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The brain renin-angiotensin system (RAS) has available the necessary functional compo-
nents to produce the active ligands angiotensins II (AngII), angiotensin III, angiotensins (IV),
angiotensin (1–7), and angiotensin (3–7). These ligands interact with several receptor pro-
teins including AT1, AT2, AT4, and Mas distributed within the central and peripheral nervous
systems as well as local RASs in several organs. This review first describes the enzymatic
pathways in place to synthesize these ligands and the binding characteristics of these
angiotensin receptor subtypes. We next discuss current hypotheses to explain the disor-
ders of Alzheimer’s disease (AD) and Parkinson’s disease (PD), as well as research efforts
focused on the use of angiotensin converting enzyme (ACE) inhibitors and angiotensin
receptor blockers (ARBs), in their treatment. ACE inhibitors and ARBs are showing promise
in the treatment of several neurodegenerative pathologies; however, there is a need for
the development of analogs capable of penetrating the blood-brain barrier and acting as
agonists or antagonists at these receptor sites. AngII and AngIV have been shown to play
opposing roles regarding memory acquisition and consolidation in animal models. We dis-
cuss the development of efficacious AngIV analogs in the treatment of animal models of
AD and PD. These AngIV analogs act via the AT4 receptor subtype which may coincide
with the hepatocyte growth factor/c-Met receptor system. Finally, future research direc-
tions are described concerning new approaches to the treatment of these two neurological
diseases.

Keywords: angiotensin II, angiotensin IV, hepatocyte growth factor, angiotensin receptors, c-Met receptor, Mas
receptor, Alzheimer’s disease, Parkinson’s disease

As life expectancy has increased the incidences of dementia and
Parkinson’s disease (PD) have also increased. The number of
Alzheimer’s disease (AD) patients in the U.S. is presently estimated
to be 4.5 million, with approximately 37 million worldwide (1, 2).
By 2040 the worldwide number is predicted to reach 81 million
with 4.6 million new patients diagnosed per year (3). There is a 3%
occurrence of AD between the ages of 65–74 years, and upwards
of 50% for those 85 years of age and older (4). Beyond the cost
associated with treatment (estimated range from $70 to 150 bil-
lion annually in the U.S. alone) are the personal hardships and
sacrifices suffered by family members and other care givers accom-
panied by the frustrations experienced by the patient and health
care professionals as cognitive abilities continue to slowly deteri-
orate with no efficacious drug treatment available. It is clear that
the brain renin-angiotensin system (RAS) is a potential contribu-
tor to dementia and blockade of this system has been shown to be
important (5–9). However, the precise role(s) played by the brain
RAS is unclear and somewhat convoluted given that the octapep-
tide angiotensin II (AngII) has been shown to disrupt learning and
memory; while the hexapeptide angiotensin IV (AngIV) facilitates
memory acquisition and consolidation. A second major neurode-
generative disease, PD, was first described by James Parkinson in
1867 and now affects about 10 million people in the U.S. Around
the world PD impacts approximately 1% of the population over
50 years of age and 1.5% over 65 years (10). There is accumulating

evidence that the brain RAS is important in the etiology of PD
as well, and this recently discovered link with the RAS will be
discussed.

This review initially describes the presently identified
angiotensin ligands and their interaction with specific receptor
proteins (AT1, AT2, and AT4). The AT1 and AT2 receptor subtypes
have been well characterized (11, 12); however, the AT4 subtype
has only been partially sequenced (13). Next we discuss the current
hypotheses offered to explain the causes of AD and PD, and the
drugs thus far developed to treat these dysfunctions. The role of
angiotensins in memory formation and PD is discussed, followed
by current attempts to develop new and efficacious treatments for
AD and PD. Related to these efforts we describe an AngIV related
analog effective in delaying or reversing symptoms in animal mod-
els of AD and PD. We conclude with thoughts concerning future
directions in these important clinical areas of research.

FORMATION OF ANGIOTENSIN LIGANDS
Angiotensin peptides are derived from the precursor pro-
tein angiotensinogen via several enzymatic conversion pathways
[Figure 1; Ref. (14–16)]. Briefly, the decapeptide angiotensin
I (AngI) is formed by renin (EC 3.4.23.15) acting upon the
amino terminal of angiotensinogen. AngI serves as a substrate for
angiotensin converting enzyme (ACE; EC 3.4.15.1) that hydrolyzes
the carboxy terminal dipeptide His-Leu to form the octapeptide
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Wright et al. Brain RAS in neurological disorders

FIGURE 1 |The renin-angiotensin pathway including active ligands
(bold), enzymes, receptors, and inhibitors involved in central
angiotensin mediated blood pressure. Abbreviations: ACE, angiotensin

converting enzyme; ACE2, angiotensin converting enzyme 2; AP-A,
aminopeptidase A; AP-N, aminopeptidase N; ARBs, angiotensin receptor
blockers.

