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The system N transporter SN1 (also known as SNAT3) is enriched on perisynaptic astroglial  

cell membranes. SN1 mediates electroneutral and bidirectional glutamine transport, and  

regulates the intracellular as well as the extracellular concentrations of glutamine. We  

hypothesize that SN1 participates in the glutamate/γ-aminobutyric acid (GABA)-glutamine  

cycle and regulates the amount of glutamine supplied to the neurons for replenishment of  

the neurotransmitter pools of glutamate and GABA. We also hypothesize that its activity
 

 
on the plasma membrane is regulated by protein kinase C (PKC)-mediated phosphorylation

 
and that SN1 activity has an impact on synaptic plasticity.This review discusses reports on

 
the regulation of SN1 by PKC and presents a consolidated model for regulation and degra-

 
dation of SN1 and the subsequent functional implications. As SN1 function is likely also  
regulated by PKC-mediated phosphorylation in peripheral organs, the same mechanisms  

may, thus, have impact on e.g., pH regulation in the kidney, urea formation in the liver, and  

insulin secretion in the pancreas.  
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INTRODUCTION
Synaptic transmission at a chemical synapse is essential to many
neuronal functions such as cognition, learning, and memory. It
is based on exocytotic release of a neurotransmitter, its diffusion
through the synaptic cleft and activation of specific receptors on
the surface of the target cell. Glutamate is the major fast excitatory
neurotransmitter in the central nervous system (CNS) undergird-
ing the function of a wide range of synapses, while γ-aminobutyric
acid (GABA) and glycine are the primary inhibitory neurotrans-
mitters involved,among others, in synchronization of the principal
neurons. In addition, monoamines, acetylcholine, neuropeptides,
and other molecules sustain neuronal signaling at specific synapses
[for review see Ref. (1)].

Sustained neurotransmission is dependent on replenishment
of the neurotransmitters and efficient termination of the signal to
reduce signal-to-noise ratio. In the case of the monoamines and
acetylcholine, the neurotransmitters or choline (end-product of
acetylcholine hydrolysis by acetylcholinesterase) are removed from
the synaptic cleft by specific transporters on the nerve terminal
membranes which also allow for their reuse in synaptic transmis-
sion (1). In contrast, the GABA transporter 3 (GAT3; and partially
GAT1) and the major glutamate transporters (GLAST/EAAT1 and
GLT-1/EAAT2) reside on surrounding astroglial cells, and a drain
of these transmitters to the astroglial cells has been demonstrated

(Figure 1) (2, 3). With the characterization of the members of
the Slc38 family of amino acid transporters, showing that they
may work in concert to shuttle glutamine from astroglial cells to
neurons, the theory on a glutamate/GABA-glutamine cycle has
been revitalized. In particular, the astroglial SN1, which releases
glutamine, seems to be a major component of this cycle as it regu-
lates extracellular concentrations of glutamine and shows dynamic
membrane trafficking (4–6). In this review, we will discuss and
consolidate recent data on the protein kinase C (PKC)-mediated
regulation of SN1 and its functional implications.

THE GLUTAMATE/GABA-GLUTAMINE CYCLE AND ITS
CONTRIBUTION TO THE REPLENISHMENT OF THE
NEUROTRANSMITTERS GLUTAMATE AND GABA
The considerable amount of transmitter steadily released from
neuronal synapses demands a dependable mechanism for replen-
ishment. The neurotransmitters glutamate and GABA cannot
be generated from the tricarboxylic acid (TCA) cycle interme-
diates because neurons lack the ability for anaplerosis due to
lack of pyruvate carboxylase (7). Indeed, glucose alone is insuf-
ficient to sustain neurotransmission in brain slices (8). Shut-
tling of monocarboxylates and TCA cycle intermediates from
astroglial cells to neurons and contribution to the formation
of the neurotransmitters has also been suggested (7, 9), but it
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FIGURE 1 | A model of SN1 membrane trafficking based on
consolidated data on the regulation of SN1 activity by protein kinase C
(PKC). The cartoon depicts a GABAergic synapse in adult rat brain where
GABA is released exocytotically and acts upon specific post-synaptic
receptors. The signal is terminated by removal of GABA from the synaptic
cleft by transport of GABA back into the nerve terminal by the plasma
membrane GABA transporter (GAT) 1. A substantial amount of GABA in the
synaptic cleft is also transported into perisynaptic astroglial processes by
GAT3 (and GAT1) and converted to glutamate, and then to glutamine
catalyzed by glutamine synthetase (GS). Glutamine may then be released
from the astroglial cells by the electroneutral and bidirectional system N
transporter 1, SN1, and may subsequently be accumulated inside
GABAergic neurons by the system A transporter SAT1. Here, glutamine is
metabolized to yield glutamate and then GABA by the action of
phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase
(GAD), respectively. Finally, GABA is translocated into synaptic vesicles by
the vesicular GABA transporter (VGAT), wherefrom it is ready to be
exocytotically released. Astroglial PKC may be activated upon stimulation of
specific receptors on the astroglial membranes or e.g., by excessive
amounts of Mn2+. PKCα and PKCγ (and PKCδ) can phosphorylate SN1 on a
serine at the 52 position. This results in caveolin (Cav)-dependent
internalization of SN1 from the plasma membrane (1). The internalized SN1
may be relocated to the plasma membrane upon dephosphorylation by
protein phosphatases (PP). PKC-mediated phosphorylation of SN1 also
increases ubiquitination of SN1 (2). This may also internalize the protein into
intracellular compartments and target it to the proteasomal degradation
pathway. Similar regulation of SN1 activity also takes place at glutamatergic
synapses. The same mechanisms are likely to be involved in the regulation
of SN1 in hepatocytes, renal tubule cells, and the pancreatic B-cells.

