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Ghrelin has been identified in all vertebrate classes, including sharks. Each species pos-
sesses multiple forms of ghrelin that vary in peptide length and acyl modifications (e.g.,
n-hexanoic, n-non-anoic, n-octanoic, and n-decanoic acids) including des-acyl ghrelin.
Octanoylated ghrelin has been shown to be a potent GH secretagogue, orexigenic factor,
and plays a role in overall metabolism in vertebrates. In the tilapia model, octanoylated ghre-
lin (ghrelin-C8) and decanoylated ghrelin (ghrelin-C10) exhibit different biological actions.
This mini review highlights the current knowledge of the differential actions of ghrelin-C8
and ghrelin-C10 from studies in the tilapia model. These findings suggest that the multiple
forms of ghrelin may exhibit distinct yet complimentary actions directed toward maintaining
overall energy balance in other vertebrates.
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INTRODUCTION
Ghrelin was first identified in rat stomach as an endogenous lig-
and for the growth hormone secretagogue receptor (GHS-R) (1).
Ghrelin has since been identified in all vertebrate classes; fish (2–
4), birds (5), amphibians (6), reptiles (7), mammals (1, 8), as well
as sharks (9). All ghrelins identified thus far are uniquely and pri-
marily acylated by octanoic or decanoic acid on the third amino
acid from the N-terminus (10, 11). However, a variety of other
acyl-forms of ghrelins (n-hexanoic and n-non-anoic acid) and
unsaturated n-octanoic and n-decanoic isoforms of ghrelin have
been identified (5, 12, 13). The acyl modification is necessary for
ghrelins biological action (10). Indeed, the first seven amino acid
residues on the N-terminus are highly conserved across vertebrates
and are known as the“active core”(11, 14) suggesting an evolution-
ary conserved physiological role of ghrelin. Unlike tetrapod ghre-
lins,fish ghrelins possess an amide modification on the C-terminus
(11). Ghrelin is predominately synthesized in the stomach and is
also expressed in a variety of other tissues such as small and large
intestine, pancreas, liver, hypothalamus, telencephalon, pituitary,
gonads, kidneys, gills, adipose tissue, and many others (14, 15).

The biological actions of ghrelin are mediated by the GHS-R,
which codes for two separate transcripts, GHS-R1a and GHS-
R1b (16). GHS-R1a is a seven transmembrane domain G-protein
coupled receptor. This receptor is responsive to both synthetic
growth hormone secretagogues and ghrelin in regulating several
neuroendocrine, metabolic, and non-endocrine actions (15). The
GHS-R1b transcript is shorter than the GHS-R1a isoform due
to the intron not being spliced out thus disrupting the normal
reading frame and resulting in a “non-functional” receptor with
five transmembrane domains (11, 17). GHS-R1b has been sug-
gested to act as a dominant-negative mutant. The formation of
GHS-R1a/GHS-R1b heterodimer facilitates the translocation of
GHS-R1a to the nucleus decreasing the constitutive signaling of
GHS-R1a, thus inhibiting ghrelin’s actions (18). Both isoforms are

found in a variety of endocrine and non-endocrine tissues such as
hypothalamus and a variety of other brain regions, pituitary, liver,
lung, heart, muscle, kidney, and gonads (19). Two GHS-R isoforms
have been identified in the black seabream (20). We have recently
identified two GHS-R isoforms in the tilapia and determined their
tissue distribution (21, 22).

The existence of ghrelin, GHS-R1a and GHS-R1b in fish sug-
gests that the fundamental biological functions of ghrelin are
conserved across vertebrate species (19, 20). In spite of the fact
that all vertebrates possess multiple forms of ghrelin, nearly all
of our understanding about ghrelin’s biological actions has come
from studies using the ghrelin-C8, thus leaving a huge gap in our
understanding of ghrelin biology. This mini review focuses on the
differential effects of ghrelin-C8 and ghrelin-C10 in tilapia. For
more general information on the structure and function of ghre-
lin within vertebrates the reader is referred to the following review
papers (11, 14, 23, 24).

