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Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming poly-
meric mucins. The secreted mucins adsorb water to form mucus that is propelled by
neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and
pathogens from the lungs. Several features of the intracellular trafficking of mucins make
the airway secretory cell an interesting comparator for the cell biology of regulated exocy-
tosis. Polymeric mucins are exceedingly large molecules (up to 3 × 106 Da per monomer)
whose folding and initial polymerization in the ER requires the protein disulfide isomerase
Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched net-
works comprising more than 20 monomers. The large size of mucin polymers imposes
constraints on their packaging into transport vesicles along the secretory pathway. Sugar
side chains account for >70% of the mass of mucins, and their attachment to the protein
core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large
secretory granules ∼1 µm in diameter. These are translocated to the apical membrane to
be positioned for exocytosis by cooperative interactions among myristoylated alanine-rich
C kinase substrate, cysteine string protein, heat shock protein 70, and the cytoskeleton.
Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate
and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as
indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-
2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion
is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by
extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated
secretion is induced by high levels of the same ligands, and possibly by inflammatory
mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting
in the generation of DAG and of IP3 that releases calcium from apical ER. Stimulated
secretion requires activation of the low affinity calcium sensor Synaptotagmin-2, while a
corresponding high affinity calcium sensor in basal secretion is not known. The core exo-
cytic machinery is comprised of the SNARE proteins VAMP8, SNAP23, and an unknown
Syntaxin protein, together with the scaffolding protein Munc18b. Common and distinct
features of this exocytic system in comparison to neuroendocrine cells and neurons are
highlighted.

Keywords: secretion, exocytosis, mucin, mucus, MARCKS, Munc18, Munc13, synaptotagmin

BIOLOGY AND PATHOPHYSIOLOGY OF AIRWAY MUCUS
Mucus has physical characteristics on the border between a vis-
cous fluid and a soft and elastic solid (1). These characteristics
are conferred by a semi-dilute network of polymerized mucins in
water. The secreted, polymeric mucins expressed in the airways
are Muc5ac and Muc5b (2, 3). (Note, lower case letters are used to
designate non-human mammalian mucins, while MUC5AC and
MUC5B designate the human orthologs. In this review, we use
lower case letters to designate all mammalian mucins, and only
use upper case letters when referring specifically to human data.)
In healthy airway mucus, water accounts for about 98% of the
mass, mucins for about 0.7%, and salts and small amounts of
other macromolecules for the rest. The mucus layer lies atop a
denser periciliary layer containing membrane-tethered glycocon-
jugates, including glycosaminoglycans and membrane-spanning

mucins (Muc 1, 4, and 16) (4–6). The mucus layer is continually
swept from distal to proximal airways by beating cilia, and is even-
tually propelled out of the lungs into the pharynx and swallowed,
removing entrapped particles, pathogens, and dissolved chemi-
cals. The critical importance of the mucus layer in airway defense
is shown by the spontaneous inflammatory lung and nasal disease
that develops in mice in which the constitutively produced mucin,
Muc5b, has been deleted (1).

In order to replenish the mucus layer, mucins are continuously
synthesized and released by secretory cells that form a mosaic with
ciliated cells, with similar numbers of both cell types (Figure 1,
left). In allergic lung inflammation, which appears to be a para-
sitic defense gone awry (4, 7), the second polymeric airway mucin,
Muc5ac, is produced in large quantities (Figure 1, center and
right). Whereas increased mucin production alone does not appear
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Adler et al. Airway mucin secretion

FIGURE 1 | Mucin production and secretion in the mouse airway. Left – In
the healthy baseline state, alternating ciliated and domed secretory cells are
seen, with no mucin granules visible by Alcian blue and periodic acid Schiff
(AB-PAS) staining. Center – Numerous large mucin granules are visible in

secretory cells 3 days after mucin production is increased by IL-13-dependent
allergic inflammation as described (51). Right – Exocytic secretion of the
intraepithelial mucin stored in inflamed airway epithelium induced by brief
exposure to an ATP aerosol as described (51). Scale bar is 10 µm.

to lead to pathology (8), the production of large amounts of mucin
together with its rapid secretion (“mucus hypersecretion”) can
overwhelm available liquid resulting in formation of excessively
viscoelastic mucus that is poorly cleared by ciliary action or cough.
When coupled with airway narrowing due to bronchoconstriction
in asthma, this can lead to widespread airway closure with serious
consequences. Mucus hypersecretion is also an important feature
of chronic obstructive pulmonary disease (COPD), cystic fibrosis
(CF), and idiopathic bronchiectasis (1).