remains to be demonstrated that they can undergird neurotrans-
mitter synthesis and synaptic transmission. The prevailing hypoth-
esis is therefore that the fast neurotransmitters shuttle through
perisynaptic astroglial cells in order to sustain neurotransmission.
According to this glutamate/GABA-glutamine cycle, glutamate
and GABA are sequestered into astroglial cells and converted to
glutamine. Astroglial cells then supply neurons with glutamine to
fuel formation of glutamate and GABA.

There are several compelling findings supporting existence
of the glutamate/GABA-glutamine cycle and that astroglial-
derived glutamine is the primary precursor for the neurotrans-
mitters glutamate and GABA (Figure 1). Astroglial cells ensheath
synapses, furnish neurons with metabolic precursors and optimize
conditions for neuronal function and signaling. They harbor

GLAST, GLT-1, and GAT3 and quickly remove the neurotrans-
mitters from the synaptic cleft and away from their receptors,
by binding the neurotransmitters and subsequently transporting
them into astroglial cells [(10–12), review (3)]. The sequestered
glutamate and GABA are readily metabolized to glutamine by glu-
tamine synthetase, which is enriched in astroglial cells and unique
in being capable of synthesizing glutamine in the human body
(13, 14). Glutamine transported into nerve terminals is catab-
olized by the phosphate-activated glutaminase (PAG), which is
pronounced in nerve terminals, to resynthesize glutamate and
GABA [for review see Ref. (15)]. Finally, the newly synthesized
glutamate and GABA is accumulated inside synaptic vesicles by
vesicular transporters prior to their exocytotic release (16, 17).
Glutamine as a precursor for the neurotransmitters glutamate and
GABA has been demonstrated beyond any doubts (7, 8, 18–22).
However, how glutamine is shuttled from astroglial cells, where it
is synthesized, into neurons for its utilization has been enigmatic.

THE SYSTEM N AND SYSTEM A TRANSPORTERS SUSTAIN
ASTROGLIAL-TO-NEURON TRANSPORT OF GLUTAMINE
The break-through in our understanding of the intercellular trans-
port of glutamine and the glutamate/GABA-glutamine cycle was
established by characterization of an orphan transporter homol-
ogous to the vesicular GABA transporter (VGAT): SN1 – a 504
amino acids long transporter with 11 putative transmembrane
domains and a long intracellular N-terminal – transports gluta-
mine, asparagine, and histidine consistent with the biochemically
described system N activity (4). SN1 transport is coupled to Na+

transport in symport and H+ transport in antiport. Consequently,
SN1 activity is associated with intracellular pH changes. The sto-
ichiometric coupling of SN1 to Na+ and H+ running in opposite
directions, makes the overall transport electroneutral and allows
SN1 to work bidirectionally (4, 23–25). In addition to the coupled
movement of Na+ and H+ ions, cations also penetrate SN1 in an
uncoupled manner and enable SN1 to readily work in the release
mode at physiological conditions. In the CNS, SN1 is localized
on astroglial processes ensheathing synapses (5, 23, 26). Dur-
ing synaptic transmission and the subsequent depolarization of
astroglial cells, ion and glutamine concentration gradients change
and favor the release mode of SN1 (27). SN1 is therefore able
to furnish nerve terminals with glutamine for neurotransmitter
synthesis.

