with DNA in a nucleosome structure compacted by the linker his-
tone H1. Histones, assisted by numerous post-translational modi-
fications are therefore the main proteins responsible for chromatin
remodeling and gene expression. Acetylation, methylation, and
phosphorylation are the best-characterized histones PTM, the two
formers being associated with activation of chromatin and the lat-
ter with both activation and repression [for review, see (76)]. His-
tones are also covalently modified by ADP-Ribosylation, SUMOy-
lation, ubiquitination, and as recently described, O-GlcNAcylation
[for review, see (77)], while O-GlcNAcylation of Xenopus oocytes
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histones remained undetectable (69). The histone code is therefore
very complex and far from being deciphered.

Sakabe and Hart pointed out the impact of OGT on histone H3
modification (74). These authors mapped three O-GlcNAcylation
sites on H2A, H2B, and H4 at Thr101, Ser36, and Ser47 respec-
tively, three phosphorylation sites necessary for the assembly of
nucleosomes (74). H2B tail is also O-GlcNAcylated at Ser112 (78).
This modification promotes H2B monoubiquitination at Lys120
allowing local transcription as suggested by visualization of O-
GlcNAcylated H2B at Ser112 in transcribed gene loci (78). H3 tail
is O-GlcNAcylated at the phosphorylation site Ser10 (61). Histone
O-GlcNAcylation is coupled with other modifications associated
with both active and inactive chromatin states, and covalent link-
age of histones by O-GlcNAc fluctuates all along the cell cycle
with a lower rate in S phase (61). Fong et al. worked on the same
histone, and identified Thr32 as a major H3 O-GlcNAcylated site
(75). O-GlcNAcylated H3 isoforms are higher in interphase cells
than in mitosis. H3 phosphorylation at Ser10, Ser28, and Thr32
is associated to mitosis: increased H3 O-GlcNAcylation reduces
phosphorylation and delays mitosis entry (75). It is noteworthy
that H3 Ser10 and Ser28 are phosphorylated by Aurora B (79, 80)
and dephosphorylated by PP1 (81), two enzymes physically inter-
acting with OGT and OGA (71). It is tempting to hypothesize that
regulation of histone assembly/disassembly is managed in part by a
heterotetrameric complex made of Aurora B, PP1, OGT, and OGA.

O-GlcNAc-transferase and O-GlcNAc may also affect chro-
matin structure by modulating chromatin-remodeling enzyme
activities. Fujiki et al. (82) highlighted the role O-GlcNAcylation
of a histone lysine methyltransferase (MLL5) in the control of
chromatin state. MLL5 O-activates RAR-alpha and interacts with
OGT in an active multimeric complex. O-GlcNAcylation of MLL5
increases granulopoiesis of HL60 promyelocytes in response to
retinoic acid. This facilitation occurs through an increased-MLL5
methylation induced by O-GlcNAcylation. One O-GlcNAcylation
site was identified on MLL5 at Thr440 and modification of this
residue potentiates its H3K4 methyltransferase activity. Another
study by Sakabe and Hart also observed that moderate OGT
overexpression prevented the phosphorylation of coactivator-
associated arginine methyltransferase 1 (CARM1), resulting in
decreased H3 methylation on Arg17 by CARM1 (74).

TET (ten-eleven translocation) proteins interact with and tar-
get OGT to chromatin (83). TET are DNA hydroxylases involved in
DNA demethylation. These enzymes convert 5-methyl-Cytosine
to 5-formyl-Cytosine and 5-carboxyl-Cytosine successively (84).
TET are necessary for gene transcription, pre-mRNA splicing,
zygotic epigenetic reprograming, and TET mutations are respon-
sible for myeloid cancers. In an attempt to identify TET proteins
partners, Chen et al. (85) showed that OGT interacts with TET2
and TET3. While OGT does not influence TET function, physical
interaction between TET2 and OGT is a precondition to address
the glycosyltransferase to chromatin where it O-GlcNAcylates
histones. Knockdown of TET2 decreases OGT interaction with
chromatin and impairs H2A/B, H3, and H4 O-GlcNAcylation, and
deregulation of TET2 more precisely reduces O-GlcNAcylation of
H2B at Ser112. Genome-wide chromatin immunoprecipitation
and sequencing analysis indicate that OGT and H2B Ser112 O-
GlcNAc overlap a large amount of target genes with TET2 and