A key event in mucus secretion is its hydration immediately
after exocytosis (4, 9, 10). Mucins are packaged dehydrated in
secretory granules, and must adsorb more than 100-fold their
mass of water soon after secretion in order to attain the appropri-
ate viscoelasticity for ciliary clearance. Water in the airway lumen
is controlled both by the release of chloride through CFTR, CaCC,
and Slc26A9, and by the absorption of sodium by ENaC, with water
passively following the flux of ions (11–13). Coupling of the secre-
tion of chloride and mucins is accomplished by paracrine signaling
through ATP, adenosine, and other extracellular signaling mole-
cules. In CF, mutation of the principal chloride channel, CFTR,
results in insufficient luminal water that causes the formation of
underhydrated mucus which is excessively viscoelastic and difficult
to clear. The underhydration is exacerbated because CFTR is also a
channel for bicarbonate, which is needed to chelate calcium (9, 14).
In acidic secretory granules of the intestinal epithelium, calcium
binds to the N-terminus of MUC2, which is the secreted mucin
most similar to MUC5AC in structure, and organizes the mucin
in such a way that it can be secreted without entanglement (15).
Too little bicarbonate at mucin release prevents normal mucin
unfolding and leads to formation of abnormally dense mucus (16);
similar mechanisms likely operate in the airway.

In summary, the mucus layer forms a mobile, essential barrier
that protects the lungs when it is functioning properly, but dys-
function of the mucus layer plays a prominent role in all of the
common diseases of the airways.

MUCIN SYNTHESIS, PROCESSING, AND PACKAGING
Muc5b/MUC5B is transcribed constitutively throughout the con-
ducting airways from the trachea down to but not including ter-
minal bronchioles (1, 17, 18). Muc5ac is produced in low amounts

or not at all in healthy mice, although in humans MUC5AC is
produced constitutively in proximal airways (trachea and bronchi)
(1). In allergic inflammation the production of Muc5ac increases
dramatically (40- to 200-fold) in the airways of mice and in cul-
tured human airway epithelial cells (19–21). Both mucins are pro-
duced in the same secretory cells, but even in conditions of severe
inflammation they are not produced in small airways, which makes
teleologic sense in that their small luminal diameters (<200 µm)
make them highly susceptible to occlusion.

After translation at the ER, Muc5ac, and Muc5b undergo initial
polymerization as homodimers (3). These are among the largest
macromolecules encoded in the mammalian genome, and their
processing induces a stress response in the ER (22). Proper folding
and polymerization require the protein disulfide isomerase Agr2,
whose deletion in mice results in absent intestinal mucin (23) and
in reduced airway mucin in the setting of allergic lung inflam-
mation (24). The transport of polymeric mucins from the ER to
the Golgi and through the Golgi has been little studied, but likely
involves modulation of COP-II transport vesicle size to accommo-
date large cargoes as has been described for collagen (25). In the
Golgi, Muc5b undergoes further polymerization in linear chains
up to 20 monomers in length (3, 26). The structure of Muc5ac
is less well studied, but appears to be more similar to Muc2 that
forms branched polymers resulting in formation of a covalent net
(9). Both mucins undergo O-glycosylation in the Golgi that result
in mature glycoproteins that are more than 70% carbohydrate with
a general negative charge due to sulfation or sialylation of many
terminal sugars (27).