DIFFERENTIAL ROLES OF GHRELIN-C8 AND GHRELIN-C10 IN
TILAPIA
We have identified two forms of ghrelin in the Mozambique
tilapia (Oreochromis mossambicus) stomach (4). They exhibit
100% amino acid identity with each other, the difference being
the acyl modification (n-octanoic or n-decanoic) on Ser3. The
major form of tilapia ghrelin possesses an n-decanoic (ghrelin-
C10) modification (4). Multiple isoforms of ghrelin have been
identified in other fish species, as observed in other vertebrates.
Four isoforms of ghrelin have been identified in rainbow trout (2)
and 11 isoforms of ghrelin have been identified in goldfish (25).
In the chicken (5), ghrelin-C8 and ghrelin-C10 were isolated in
similar amounts, whereas in goldfish (25), eel (3), bullfrog (26),
and humans (27) ghrelin-C8 is the major form. Both acylated
modifications are essential for receptor binding (28) and ghrelin
transport across the blood-brain barrier (29).
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Riley Ghrelins exhibit differential biological functions

Since its original discovery as a potent growth hormone sec-
retagogue, ghrelin has been shown to be involved in a variety
of neuroendocrine, metabolic, and non-endocrine functions that
include, but not limited to, orexigenic activity, cardiovascular, gas-
trointestinal, pancreatic, and lipogenic and glucogenic actions (15,
16, 23, 30). In spite of the fact that all vertebrates studied to date
possess multiple forms of ghrelin, nearly all of the published work
has focused on the biological functions of ghrelin-C8 and des-acyl
ghrelin. Hosoda et al. (27) have demonstrated that ghrelin-C8 and
ghrelin-C10 exhibit the same potency to increase (Ca2+) levels in
CHO cells expressing rat GHS-R1a as well as stimulate GH release
in rats. In goldfish des-acyl ghrelin was shown to attenuate the
orexigenic actions of ghrelin-C8, but had no effect on food intake
when administered alone (31). Notwithstanding, since des-acyl
ghrelin has been shown to exhibit some biological functions [e.g.,
stimulate adipogenesis and cardioprotective actions (32, 33)], that
the biological role− beyond stimulating GH release− of the other
ghrelin forms have not been further investigated.

We have shown in tilapia that ghrelin-C8 and ghrelin-C10
appear to exhibit differential biological functions (30). Ghrelin-
C10 was more potent than ghrelin-C8 in stimulating GH release
from the tilapia pituitary, yet neither form altered pituitary GH
mRNA expression levels (21). Both forms equally increased liver
IGF-1 mRNA expression, but ghrelin-C8 was more potent than
ghrelin-C10 in increasing liver growth hormone receptor mRNA
expression in tilapia (21). Tilapia treated with ghrelin-C10 for
21 days (via osmotic pumps) exhibited a significant increase in
food intake and body weight; ghrelin-C8 had no effect. The
increase in body weight was likely a result of increased adi-
posity in liver and muscle tissue induced by ghrelin-C10 (34).
Ghrelin-C8 has been shown to stimulate adiposity in rat bone
marrow (33).

Brain neuropeptide Y (NPY) mRNA expression levels were
significantly elevated 4 and 8 h following ghrelin-C10, not ghrelin-
C8, injection in tilapia (30). In goldfish, the orexigenic actions of
ghrelin have been shown to be mediated by the NPY pathway
(35), thus suggesting a similar mechanism of control in tilapia.
In spite of the orexigenic actions of NPY in vertebrates (36), we
have not observed an acute increase in food intake following either
ghrelin-C8 or ghrelin-C10 treatment (unpublished observations).
In rainbow trout, ghrelin-C8 treatment has been shown to have no
effect on food intake (37), increase food intake (38), and inhibit
food intake (37). In goldfish, two forms of octanoylated ghrelin
(12- and 17-amino acid residues) stimulated food intake, whereas
des-acylated ghrelin17 had no effect (25). Ghrelin-C8 treatment
has routinely been shown to stimulate food intake in mammals
(24, 39). However, studies using ghrelin (ghrl−/−) knockout mod-
els (40, 41) suggest that ghrelin’s role in stimulating food intake
is secondary to its maintenance of metabolic energy balance (16,
42). The use of ghrl−/− models provides a unique opportunity to
investigate the differential roles of the multiple forms of ghrelin.