Interestingly, molecular identification of SN1 revealed a family
of amino acid transporters (Slc38) including SN2 and the unidi-
rectional system A transporters SAT1 and SAT2 [for review see
Ref. (27, 28)]. The isoform-specific characteristics of these trans-
porters together with their complementary localization enable
these transporters to sustain intercellular transport of glutamine
(Figure 1). SAT1 is pronounced in GABAergic neurons in the
CNS, targeted to growth cones in developing neurons and to the
same cellular compartments as VGAT in the mature intact neu-
rons, indicating a role in glutamine uptake for GABA formation
(29–31). In contrast, SAT2 is enriched in the somatodendritic
compartments of glutamatergic neurons throughout the CNS and
accumulates high levels of glutamine (32, 33). Upon stimulation
of these neurons, glutamine is metabolized to generate glutamate
which is released from their dendrites. Indeed, a pharmacologic
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disruption of SAT2 abolishes retrograde signaling (33). Finally, the
system N transporter SN2 is exclusively expressed on astroglial cell
membranes and mediates electroneutral and bidirectional trans-
port of several neutral amino acids (34, 35). SN2 participates in
astroglial release of glutamine for neurotransmitter generation but
adds on by releasing glycine for co-activation of NMDA receptors
(35).

A DIVERSE RANGE OF MECHANISMS ARE INVOLVED IN THE
REGULATION OF THE SYSTEM A AND SYSTEM N
TRANSPORTERS
As the Slc38 family of amino acid transporters sustains astroglial-
to-neuron transport of glutamine, regulation of the system A
and system N transporters may have impact on neurotransmitter
replenishment and synaptic plasticity. A better understanding of
molecular mechanisms involved in their function and regulation
may reveal novel (patho-)functional roles of these transporters
and the glutamate/GABA-glutamine cycle and unveil novel ther-
apeutic targets. Eukaryotic cells have an entire range of possible
regulatory mechanisms to regulate the activity and expression of
their proteins. In principle, all steps of production, maturation,
trafficking, and degradation of a cellular protein can be regulated
to control its expression levels, in addition to all types of direct or
indirect influence of protein activity mediated by interaction with
molecules ranging from protons to macromolecular protein com-
plexes. The glutamine transporters are no exception to this rule.
Classical biochemical experiments early demonstrated adaptive,
hormonal, and osmotic regulation of system A and N activities
as measured by functional transport assays (36–38). A nutrition
signaling cascade that includes activation of phosphatidylinositol
3-kinase (PI3K) and mammalian target of rapamycin (mTOR) has
been shown to be important for upregulation of system A (39, 40).
For SAT2, an amino acid response element regulating the promoter
activity has been demonstrated (41).

The system N activity and SN1 is regulated at the transcrip-
tional and translational levels (37, 42). Sophisticated regulation of
SN1 by interacting proteins and ions has also been demonstrated.
SN1 is e.g., targeted by the ubiquitin ligase Nedd4-2 (neural pre-
cursor cell expressed, developmentally down-regulated 4-2) which
down-regulates SN1 activity in Xenopus laevis (X. laevis) oocytes
(43). Insulin regulates expression of SN1 through the PI3K-mTor
signaling cascade (44).

Protons regulate SN1 activity by competing with Na+ at the
sodium binding site of SN1 as shown by increasing K m for Li+

(a substitute for Na+) with little change in V max upon reduc-
ing extracellular pH (23). As Na+ binding to the Slc38 family
is a prerequisite for the binding of the amino acid prior to its
translocation, extracellular pH changes have profound effect on
SN1 activity (23, 24). Protons also regulate SN1 at the mRNA level.
SN1 expression at normal conditions is restricted to the S3 segment
of the proximal tubules of the kidneys. During chronic metabolic
acidosis (CMA), SN1 is induced also in the S1–S2 segments of
renal epithelium, thereby increasing glutamine metabolism and
generation of bicarbonate to counteract acidosis (6). Induction of
CMA in rats results in upregulation of SN1 by about 10-fold at the
mRNA level and more than 5-fold at the protein level (6, 42, 45). A
pH responsive element in the 3′ untranslated region (3′-UTR) of

SN1 mRNA allows binding of specific proteins to the mRNA at low
pH and thereby stabilizes the mRNA. As a result, SN1 expression
is induced in the entire S1–S3 segments of the kidney (6).