Export of polymeric mucins from the trans-Golgi and lateral
fusion of post-Golgi vesicles to form secretory granules are addi-
tional transport steps that have been poorly studied. Similar to the
case of COP-II vesicles, post-Golgi clathrin-coated vesicles have
recently been shown to be capable of size variation to accommo-
date large cargo proteins (28). It is probable this mechanism is also
utilized for mammalian mucins because, in fruit flies, assembly of
large salivary mucin granules requires clathrin and the adaptor
AP-1 (29). Mature mucin secretory granules are very large, with
a mean diameter of 1 µm. Their exocytic fusion is highly regu-
lated by extracellular secretagogues (Table 1), as described below.
It should be noted that even though additional secretory pathways
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Table 1 | Ligands shown to induce mucin secretion.

Ligand Receptor; site of action Reference

ATP, UTP P2Y2; epithelium Chen et al. (68), Danahay et al. (49), Ehre et al. (37),

Kemp et al. (69), and Kim and Lee (70)

Adenosine A3AR; epithelium (in mice but not humans, dogs, or guinea pigs) Young et al. (62)

Proteases PAR1, PAR2, other; epithelium Breuer et al. (71), Jones et al. (47), Liu et al. (72), and

Park et al. (39)

Acetylcholine Unknown; may be indirect Singer et al. (34)

Histamine Unknown; may be indirect Huang et al. (73)

Serotonin Unknown; may be indirect Foster et al. (36)

Capsaicin (substance P) NK1; may be indirect Guo et al. (74) and Kuo et al. (75)

Ionomycin (calcium) Syt2, Munc13, PKC, other; epithelium (intracellular) Danahay et al. (49), Ehre et al. (37), Tuvim et al. (46),

and Zhu et al. (18)

PMA Munc13-2, PKC; epithelium (intracellular) Danahay et al. (49), Ehre et al. (37), and Zhu et al. (18)

In the left column are ligands reported to induce secretion of mucin from airway surface epithelial cells. In the middle column are receptors for these ligands and

whether they act directly on epithelial cells. In the right column are selected references that offer evidence for the activity of the ligands, their receptors, and their

cellular localization. The first three rows (white background) show ligands that appear to act directly on epithelial cell surface receptors based upon in vitro and/or

in vivo studies; the next four rows (gray background) show ligands that generally act on cell surface receptors, but may activate cells in the airway other than epithelial

cells that in turn activate epithelial cells; the last two rows show ligands that act on intracellular targets. PMA, phorbol 12-myristate 13-acetate.

have been described in other cell types, such as a minor regulated
pathway for secretion of immature granules and the compound
exocytosis of mature granules (30), these are not well-described in
airway secretory cells and will not be addressed in this review.

MUCIN GRANULE POSITIONING FOR SECRETION
The movement of mature mucin granules to the plasma mem-
brane for exocytosis has been the subject of work in numerous
laboratories for many years. In the 1990s, work in the Adler lab-
oratory turned to the Myristoylated Alanine-Rich C Kinase Sub-
strate (MARCKS) protein. MARCKS was a known actin-binding
protein and protein kinase C (PKC) substrate (31), and it was
known that PKC activation enhanced mucin secretion (32), so
MARCKS was a logical candidate regulator of mucin granule
movement.

MARCKS is a rod-shaped 87 kDa protein that is ubiquitously
expressed. Three domains of MARCKS are conserved evolu-
tionarily. First is the Phosphorylation Site Domain (PSD), also
known as the “effector domain,” a highly basic 25 amino acid
stretch containing a number of serine residues that are phos-
phorylated by PKC. This domain also binds calcium/calmodulin
and crosslinks actin filaments. Second is the Multiple Homology
(MH2) domain, whose function is unknown. Third is the N-
terminal region containing 24 amino acids and a myristic acid
moiety involved in binding to membranes. MARCKS knock-
out mice die at birth or soon afterward, so peptides that might
compete with native MARCKS to inhibit its function were gener-
ated by the Adler laboratory in collaboration with the Blackshear
laboratory. These were tested using normal human bronchial
epithelial (NHBE) cells grown in air-liquid interface culture to
maintain their well-differentiated state. Peptides identical to the
PSD site tended to induce a toxic response, but a peptide iden-
tical to the N-terminus had a strong inhibitory effect on mucin
secretion induced by a combination of phorbol ester, a PKC
activator, and 8-bromo-cyclic GMP, a protein kinase G (PKG)