that the density of distribution is enriched at transcription start
sites. As O-GlcNAcylation of H2B at Ser112 promotes monoubiq-
uitination and transcriptional activation (78), TET2 may exert
chromatin activation and gene expression by promoting demethy-
lation of DNA and nucleosome opening by acting indirectly on
histones. Therefore, TET2 and OGT form a complex that regulates
gene transcription. Another study reports the interaction of TET1,
TET2, Sin3a, and Hcfc1 with nuclear OGT (86). A genome-wide
range analysis led by chromatin immunoprecipitation coupled
to high-throughput DNA sequencing indicates that 62% of the
11552 OGT binding sites locate within promoter regions. Among
the list of genes regulated by OGT, it was found genes involved in
glycerolipid, glycerophospholipid, N- and O-glycosylation metab-
olism. OGT binding sites overlay with TET1 at H3K4me3 positive
promoters, and both proteins interact together in the vicinity of
transcription start sites enriched in unmethylated CpG-rich pro-
moters. As for TET2, TET1 is necessary for recruiting OGT to the
chromatin but it seems that, contrary to TET2 and TET3 that are
neither O-GlcNAcylated nor regulated by OGT (85, 87), OGT reg-
ulates 5-hydroxymethyl-Cytosine levels by stabilizing TET1 at the
promoters.

O-GLcNACYLATION REGULATES TRANSCRIPTION FACTOR
ACTIVITIES
Transcription factors bind DNA to control the expression of
an array of target genes, consisting for some in genuine “hubs”
for cellular process regulation. Mutation in transcription factor-
encoding gene, resulting in dysregulation of their expression
or activity, is a common mechanism involved in many cancers
(88). Nonetheless, post-translational modifications including O-
GlcNAcylation also represent an important control mechanism
of the expression and/or activity of transcription factors (16, 89).
Rightfully, several transcription factors involved in cancer have
been shown to be O-GlcNAcylated (Figure 3).

MYC
The protein MYC which is normally expressed at low levels is
largely overexpressed in proliferative cells and cancer cells. MYC is
a preponderant oncogenic transcriptional factor driving forward
cell cycle and replication (90). Upon growth signals, phosphory-
lation on Ser62 results in stimulation of MYC activity. This is a
prerequisite for GSK3β to phosphorylate MYC at Thr58 near the
transactivation domain, resulting in its degradation (91). Almost
20 years ago, Thr58 was shown to be also O-GlcNAcylated (22,
92). GSK3β inhibition or mutation of Ser62 to Ala increase O-
GlcNAcylation of Thr58. Interestingly, in lymphomas, Thr58 is
frequently mutated resulting in a more stable MYC (92). Although
it has not been clearly demonstrated that O-GlcNAcylation of
Thr58 per se is able to stabilize MYC, it is reasonable to assume
that in a context of hyper-O-GlcNAcylation, phosphorylation of
MYC on Thr58 by GSK3β will be reduced, preventing its degra-
dation. This would result in a more stable and more active MYC,
promoting tumorigenesis. Although experimental evidences are
still required to support such a mechanism, a very recent report
presented data in line with this hypothesis (93). In prostate can-
cer biopsies, OGT is upregulated in association with MYC lev-
els. In three prostate cancer cell lines (LNCaP, VCaP, and PC3),
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FIGURE 3 | O-GlcNAcylation and oncogenic transcription factors. Several
transcription factors have been described to be O-GlcNAcylated by the
O-GlcNAc-transferase (OGT) among which some that are involved in
tumorigenesis. The proto-oncogene MYC has been shown to be
O-GlcNAcylated on Thr58. This site is normally phosphorylated by GSK3β in
response to MYC phosphorylation on Ser62 resulting in MYC degradation.
Proper experimental evidences demonstrating that O-GlcNAcylation
promotes MYC stability and pro-oncogenic activities remain to be described.
NF-κB signaling is known to be promoted by O-GlcNAcylation. First, the IKKβ