PKC-MEDIATED PHOSPHORYLATION IS CENTRAL FOR
REGULATING MEMBRANE TRAFFICKING OF PLASMA
MEMBRANE NEUROTRANSMITTER TRANSPORTERS
For proteins transporting neuroactive compounds, such as
dopamine, serotonin (SERT), GABA, and glutamate, membrane
trafficking regulated by phosphorylation/dephosphorylation
events has been shown as a common denominator. Nedd4-
2/serum and glucocorticoid inducible kinases 1 and 3 (SGK1 and
3) and protein kinase B (PKB) regulation have been described
for the glutamate transporters EAAT1, 2, and 5 (46). However,
the regulation by PKC stands out as a major mechanism. PKC
isoforms and their numerous substrates regulate a variety of
membrane proteins and in particular transporters [reviewed by
(47, 48)]. In a comprehensive review, transporters for GABA
(GAT1), SERT, dopamine (DAT1), and glutamate (EAAC1) were
all shown to be regulated by PKC phosphorylation (48). For
the three first transporters, PKC phosphorylation mediates inter-
nalization of the transporters, whereas dephosphorylation by
Protein Phosphatase 2A (PP2A) or tyrosine phosphorylation
mediates trafficking back into the cell membrane. For EAAC1,
PKC seems to increase the surface expression together with PI3-
kinase, whereas PP2A dephosphorylation elicits the internaliza-
tion. Also the glycine transporter is being regulated by PKC
(49–51). As PKC is ubiquitously expressed but strictly compart-
mentalized, its subcellular activation is differentially executed
through a myriad of signal pathways, accounting for a large
and diverse part of total phosphorylation phenomena in all cell
types. Interestingly, PKC-signaling has been shown important for
CNS processes like neuronal development, excitability, plasticity,
and aging (52–54). Given the central regulatory role of PKC it
is not surprising that the idea of PKC-regulation also of glu-
tamine transporters was conceived by several different groups
independently.

EVIDENCE OF PKC-MEDIATED PHOSPHORYLATION OF SN1
Protein kinase C has recently been shown to regulate SN1 under
physiological conditions by two groups (Figure 1), however, there
is a difference in the reported mechanisms involved (55, 56). Balkr-
ishna and co-workers report that treatment of X. laevis oocytes
expressing rat SN1 with the phorbol ester phorbol 12-myristate
13-acetate (PMA) results in a rapid down-regulation of glut-
amine uptake in <20 min. As this PMA-induced reduction in
glutamine uptake is prevented by the specific PKC-inhibitor bisin-
dolylmaleimide (Bis) and could not be induced by an inactive
form of PMA (4-α-PMA), the investigators conclude that PKC
activation is involved. The specificity of the PKC action on SN1
was supported by lack of PMA-induced changes in the mono-
carboxylate transporter 1 (MCT1) activity in the same oocytes.
The authors identify seven putative phosphorylation sites in the
SN1 sequence, however, single or combined mutations of these
sites have no impact on the PMA-induced down-regulation of
SN1 activity. In an effort to further identify presence of particular
regions or motifs on SN1 responsible for the observed PKC effect,
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the SN1 cytosolic N-terminus was replaced with the N-terminal
part of the homologous SAT1 protein. Treatment of the SAT1-SN1
hybrid with PMA still resulted in down-regulation of SN1, a result
interpreted as proof that the targeting region is not localized in the
SN1 N-terminus. Based on all these data it is concluded that SN1 is
not directly phosphorylated by PKC; rather, the down-regulation
of SN1 is mediated by some interaction with regulatory proteins
endogenous to oocytes (55).

The authors also generate a fluorescently labeled construct of
SN1, EGFP-SN1, and show that PKC-mediated down-regulation
of glutamine uptake is caused by internalization of the fusion
protein from the plasma membrane. The retrieval of SN1 from
the plasma membrane is controlled by caveolin but remains
dynamin-independent. Lastly, glutamine transport is challenged
in the hepatocyte-derived HepG2 cells and cultured rat astrocytes;
both hepatocytes and astrocytes have endogenous SN1 expres-
sion (26). PMA-treatment reduces glutamine uptake in cultured
HepG2 cells but not in their cultured rat astrocytes, and this
discrepancy is explained by differences in cell-specific regulatory
mechanisms.