activator (33), or by the more physiologically relevant stimulus
UTP. This peptide was named Myristoylated N-terminal Sequence
(MANS), and a control missense peptide was named Random
N-terminal Sequence (RNS). In contrast to MANS, RNS was with-
out effect on mucin secretion. Additional studies showed that
MARCKS phosphorylation in response to protein kinase acti-
vation, followed by dephosphorylation catalyzed by a protein
phosphatase type 2A (PP2A), were critical to MARCKS func-
tion. This was the first publication to show a specific biologi-
cal function for MARCKS, and suggested a mechanism whereby
MARCKS came off the inner face of the plasma membrane when
phosphorylated by PKC, then bound to mucin granules at the
N-terminus and the cytoskeleton at the PSD site, serving as a
bridge for granule transport to the plasma membrane by the
cytoskeleton (33).

To examine the function of MARCKS in vivo, mice with mucous
metaplasia induced by allergic inflammation (see Mucin Exocy-
tosis, below) were then exposed to aerosolized methacholine to
induce mucin secretion. Intratracheal pretreatment with MANS
dose-dependently inhibited mucin secretion (34), and it attenu-
ated airflow obstruction about 40% (35). Gold-labeling of stim-
ulated cells revealed MARCKS to be morphologically associated
with mucin granules, and treatment with MANS but not RNS
blocked the association (34). Additional studies performed in mice
with human neutrophil elastase instilled in the airways to induce
mucous metaplasia showed similar results, with MANS but not
RNS attenuating both mucin secretion and airway hyperreactivity
in response to serotonin (36).

Subsequent studies have revealed that PKC δ and ε isoforms
are involved in stimulated mucin secretion (37, 38), and that
PKCδ-provoked secretion depends on phosphorylation of MAR-
CKS (38, 39). Another question was the mechanism of transloca-
tion of MARCKS from the plasma membrane to mucin granules.
Co-immunoprecipitation studies revealed an association between
MARCKS and two previously described chaperones – Heat Shock
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Protein 70 (HSP70) and Cysteine String Protein (CSP) (40). Of
interest, there was previously known to be direct and specific inter-
action of HSP70 with CSP (41). Western blotting and proteomic
analysis of mucin granule membranes, ultrastructural immuno-
histochemistry, and immunoprecipitation experiments showed
that MARCKS, HSP70, and CSP form a trimeric complex asso-
ciated with the granule membrane (42, 43). Functional studies in
a bronchial epithelial cell line using siRNA to knock down expres-
sion of MARCKS, HSP70, or CSP resulted in the attenuation of
stimulated mucin secretion (42).

Additional studies have examined interactions among MAR-
CKS, the chaperones, and cytoskeletal proteins. Treatment of
NHBE cells with the pyrimidinone MAL3-101, an HSP70
inhibitor, or siRNA against HSP70, attenuated phorbol ester-
stimulated mucin secretion, and blocked trafficking of fluorescent-
tagged MARCKS (42, 44). In preliminary studies, cell-permeant
peptides that target different domains of CSP were utilized to show
that the C-terminus of CSP, rather than the more frequently stud-
ied “J” domain, appears to be involved in attachment of MARCKS
to mucin granule membranes and resultant secretion. MARCKS
has been found to bind both actin and myosin (33), and recent
experiments showed that the myosin family involved is Myosin
V (45). A possible contributing mechanism of MARCKS action
besides granule transport could be the remodeling of apical actin
(30). Exocytic Rab GTPases of the 3 and 27 subfamilies interact
with the cytoskeleton and catalyze loose tethering of secretory
granules to the plasma membrane in other cell types; Rab3D and
Rab27A are expressed in airway secretory cells (30, 46), though
they have not yet been functionally implicated in mucin secretion
or MARCKS interaction. Another possibly important interaction
is with VAMP8 that has been identified as the principal t-SNARE in
mucin secretion (47) (see Core Exocytic Machinery, below). Pre-
liminary studies from the Adler laboratory show that MARCKS
and CSP bind VAMP8 on mucin granules. In summary, MARCKS
engages in multiple protein interactions that together help posi-
tion mucin secretory granules for exocytotic release. For a listing
of proteins known to localize to the mucin granule membrane, see
Table 2.