In tilapia, only ghrelin-C8 significantly elevated plasma glu-
cose levels 4 and 8 h post intraperitoneal injection (30). In rainbow
trout ghrelin-C8 stimulated glucokinase (GK) and pyruvate kinase
activity, as well as increased the mRNA expression levels of glucose
transporter-2 and GK in different regions of the brain, with-
out altering plasma glucose levels (43). These data suggest that

ghrelin-C8, in tilapia and rainbow trout, may play a role in cen-
tral glucose-sensing as well as in glucose metabolism in fish as
observed in mammals (44). Des-acyl ghrelin had no effect on
plasma glucose or insulin levels in healthy humans, but counter-
acted the actions of ghrelin-C8 on glucose and insulin levels (45).
This indicates that des-acyl ghrelin possesses metabolic functions
in mammals (33, 45). These data lend support to the hypoth-
esis that the other acyl-forms of ghrelin may exhibit distinct
functions from that of n-octanoylated ghrelin. Recently, we have
observed that ghrelin-C8 reversed the negative effects of cortisol
on the mRNA expression levels of the glucocorticoid receptor (GR)
and GHS-R1a-LR in the hypothalamus of tilapia (Figures 1A,B,
respectively). These data suggest that ghrelin-C8 may be play-
ing a role in counteracting the negative effects of chronic stress
and/or stress recovery in tilapia. We have previously observed dif-
ferential regulation of the GHS-R mRNA isoforms in tilapia (46,
47). Further studies are needed to elucidate the biological signif-
icance of the different expression patterns of the GHS-Rs. Taken

FIGURE 1 | Sexually mature male and female tilapia were surgically
implanted with a micro-osmotic pump into the IP cavity containing
either saline (control), 100 µg/ml of ghrelin-C8, or 100 µg/ml of
ghrelin-C10 (34). The calculated rate of release at 24°C was 13 ng/h for
32 days. Twenty-four hours following the surgery fish were fed a control diet
or cortisol-laden feed [500 mg/kg feed; (48)] for 21 days twice a day. Upon
termination of the experiment brain sections were collected, RNA was
extracted and reversed transcribed into cDNA. Relative mRNA expression
levels were determined by qPCR. Ghrelin-C8 treatment significantly
reversed the inhibitory effects of cortisol on GR mRNA expression levels in
the hypothalamus (A). Ghrelin-C8 treatment partially reversed the
stimulatory effect cortisol exhibited on hypothalamic GHS-R-1a-LR mRNA
expression levels (B). mRNA data are presented as relative to saline control
feed group. Columns with different letters are significantly different at
P < 0.05, n=10–12.
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together, our data in tilapia clearly shows that ghrelin-C8 and
ghrelin-C10 exhibit distinct, yet complimentary actions directed
toward maintaining metabolic balance within the animal. Our
laboratory is currently investigating the direct effects of ghrelin-
C8 and ghrelin-C10 on neuropeptide mRNA expression patterns
using brain tissue culture methods and proteomic and metabolic
approaches.

CONCLUSION
To date, all vertebrates produce multiple forms of ghrelin. There
are reports that des-acyl ghrelin exhibits biological functions in
mammals (32, 33) and that both ghrelin-C8 and ghrelin-C10
simulate GH release in rats (27), suggesting that the other

acyl-forms of ghrelin likely exhibit biological functions. In tilapia,
both ghrelin-C8 and ghrelin-C10 exert distinct biological actions
that appear to be directed toward maintenance of metabolic
balance. It is not clear what is the mechanism underlying the
different biological effects of ghrelin-C8 and ghrelin-C10. A pos-
sible hypothesis is that a third GHS-R-isoform that exhibits
higher affinity toward ghrelin-C10 exists or that ghrelin-C10 binds
non-specifically to a related receptor.
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