kinase responsible for NF-κB activation has been shown to be to
O-GlcNAcylated on Ser733. In a p53-null context, it was associated with
pro-oncogenic activity in a model of colitis-associated cancer. Second, NF-κB
itself is also O-GlcNAcylated at Thr322 and Thr352 in presence of high glucose
concentration. In pancreatic cancer cells, Thr322 and Thr352 O-GlcNAcylation
were shown to be involved in cell anchorage in vitro. In breast and prostatic
cancer cells, OGT controls the expression of FOXM1, a pro-oncogenic
transcriptional factor. However, FOXM1, itself, is not O-GlcNAcylated. Through

an unknown substrate and mechanism, OGT prevents FOXM1 degradation
and thus promotes tumor development in breast cancer and metastasis in
prostate cancer. β-Catenin, involved in cell adherent junctions, is also central
to the Wnt/β-catenin pathway as a transcription factor in complex notably with
LEF/TCF co-factors. Once activated, β-catenin promotes tumorigenesis,
especially colorectal and liver cancers. Increased O-GlcNAcylation levels of
β-catenin have been observed in colon carcinoma cells. Furthermore,
interaction of OGT with β-catenin is stimulated during serum-induced
proliferation in HeLa cells. These observations support a positive role of
O-GlcNAc-modified β-catenin in cell proliferation. The well known tumor
suppressor p53 is O-GlcNAcylated at Ser149 which prevents the
phosphorylation at Thr155 by the COP9 signalosome. This results in an
inhibition of p53 degradation. O-GlcNAcylation of p53 promotes p53 stability
and thus its tumor suppressor activity in physiological context. In case of
pro-oncogenic p53 mutants, O-GlcNAc-mediated stability of p53 may favor
pro-oncogenic processes. This hypothesis has not been addressed
experimentally yet.

pharmacologically inhibition of OGT decreased MYC protein sta-
bility without affecting its mRNA levels. The authors confirmed
O-GlcNAcylation of MYC in LNCaP cell line suggesting that this
PTM could be responsible for MYC stabilization (93). However,
to our knowledge, the O-GlcNAc status of MYC in patient tumors
still remains to be evaluated.

p53
p53 is a central tumor suppressor whose gene is mutated in more
than 50% of mutations in cancers (94). p53 level is tightly con-
trolled by PTM (95). Upon various stress signals (DNA damage,
oncogenic events, hypoxia. . .), p53 levels are stabilized through
inhibition of proteasomal degradation. This is achieved by phos-
phorylation of p53, which blocks its interaction with the E3
ubiquitin ligase MDM2 (95). However, phosphorylation-induced
degradation of p53 can also occur, as illustrated by phosphory-
lation performed by COP9 signalosome on Thr155 in the DNA-
binding region of p53 (96). More recently, Yang et al. showed
that O-GlcNAcylation of p53 at residue Ser149 inhibits its phos-
phorylation on Thr155 by COP9 signalosome, hence promoting
p53 stabilization and activity (97). In the case of a wild-type p53,

O-GlcNAcylation should promote its tumor suppressor activity,
as suggested by higher apoptosis in H1299 cells (97). However,
examples of gain-of-function mutant of p53 favoring tumorige-
nesis have been described in the literature (98–100). In this con-
text, stabilization-induced O-GlcNAcylation of gain-of-function
mutant form of p53 may amplify its pro-oncogenic activity.
Clearly, this hypothesis requires to be addressed experimentally.

NF-κB
NF-κB transcription factors are involved in a wide variety of
physiological and pathological processes including, immunity
and inflammation, metabolism, and cancer (101, 102). In the
basal state, NF-κB is sequestered by IκB in the cytosol. Canon-
ical activation takes place by activation of IκB kinase complex
which in turn phosphorylates and triggers IκB degradation. NF-
kB is then released and enters the nucleus to activate its target
genes (101). Originally, Yang et al. identified residues Thr322 and
Thr352 as the sites of O-GlcNAc modification. However, only O-
GlcNAcylation of Thr352 was central for transcriptional activation
(103). O-GlcNAcylation of NF-κB in relation to cancer has not
been directly addressed until recently. It was shown that mutation
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of Thr322 and Thr352 to Ala, reduced the anchorage of pancreatic
ductal adenocarcinoma cells in vitro (104). Therefore, it will be
of great interest to determine in vivo the involvement of NF-κB
O-GlcNAcylation in the context of tumorigenesis.