MUCIN EXOCYTOSIS
Mucins are secreted into the airway lumen at a low basal rate and
a high stimulated rate (1, 30). It is difficult to precisely define
the difference in these rates because their measurement depends
upon intracellular mucin content, the time interval of observa-
tion, and the post-exocytic release of mucins and their maturation
to mucus for most assays. Despite these limitations, the rate of
stimulated secretion has been generally found to exceed the rate
of basal secretion by ∼5-fold over durations of 1 h or less by a
variety of techniques (18, 37, 48, 49). The basal rate of secretion
matches the basal rate of mucin synthesis in the distal airways of
humans and all the airways of mice so that there is little intracellu-
lar mucin accumulation in the healthy state (Figure 1, left). Small
amounts of intracellular mucin in this setting can be detected
by sensitive immunohistochemical techniques that involve signal
amplification (18, 50), but generally are not detectable by histo-
chemical stains (51). The proximal airways of humans do contain
histochemically apparent mucin associated with the constitutive

Table 2 | Proteins associated with airway epithelial mucin granules.

Protein Reference

ClCa3 Leverkoehne and Gruber (76), Lin et al. (45), Park et al.

(40), Raiford et al. (43), and Singer et al. (34)

CFTR Lesimple et al. (77)

CSP Fang et al. (44), Lin et al. (45), Park et al. (40), and Raiford

et al. (43)

HSP70 Fang et al. (44), Lin et al. (45), Park et al. (40), and Raiford

et al. (43)

MARCKS Fang et al. (44), Li et al. (33), Lin et al. (45), Park et al. (40),

Park et al. (38), Raiford et al. (43), and Singer et al. (34)

Myosin V Lin et al. (45) and Raiford et al. (43)

Rab3D Evans et al. (51) and Tuvim et al. (46)

Syt2 Tuvim et al. (46)

VAMP8 Jones et al. (47)

VNUT Sesma et al. (78)

Proteins that have been found to be associated with mucin granules of airway

surface epithelial cells are listed alphabetically in the first column, and references

for the association are reported in the second column. See Table 1 in Ref. (43)

for a full listing of all proteins found by LC/MS to associate with mucin granules,

though not all of these have been validated. ClCa, calcium-activated chloride chan-

nel; CFTR, cystic fibrosis transmembrane conductance regulator; CSP, cysteine

string protein; HSP, heat shock protein; VNUT, vesicular nucleotide transporter.

expression of MUC5AC (1),but most functional studies of the exo-
cytic machinery have been performed in mouse models so these
will be the focus of further discussion. For comparison with in vitro
systems studied by electrophysiologic (49) and videomicroscopic
(52) techniques, the reader is referred to the referenced articles.

A regulated exocytic mechanism mediates both basal and stim-
ulated mucin secretion as indicated by abnormal phenotypes in
both basal and stimulated secretion when Munc13-2, a sensor of
second messengers (see Extracellular Signaling and the Exocytic
Regulatory Machinery), is deleted in mice (18). A defect in basal
mucin secretion can be detected as the spontaneous accumulation
of intracellular mucin in the absence of increased mucin synthesis
(53). To measure stimulated secretion, it is useful to first induce
increased mucin production and accumulation (mucous metapla-
sia) with allergic inflammation (Figure 1, center), such as by IL-13
instillation or ovalbumin immunization and challenge (51, 53). A
defect in stimulated mucin secretion can then be detected as the
failure to release intracellular mucin in response to a strong agonist
such as ATP (Figure 1, right). Differential effects of the deletion
of genes encoding various exocytic proteins on basal and stimu-
lated mucin secretion indicate which proteins participate in which
secretory state. In general, deletion of components of the core
exocytic machinery give phenotypes in both basal and stimulated
secretion, indicating that there is a single core exocytic machine,
whereas deletion of components of the regulatory machinery give
variable phenotypes, as described below.
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CORE EXOCYTIC MACHINERY
Every step of vesicular transport on the exocytic and endocytic
pathways involves the interactions of a four helix SNARE bundle
with an SM protein (30, 54, 55). The SNARE proteins impart speci-
ficity to the pairing of transport vesicles with target membranes,
mediate tight docking of vesicles to target membranes, and induce
fusion of vesicle and target membranes when they fully coil. SM
proteins provide an essential platform for sequential interactions
of SNARE proteins, and also mediate interactions of the SNARE
complex with tethering proteins (Figure 2). Three of the SNARE
helices localize to the target membrane (called t-SNAREs for tar-
get SNAREs, or Q-SNAREs since the ionic amino acid of their
SNARE domains is generally glutamine), and one SNARE helix is
localized on the vesicle membrane (v-SNARE for vesicle SNARE,
or R-SNARE since the ionic amino acid is generally arginine).