In the report by Nissen-Meyer and co-workers (56), we also
detect a comparable time-dependent down-regulation of SN1
protein in the plasma membrane following PMA-treatment of
mammalian cells stably transfected with SN1, and sequestration
of the protein into intracellular reservoirs. The down-regulation
is inhibited in the presence of Bis I, supporting mediation by
PKC activation. However, we demonstrate PKC-mediated phos-
phorylation of SN1 in three different ways: first, direct phospho-
rylation of SN1 in vitro using a GST-fusion protein containing
the N-terminal of SN1 and recombinant PKCα and PKCγ (56).
Further, using site-directed mutagenesis to create unphosphory-
latable SN1 mutants, we transfected cultured COS7 and PS120
cells with these mutant plasmids. Cells were then metabolically
labeled with 32P-orthophosphate, stimulated with PMA and fol-
lowing immunoprecipitation and 2D-phosphopeptide mapping,
we demonstrated that PKC-dependent phosphorylation in living
cells was abolished selectively when a single serine residue was
mutated (S52A) in the N-terminal of rat SN1, implicating this as
the primary phosphorylation site.

Second, characterization of wild type and mutant SN1 in X. lae-
vis oocytes electrophysiologically further corroborated our data on
direct phosphorylation of SN1 by PKC. PMA-stimulation results
in reduced SN1 activity as shown by abolished glutamine-induced
inward currents. However, such reduction in the magnitude of the
glutamine-induced inward currents perish when PKC is inhibited
by Bis I. The unphosphorylatable S52A mutant resisted down-
regulation in the presence of PMA, implicating that PKC isoforms
phosphorylate SN1 at the S52.

Third, we also show direct phosphorylation of SN1 in cultured
rat astroglial cells. By using specific affinity-purified antibodies
selectively recognizing SN1 phosphorylated at the S52, we demon-
strated that PKC stimulation results in increasing Bis I-sensitive
phosphorylation of SN1 and that phosphorylated SN1 accumu-
lates in intracellular compartments consistent with internalization
of the protein. Such internalization of SN1 upon PKC-mediated
phosphorylation is also supported by the fact that PKC activation
significantly reduces V max of the glutamine-induced currents in

X. laevis oocytes but has no effect on the K m. Finally, our bio-
chemical analyses suggest that SN1 may dynamically be recruited
from these compartments upon dephosphorylation, however,
prolonged activation of SN1 by PKC results in its degradation.

Interestingly, Sidoryk-Wegrzynowicz and co-workers recently
also presented evidence that PKC is involved in the down-
regulation of SN1 (57): Mn2+ exposure upregulates the activity
of both PKCα and PKCδ in cultured astrocytes. Both enzymes
were activated by phosphorylation and PKCδ was in addition acti-
vated by caspase 3-dependent proteolysis. In their experiments,
PMA-stimulation for 4 h significantly down-regulates system N-
mediated glutamine uptake in cultured astrocytes, an effect which
was inhibited by addition of the PKC-inhibitor Bis II. In harmony
with our work, they show that PMA reduces the SN1-content of
biotinylated surface membranes long before 4 h. Although they
did not succeed in co-immunoprecipitating SN1 with PKCα, they
did show that SN1 co-immunoprecipitates together with PKCδ

at 0 and 2 h, but not at the later times investigated. Thus, these
experiments also lend support to PKC being an important regu-
lator of SN1 protein cell surface expression under physiological
conditions, albeit not demonstrating direct phosphorylation of
SN1. Thus, there are compelling evidence and some indications
that SN1 is directly phosphorylated by PKCα, PKCγ, and PKCδ

and that this is followed by caveolin-dependent internalization
of SN1.

IS PKC INVOLVED IN THE DEGRADATION OF SN1?
As shown above,PKC phosphorylates SN1 and regulates SN1 activ-
ity on cell membranes and thereby adjusts the transmembrane glu-
tamine transport to comply with different (patho-)physiological
demands for the neurotransmitter precursor. However, prolonged
activation of PKC results in degradation of SN1 (Figure 1) (56, 57).
SN1 interacts with Nedd4-2 when co-expressed in X. laevis oocytes
and in astrocytes (43, 57). Moreover, stimulation of primary
astrocytes with Mn2+ induces ubiquitin/proteasome-mediated
degradation of SN1 via the Nedd4-2/SGK1 signaling pathway,
thus providing a partial explanation for Mn2+-induced neuro-
toxicity (58). Consequently, SN1-mediated transport increases
when SN1 is co-expressed with the SGK1 and 3, and PKB (43).
Thus, this pathway could represent a link to PKC-regulation since
phosphorylation by PKC frequently is a way to tag proteins for
ubiquitination and further lysosomal or proteasomal degradation
(Figure 1) (59, 60).