Links between NF-κB pathway and O-GlcNAcylation have also
been characterized upstream NF-κB factors, in relation to the acti-
vating kinase IKKβ. In a context of p53-null mutation, aerobic
glycolysis is upregulated through an IKK-NF-κB pathway (105).
It was shown that IKKβ is activated by phosphorylation con-
comitantly with an increase in its Ser733 O-GlcNAcylation (106).
Ser733 is usually the target of an inhibitory auto-phosphorylation
by the catalytic domain of activated IKKβ. O-GlcNAcylation of
Ser733 prevents inhibition of IKKβ which results in a sustained
activity. Consequently, NF-κB pathway remains active, and this
further promotes glycolysis (106). The role of NF-κB pathway in
tumorigenesis is complex, either pro- or anti-oncogenic, depend-
ing on cancer type, environment, inflammation status, or p53
functionality (105, 107–110). Whereas it now clearly appears that
O-GlcNAcylation play a significant role in NF-κB pathway, its
involvement in tumorigenesis still remains to be precisely defined.

FOXM1
FOXM1 is a transcriptional regulator expressed at high level in
various cancers, pointing out its importance in tumorigenesis
(111). Links between FOXM1 and O-GlcNAcylation pathway have
been made by Reginato’s laboratory (112). These authors showed
that high levels of OGT are responsible for the increased activ-
ity of FOXM1 in breast cancer MCF-10A cells overexpressing the
activated form of ErbB2. Although no O-GlcNAcylated form of
FOXM1 could be detected, OGT expression was shown to be
central to the control of FOXM1 levels and to its effects on cell
proliferation (112). FOXM1 levels were dramatically decreased by
OGT silencing. Consequently, the level of the FOXM1’s target S-
phase kinase-associated protein 2 (Skp2), involved in the SCFSKP2

E3 ubiquitin ligase complex responsible for p27Kip1 degradation,
was markedly decreased. This resulted in an increase in cell cycle
inhibitor p27Kip1 protein levels and subsequent cell cycle arrest
(112). Similarly, the same group showed that inhibition of OGT
in the prostate cancer cell line PC3-ML was associated with an
increase in FOXM1 degradation through a proteasome-mediated
process (37). It was also observed that loss of FOXM1 upon mod-
ulation of OGT levels in PC3-ML cells affects their ability to
form bone metastasis in mice (see below). Overexpression of a
degradation-resistant mutant of FOXM1 rescued the effects of
OGT inhibition (37). However, the direct target of OGT involved
in the control of FOXM1 expression remains to be identified.

β-CATENIN
β-Catenin is a versatile protein playing fundamental roles in cells
from control of intercellular junction integrity through its interac-
tion with cadherins and cytoskeleton, to regulation of transcrip-
tional processes as a co-transcription factor. As a cell cycle and
proliferation regulator, β-catenin is a key partner in the Wnt/β-
catenin pathway. Upon Wnt ligand interaction with its recep-
tor, β-catenin sequestered by the Adenomatous Polyposis Coli
(APC)/axin degradation complex is released and re-localized to
the nucleus, where it interacts with TCF/LEF or other co-factors

to form a transcriptional complex able to modulate the expres-
sion of a number of target genes (113). Mutations of β-catenin
itself (accounting for 10% of mutations) or APC (one of the
main component of the destruction complex, accounting for 80%
of mutations), are found in 85–90% of CRC. These mutations
increase β-catenin stability which therefore acquires oncogenic
properties.