Syntaxins are Qa SNAREs that can be considered the central
component of the core machinery since they initiate formation
of the SNARE complex and their structure is ordered even in
the absence of interaction with the other SNARE components.
The Syntaxin that mediates mucin granule exocytosis remains
unknown. Candidates are Stx 2, 3, and 11, all of which have
been shown to functionally pair with Munc18b in other cell types
since Munc18b has been definitively implicated in airway mucin
exocytosis (56) (see below). Efforts are underway in the Dickey lab-
oratory using genetically modified mice to test the roles of these
Syntaxins in mucin secretion.

In both yeast and neurons, the Qb and Qc SNAREs involved
in exocytosis are contributed by a single protein with two SNARE

domains connected by a linker region. In yeast this protein is Sec9,
which is essential for cell viability. In neurons the cognate protein
mediating axonal synaptic vesicle release is SNAP25 (57). While
SNAP25 is essential for post-natal life, brain development to the
time of birth is nearly normal. In unpublished work, the Dickey
laboratory has obtained evidence that SNAP23 mediates both basal
and stimulated airway mucin secretion. SNAP23 is expressed ubiq-
uitously, and knockout mice experience early embryonic lethality
(58, 59). However heterozygous knockout mice show spontaneous
airway epithelial cell mucin accumulation, indicating a defect in
basal mucin secretion, as well as epithelial mucin retention after
stimulation with aerosolized ATP, indicating a defect in stimu-
lated secretion. Thus, SNAP23 appears to mediate most or all Qbc
function in both basal and stimulated mucin secretion.

Recently, the R-SNARE (v-SNARE) in airway mucin secretion
was identified as VAMP8 by immunolocalization to mucin secre-
tory granules, in vitro functional analysis by RNA interference,
and in vivo analysis of knockout mice (47). Both basal and stimu-
lated mucin secretion were reduced by loss of VAMP8, though the
defects were not as severe as from the loss of some other exocytic
proteins, consistent with the viability of knockout mice, and sug-
gesting that other v-SNAREs also participate in mucin secretion.

The scaffolding function of SM proteins in exocytosis in dif-
ferent cell types is mediated by three Munc18 proteins (54, 56).
Munc18a (Stxbp1) and Munc18b (Stxbp2) appear to be paralogs
functioning in axonal/apical secretion, whereas Munc18c (Stxbp3)
is a ubiquitous isoform functioning in dendritic/basolateral
secretion. Munc18a is expressed in neurons and neuroendocrine

FIGURE 2 | Regulated airway mucin secretion. Left – In the basal state,
mucin granules are thought to become tethered to the plasma membrane by
Rab proteins and effectors that have not yet been identified, in the vicinity of
components of the exocytic machinery. Center – Activation of heptahelical
receptors such as those for ATP (P2Y2) and adenosine (A3R) leads to activation
of the trimeric G-protein, Gq, and phospholipase C (PLC), resulting in
generation of the second messengers diacylglycerol (DAG) and inositol
trisphosphate (IP3). Diacylglycerol activates the priming protein Munc13-2,
and IP3 induces the release of calcium from apical ER to activate
Synaptotagmin-2 (Syt2). Munc13-4 also participates in granule priming, and an