WHAT IS THE FUNCTIONAL SIGNIFICANCE OF SN1
REGULATION FOR THE GLUTAMATE/GABA-GLUTAMINE
CYCLE?
The glutamate transporters GLAST and GLT-1 and the GABA
transporters GAT1 and GAT3 are enriched on the cell mem-
branes of perisynaptic astroglial processes, capturing the exocy-
totically released neurotransmitters and translocating them into
astroglial cells (10, 11). SN1 is also targeted to the same small glial
processes (5, 26). Activation of the glutamate and GABA trans-
porters will ensure that the local intracellular Na+-concentration
can be increased to a level where it can drive the SN1-mediated
glutamine transport out of the cell (61), and as long as gluta-
mine synthetase is present, glutamate and GABA imported will be
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transformed to glutamine for export. Indeed, glutamate stimulates
efflux of glutamine from astroglial cells (62).

Uwechue and co-workers have provided compelling evidence
that glutamate evokes release of glutamine through a system N like
activity in astrocytes juxtaposed to the glutamatergic calyx of Held
synapse in the rat medial nucleus of the trapezoid body (MNTB).
Subsequently, such glutamine release is sensed by MNTB principal
neurons which express system A transporters consistent with an
intact glutamate/GABA-glutamine cycle (63, 64). Similarly, studies
on cultured Bergmann glia cells show that activation of gluta-
mate transporters by d-aspartate results in release of glutamine
(65). Altogether, these data strongly suggest functional coupling
between the glutamate and glutamine transporters and existence
of a glutamate/GABA-glutamine cycle. Taken together with the
dynamic regulation of the membrane trafficking of SN1 activity
(55–57) this suggests that SN1 may be one of the key regulators
of neuronal supply of glutamine and thus the glutamate/GABA-
glutamine cycle (Figure 1). In addition, inhibition of SN1 activ-
ity may stimulate targeting of glutamate, GABA, and glutamine
for oxidation or increase trans-astrocytic glutamine fluxes with
impact on surrounding regions (66).

PKC-MEDIATED PHOSPHORYLATION MAY REGULATE A
WIDE RANGE OF FUNCTIONS IN PERIPHERAL ORGANS
SN1 also sustains pivotal functions in peripheral organs. In the
kidney, SN1 is localized on the basolateral membranes of the
S3 segment of proximal tubules and is essential for glutamine
metabolism. During CMA, K+-deprivation, and/or high protein
intake, the total levels of SN1 increase significantly in the kidney
and SN1 is also induced in the S1–S2 segments of the nephron
(6, 45, 67). In the endocrine pancreas, we have shown comple-
mentary expression of SN1 and SAT2 and suggested that they
work in concert to regulate a local glutamate-glutamine cycle
and secretion of insulin (68, 69). The liver has one of the high-
est cellular concentrations of SN1 and is suggested to mediate

glutamine influx for urea formation in periportal hepatocytes and
glutamine efflux from the perivenous hepatocytes for transport
of glutamine to other peripheral organs for cellular metabolism
(26, 27). Accordingly, SN1 expression in the liver is regulated dur-
ing starvation and insulin secretion (44). Thus, SN1 is essential
in several physiological processes and may be differentially regu-
lated in different organs to optimize a wide range of functions. As
PKC isoforms are ubiquitously expressed throughout the body, but
differentially in different cellular and subcellular compartments,
isoform-specific PKC-mediated phosphorylation of SN1 may have
a range of physiological and pathological roles.

CONCLUSION
Consolidated data from several papers on the regulation of SN1
(55–57) show that PMA-induced and Bis I-inhibitable retrieval
of SN1 occurs in several mammalian cell types, including pri-
mary rat astrocytes, and in X. laevis oocytes (Figure 1). Such
membrane trafficking is governed by specific phosphorylation
of SN1 at S52, selectively by PKCα and PKCγ. Prolonged PMA-
stimulation results in internalization by a caveolin-dependent and
dynamin-independent mechanism and to degradation of SN1
through the Nedd4-2/ubiquitination pathway. PKC-mediated reg-
ulation of SN1 may, thus, be a key step in the regulation of the
glutamate/GABA-glutamine cycle in the CNS and a wide range of
pathophysiological processes in peripheral organs. Further studies
are required for a better understanding of molecular mechanisms
governing regulation of SN1 activity on the plasma membrane
and its membrane trafficking and such studies may reveal novel
mechanistic insight into a variety of physiological processes and
to discovery of novel therapeutic targets.
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