Recently, in an attempt to understand the link between nutri-
tion and CRC, Olivier-Van Stichelen and colleagues showed that
β-catenin expression correlated with the HBP flux and the O-
GlcNAcylation levels in colon carcinoma cells (114) as previously
pointed out in macrophages (115). Later, Olivier-Van Stichelen et
al. showed that serum-induced proliferation increases the interac-
tion between OGT and β-catenin in HeLa cells, supporting a pos-
itive role for O-GlcNAc-modified β-catenin in cell cycle progres-
sion (27). It is therefore proposed that hyper-O-GlcNAcylation in
the colic and rectal mucosa may constitute a pro-oncogenic signal,
explaining why metabolic disorders and over-nutrition increase
the risk of CRC.

OTHER TRANSCRIPTION FACTORS
Obviously, other transcription factors involved in cancer have been
shown to be O-GlcNAc-modified as hypermethylated in cancer 1
(HIC1) (24), Jun (116, 117), Estrogen Receptor β (118, 119), the
chimeric transcription factor EWS-FLI1 expressed in Ewing’s sar-
coma family tumors (120). However, significant work remains to
be performed to better understand the exact role of the O-GlcNAc-
modified residues of oncogenic-related transcription factors and
their function in tumorigenesis.

O-GLcNACYLATION REGULATES CELL ADHESION AND
MIGRATION
Numerous studies indicate that O-GlcNAc promotes cancer cell
invasiveness and metastasis. Thus, manipulation of O-GlcNAc lev-
els using chemical or shRNA-mediated inhibition of OGA or OGT
affects in vitro and in vivo migration/invasion of breast (31, 112,
121), lung (31, 33), liver (34), prostate (37), and colon (33) cancer
cells. Several lines of evidence suggest that O-GlcNAc favors can-
cer malignancy by impacting the E-cadherine/β-catenin system
and by promoting expression of metalloproteinases.

E-CADHERIN AND CANCER METASTASIS
E-cadherin, the prototypic member of the cadherin family, is
a major component of adherent junctions. E-cadherin regu-
lates cell–cell adhesion via homophilic interactions between its
extracellular domains on opposing plasma membranes and by
binding of its intracellular domain to the cytoskeleton via β-
catenin. Down-regulation of E-cadherin is a critical step in the
epithelial-mesenchymal transition (EMT), characteristic of car-
cinoma invasion. In breast cancer 4T1 cells, E-cadherin protein
expression was increased by OGT shRNA, while it was decreased
by treatment with the pharmacological OGA inhibitors PUGNAc
and NButGT (31). Moreover, co-immunoprecipitation experi-
ments showed that E-cadherin interaction with β-catenin and
p120 was markedly increased in OGT depleted cells and decreased
by OGA inhibitors (31). In addition, analysis of Triton-X100
soluble and insoluble fraction showed that association of E-
cadherin, β-catenin, and p120 with cytoskeleton was increased
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by shOGT and decreased in OGA inhibited cells. Immunoflu-
orescence experiments indicated that shOGT increased colocal-
ization of E-cadherin, β-catenin, and p120 at the cell surface,
whereas OGA inhibition reduced it. In vivo 4T1 cells metastasis
in the lung was markedly reduced by OGT shRNA, and inhibition
of E-cadherin expression in these cells (shOGT + shCadherin)
restored invasiveness to control levels, suggesting an important
role for regulation of E-cadherin expression by O-GlcNAc in
cancer cell invasiveness (31). Whereas no change in E-cadherin
O-GlcNAcylation was reported in this study, O-GlcNAc could be
detected on p120 and β-catenin, suggesting a potential mecha-
nism for O-GlcNAc-induced inhibition of E-cadherin cell surface
localization. In addition, works from other laboratories suggested
that O-GlcNAcylation regulates E-cadherin expression at the tran-
scriptional level (34, 121). Indeed, increasing O-GlcNAcylation
through siRNA-mediated inhibition of OGA down-regulated E-
cadherin mRNA expression in LC cells, whereas decreasing OGT
expression had the opposite effect (34). Interestingly, Snail1, a key
regulator of EMT program, and a major transcriptional repressor
of E-cadherin, was is O-GlcNAcylated in hyperglycemic con-
ditions in an OGT-dependent manner (121). GSK3-mediated
phosphorylation and degradation of Snail1 is suppressed by its
O-GlcNAcylation. Stabilization of Snail1 increases its repressor
function, resulting in inhibition of E-cadherin mRNA expres-
sion (121). Therefore, O-GlcNAc regulation decreases E-cadherin
localization at the membrane through inhibition of its interaction
with its partners p120 and β-catenin, but also through stabiliza-
tion of its transcriptional repressor Snail1. Consistently, a recent
study showed a positive correlation between O-GlcNAc protein
levels, cell migration, and E-cadherin protein levels in ovarian can-
cer cells. In HO-8910PM cells, down-regulation of OGT resulted
in an increase in E-cadherin protein content. On the opposite,
increased O-GlcNAcylation level through PUGNAc or Thiamet-
G treatment decreased E-cadherin protein content in OVCAR3
cells (122). The authors showed that increased O-GlcNAcylation
inhibits E-cadherin-catenin complex formation and that both E-
cadherin, p120 and β-catenin can be O-GlcNAcylated in these cells
(122). Identification of the O-GlcNAc-modified sites in the differ-
ent partners involved will be required to precisely understand the
mechanism involving O-GlcNAcylation in E-cadherin-dependent
cancer cell migration.