unknown high affinity calcium sensor likely functions in basal secretion rather
than Syt2. Right – Activation of the regulatory Munc13 and Syt proteins leads
to full coiling of the SNARE proteins (SNAP23, VAMP8, and an unknown
Syntaxin, all shown in black) to induce fusion of the granule and plasma
membranes. The interactions of the SNARE proteins take place on a scaffold
provided by Munc18b. In other secretory cells that form the basis for this
model, exocytic Syntaxins contain four hydrophobic coiled-coil domains that
must be opened to initiate secretion (left panel), and during fusion the
associated Munc18 protein remains associated only by an interaction at the
Syntaxin N-terminus (right panel).
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cells, whereas Munc18b is expressed in polarized epithelia.
Together, these data suggested that Munc18b mediates airway
mucin secretion, and localization and functional data support this.
Munc18b is highly expressed in airway secretory cells where it
localizes to the apical plasma membrane (56). Munc18b knockout
mice are not viable postnatally, but heterozygous knockout mice
show an ∼50% reduction in stimulated mucin secretion, indicat-
ing that Munc18b is a limiting component of the exocytic machin-
ery (56). These heterozygous mutant mice do not show sponta-
neous mucin accumulation, unlike heterozygous SNAP23 mutant
mice, suggesting that another SM protein besides Munc18b also
plays a scaffolding role in basal mucin secretion whereas no other
protein besides SNAP23 appears to function as a Qbc SNARE in
mucin exocytosis. Ruling out the possibility that Munc18b func-
tions only in stimulated and not basal mucin secretion, conditional
mutant mice with Munc18b deleted only in airway secretory cells
are viable and show spontaneous mucin accumulation, although
preliminary results suggest that the accumulation is less than in
Munc13-2 mice.

EXTRACELLULAR SIGNALING AND THE EXOCYTIC
REGULATORY MACHINERY
The extracellular ligands and signal transduction pathways con-
trolling mucin secretion have been studied for longer and in more
depth than the exocytic machinery itself (30). The best-studied
ligand is ATP that acts on the P2Y2 receptor to activate Gq and
PLC-β1, resulting in generation of the second messengers IP3

and diacylglycerol (DAG). ATP is released in a paracrine fashion
from ciliated cells in response to mechanical shear stress and in an
autocrine fashion along with uridine nucleotides from secretory
granules (60, 61). The ATP metabolite adenosine acting on the A3
adenosine receptor appears to activate the same Gq-PLC pathway
(62). It is possible that other G-protein coupled receptors, such as
those sensing serotonin or acetylcholine, also function on airway
secretory cells since those ligands induce mucin secretion in vivo
(34, 36), however they may be acting in a paracrine fashion by
inducing contraction of smooth muscle cells leading to the release
of ATP that in turn induces mucin release (Table 1).

In airway secretory cells, the second messenger IP3 activates
receptors on apical ER to induce the release of calcium. In con-
trast to excitable cells in which calcium enters the cytoplasm from
outside through voltage-gated channels, or secretory hematopoi-
etic cells such as mast cells in which an initial release of calcium
from intracellular stores triggers further calcium entry from out-
side through ICRAC, all of the cytoplasmic calcium involved in
exocytic signaling in airway secretory cells appears to come from
intracellular stores (30). This may be an adaptation to the fact
that the calcium concentration in the thin layer of airway sur-
face liquid is not stable due to the variable release of mucins that
carry calcium as a counterion and the variable secretion via CFTR
of bicarbonate that chelates calcium. Calcium does enter airway
secretory cells from the basolateral surface to maintain intracellu-
lar stores, presumably by communication between the basolateral
and apical ER since mitochondrial barriers segregate cytoplasmic
calcium signals (63). Nonetheless, the chelation of extracellular
calcium in vitro does not acutely affect mucin secretion. Rough ER
at the apical pole of airway secretory cells lies in close apposition

to mucin granules (46, 64), which should allow localized cal-
cium signaling to the exocytic machinery through proteins such
as Synaptotagmins and Munc13s.

Synaptotagmins are a family of proteins containing two C2
domains capable of calcium-dependent phospholipid binding, of
which several members mediate calcium-dependent exocytosis.
Using Syt2 knockout mice, we have found that Syt2 serves as a
critical sensor of stimulated but not of basal mucin secretion (46).
There was no spontaneous mucin accumulation in these mice,
consistent with the fact that Syt2 and its close homolog Syt1 inhibit
rather than promote synaptic vesicle release at baseline levels of
cytoplasmic calcium (65). In contrast, there was a complete failure
of ATP-stimulated mucin release in homozygous knockout mice
and a dose-dependent failure in heterozygous knockout mice (46).
This was a surprising result for several reasons. First, there is no
impairment of synaptic vesicle release in heterozygous mutant Syt1
or Syt2 mice, indicating that some structural or functional feature
of stimulated exocytosis in airway secretory cells differs from that
in neurons to make Syt2 levels limiting, such as the difference in
size of the secretory vesicles (50 nm in neurons versus 1000 nm in
airway secretory cells) or the concentration of exocytic proteins at
the active zone. Second, Syt2 is the fastest among the low affinity,
fast calcium exocytic sensors Syt 1, 2, and 9, yet mucin secretion
is a slow exocytic process (measured in hundreds of milliseconds)
compared to synaptic vesicle release (measured in milliseconds).
This suggests that some other feature of Syt2 besides its kinetics
makes it a suitable regulator of mucin release. The calcium-sensing
protein in basal mucin secretion that performs a role comparable
to that of Syt2 in stimulated secretion is not yet known. Nonethe-
less such a protein likely exists since a second, high affinity calcium
sensor functions in neurons and neuroendocrine cells, and basal
mucin secretion has been shown to be calcium dependent (66).

Munc13 comprises a family of four calcium and lipid sens-
ing proteins with variable numbers of C1 and C2 domains that
function in the priming of secretory vesicles. As mentioned above,
Munc13-2 knockout mice show defects in both basal and stimu-
lated mucin secretion, with the basal defect being more dramatic
than the stimulated defect (18). Munc13-2 contains a C1 domain
that binds the second messenger DAG. Another member of this
family, Munc13-4, is also expressed in airway secretory cells (67).
Munc13-4 does not contain a C1 domain, though it does contain
two C2 domains that may bind phospholipids in a calcium-
dependent manner. In unpublished results, the Dickey laboratory
has found that deletion of Munc13-4 causes a mild defect in stimu-
lated secretion, and that deletion of both Munc13-2 and Munc13-4
together causes a severe (though incomplete) defect in stimulated
secretion. Whether a third protein also functions in mucin gran-
ule priming to account for the residual secretion or whether mucin
granule exocytosis depends only partially on priming function is
not yet known.

There are additional targets of the regulation of mucin secre-
tion besides Synaptotagmin and Munc13 proteins, such as PKC
that also binds DAG and calcium (37, 38). Here we have focused
on components of the exocytic machinery. A full accounting of
the regulation of mucin secretion will require further knowledge
of second messengers and their targets, together with analysis of
their integrated function.
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SUMMARY
Airway secretory cells continuously synthesize and secrete poly-
meric mucins that form a protective mucus layer. Both the syn-
thesis and secretion of mucins are highly regulated, with low basal
rates and high stimulated rates for each. Mature mucin granules are
positioned for secretion by interactions of MARCKS, CSP, HSP70,
Rab proteins, and the cytoskeleton. A core exocytic machine con-
sisting of the SNARE proteins VAMP8, SNAP23, and an unknown
Syntaxin, along with the scaffolding protein Munc18b, mediates
both basal and stimulated mucin secretion. Regulatory proteins
including Munc13-2, Munc13-4, and Syt2 respond to second mes-
sengers to control the rate of mucin secretion in response to
extracellular signals. These regulatory proteins show differential

activities in basal and stimulated secretion, suggesting that they
variably associate with the core machinery depending on the lev-
els of second messengers. Close coordination of mucin production
and secretion with physiologic need are essential to lung health
since either a deficiency or excess of airway mucus causes disease.
The medical importance of airway mucin secretion and its sci-
entific value as a model of large-granule exocytosis in polarized
epithelia insure its continued study.
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