INCREASED EXPRESSION OF MATRIX METALLOPROTEINASES
Matrix metalloproteinases (MMPs) are zinc-finger dependent
extracellular matrix (ECM) remodeling enzymes. Overexpression
of MMPs has been associated with epithelial to mesenchymal tran-
sition. MMPs play crucial roles in invasion and metastasis, through
proteolytic degradation of ECM, alteration of cell–cell and cell-
ECM interactions, migration, and angiogenesis. The proteolytic
activity of MMPs is required for a cancer cell to degrade physi-
cal barriers during local expansion, intravasation at nearby blood
vessels, as well as extravasation and invasion at a distant location
(123). Reginato’s group first demonstrated negative regulation
of MMP2 expression upon OGT inhibition using OGT shRNA
in breast cancer cells (an effect probably mediated by down-
regulation of FOXM1 protein), associated with decreased cell inva-
siveness (112). In LCs cells, down-regulation of OGT expression

using siRNA resulted in decreased expression of MMP1, MMP2,
and MMP3, correlated with the decreased migrating and inva-
sive capabilities of these cells, whereas down-regulation of OGA
had the opposite effects (34). More recently, the Reginato’s group
showed that reducing O-GlcNAc in prostate cancer cells also
reduced the expression of MMP2 and MMP9, associated with
decreased FOXM1 expression (37). Inhibition of OGT expression
in these cells was also associated with decreased in vitro invasive-
ness and in vivo metastasis. Interestingly, VEGF expression and
angiogenesis were also inhibited by OGT siRNA, further emphasiz-
ing the involvement of O-GlcNAcylation in malignant properties
of the cells. O-GlcNAcylation then participates in an integrative
strategy that promotes invasiveness and metastasis by increasing
ECM degradation in order to clear the way for migration.

CONCLUSION AND FUTURE DIRECTIONS
Our knowledge regarding the regulation of cell cycle by O-
GlcNAcylation progresses at a relatively high rate. Conversely,
apprehending the role of O-GlcNAcylation in cancer processes
is only at its beginnings. As reviewed here, there are many proofs
that O-GlcNAcylation processes are perturbed in different kinds of
cancers. Mainly, it appeared that O-GlcNAcylation and its cycling
enzymes are upregulated in cancers and that this elevation is posi-
tively correlated with the grade or the aggressiveness of the tumor.
It also appeared that metastases harbor higher O-GlcNAcylation
levels than the primary tumor. Nevertheless, as mentioned pre-
viously, a number of contradictions concerning the expression
or activity of O-GlcNAc-cycling enzymes also appeared (30–36,
40, 46). The large variety of different types of cancers and cellular
models used in these studies, and the fact that O-GlcNAc level may
itself modulate the expression of cycling enzymes deeply compli-
cates the interpretation of the data. Future development should
certainly include detailed analysis of the regulation of the promot-
ers of OGT and OGA, and the study of the transcription factors
that control the activities of these promoters in different types of
normal and cancer cells.

The lack of tools necessary to specifically study the impact of
O-GlcNAcylation on carcinogenesis may also partly explain con-
tradictions observed in literature and slow down the progression
toward understanding whether and how O-GlcNAc and its cycling
enzymes influence the development of cancers. A striking feature
of O-GlcNAcylation in cancer is the variety of proteins targeted by
this PTM. In addition to cell cycle proteins, signaling intermediates
and transcription factors already discussed in this review, several
other types proteins have been shown to be O-GlcNAcylated in
cancer, including metabolic enzymes (124) and heat shock pro-
tein (125, 126). From this impressive diversity, the fact that only
two enzymes, OGT and OGA, are the only catalytic proteins in
charge, calls for further identification of their co-factors and tar-
gets and for a better understanding of their mutual interaction, as
recently exemplified with TET2/3 and OGT in epigenetic control
(85, 87).

Modulating O-GlcNAc pathway could constitute a promising
approach for anti-cancer therapy, which could be used in synergy
with conventional treatments. This will be possible with system-
atic identification of O-GlcNAc-modified sites on the proteins of
interest, which remains the prerequisite to understand the role
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of this PTM in their function. Our understanding in O-GlcNAc
proteome is rising exponentially (20). However, strategies to alter
O-GlcNAc-cycling enzymes and their targets in order to specifi-
cally block cancer-related processes still need to be developed. The
important number of cancer types renders difficult to predict how
conserved a mechanism would be from one tumor to the other. A
way to tackle this issue may come from the determination of the
O-GlcNAcylated protein signature in the different cancers. This
clearly remains a wide field for investigation. Although pharmaco-
logical targeting of OGT is possible in vitro (127), important work
is still required for in vivo application. Indeed,keeping in mind that
O-GlcNAcylation in normal cells should remain untouched, tar-
geting OGT specifically in cancer cell in vivo may represent one of
the most important challenges in this field. O-GlcNAc-modulating
strategies will indeed require caution, as increasing amount of evi-
dences suggests that O-GlcNAcylation regulates highly important
biological processes such as epigenetic (77) and affects molecular
mechanisms involved in major human diseases such as Alzheimer’s
disease, cardiovascular disorders, and diabetes (17, 18).

As we have seen throughout this review, considerable amount of
evidence indicates that O-GlcNAcylation plays an important role
in cell in cancer, through a broad panel of mechanisms (cell cycle,
chromatin dynamics, transcription factors, kinases, and phos-
phatases involved in cell signaling, cell adhesion. . .). However, it is
not clear whether cancer development requires increase in global
protein O-GlcNAcylation or only modification of specific key pro-
teins. In addition, as O-GlcNAcylation level tightly depends on
nutrient availability, an important challenge will be to establish,
for each protein identified as modified by O-GlcNAc in cancer
cells, whether this modification is a cause or a consequence of the
cancerous phenotype of the cell. Indeed, metabolic reprograming,

one of the so-called cancer hallmarks, include increased glucose
and glutamine uptake, which might be sufficient to increase O-
GlcNAc level in proteins. This may promote a general increase in
O-GlcNAc level on proteins, including in proteins more specif-
ically involved in the maintenance of the cancerous phenotype,
leaving the question of causality difficult to answer.

Finally, because the analogy between O-GlcNAcylation and
phosphorylation is striking, we are always tempted to apply to
O-GlcNAc signaling reasoning schemes and concepts taken from
our classical view of phosphorylation cascades and their alter-
ations in cancer cells. However, important differences should be
kept in mind. Unlike phosphorylation, O-GlcNAcylation, which
is performed by a single enzyme, cannot organize in signaling
cascades in which one O-GlcNAcylated protein will transmit the
signal by O-GlcNAcylating another protein. Rather than acting as
a switch that turns on or off signaling pathways, O-GlcNAcylation
should be considered as a “rheostat” (17) that controls the inten-
sity of signals traveling through various pathways according to
nutrient and stress environment. Whether one of the ancestral
functions selected by evolution in unicellular organisms was to use
this “rheostat” to sense nutrient availability and promote prolifer-
ation when the nutritional environment was favorable remains an
open question that might provide some clues to understand why
O-GlcNAcylation appears to be central to cancer cell biology.
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