AngII (14). AngII is converted to the heptapeptide angiotensin
III (AngIII) by glutamyl aminopeptidase A (AP-A; EC 3.4.11.7)
that cleaves the Asp residue at the N-terminal (17–19). Mem-
brane alanyl aminopeptidase N (AP-N; EC 3.4.11.2) cleaves Arg
at the N-terminal of AngIII to form the hexapeptide angiotensin
IV (AngIV). AngIV can be further converted to Ang(3–7) by car-
boxypeptidase P (Carb-P) and prolyl oligopeptidase (PO) cleavage
of the Pro-Phe bond to form Ang(3–7).

AngII can also be converted to Ang(1–7) by Carb-P cleavage
of Phe (20), by the mono-peptidase ACE2 (21), or by ACE cleav-
age of the dipeptide Phe-His from Ang(1–9) (22). Note that the
functional role of insertion of Alu in intron 16 of the human ACE
gene has been questioned; however, Wu et al. (23) has shown this
form of ACE to upregulate ACE promoter transcriptional activ-
ity by approximately 70%. Ang(1–7) is converted to Ang(2–7) by
AP-A acting at the Asp-Arg bond (24). AngI is biologically inac-
tive; while AngII and AngIII are full agonists at the AT1 and AT2

receptor subtypes and mediate pressor and dipsogenic functions

[Figure 2; reviewed in Ref. (11)]. AngIV binds with low affinity to
the AT1 and AT2 receptor subtypes (25, 26), but with high affinity
and selectivity to the AT4 receptor subtype (26–28).

Finally, AngII can be converted to Ang(1–7) by ACE2 (29).
Recent evidence indicates that this Ang(1–7)/Mas receptor system
is important with regard to counteracting peripheral organ inflam-
mation and fibrosis, increasing glucose utilization and decreasing
insulin resistance (30, 31). The Mas receptor has been identi-
fied in the brain with particularly high concentrations within the
dentate gyrus of the hippocampus and piriform cortex (32). In
agreement with these memory-related brain distributions of Mas,
Ang(1–7) has been shown to facilitate hippocampal long-term
potentiation (LTP) (33) suggesting its potential importance in
learning and memory. The Ang(1–7)/Mas receptor system also
plays a neuroprotective role in responding to cerebral ischemia
(34). The reader is referred to the following reviews for detailed
characterizations of the angiotensin receptor subtypes (8, 11,
30, 35).
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Wright et al. Brain RAS in neurological disorders

FIGURE 2 | Description of the peptide structures and enzymes
involved in the conversion of angiotensinogen to angiotensin I
through shorter angiotensins. The biologically active forms include

angiotensin II, III, IV, angiotensin (3–7), and angiotensin (1–7). The
respective receptors where these active angiotensins bind are indicated
by arrows.

CURRENT HYPOTHESES OF ALZHEIMER’S DISEASE
Two prominent theories are presently offered to explain the neu-
rochemical changes underlying AD. These are the cholinergic and
amyloid cascade hypotheses. Based on the cholinergic hypothe-
sis of memory formation it was originally proposed that drugs
designed to inhibit central and peripheral acetylcholine esterase
(AChE), and serve as a muscarinic M2 autoreceptor antagonist,
would result in facilitated release of ACh. Further, AChE bind-
ing to the non-amyloidogenic form of β-amyloid peptide (Aβ)
appears to facilitate a conformational shift to the amyloido-
genic form (36–38). Treatment with an AChE inhibitor would
be expected to neutralize the catalytic site of the enzyme and
reduce Aβ peptide aggregation as facilitated by active AChE. To
date the cholinergic hypothesis of memory formation has dri-
ven the development of the major marketed drugs in the form
of AChE inhibitors (Tacrine®, Donepezil®, Rivastigmine®, and
Galantamine®) which will go generic in the near future (9). These
drugs are only marginally helpful in treating symptoms and do not
appear to impact the underlying neuropathology of this disease
(39). The FDA approved Namenda®(Memantine HCl) in 2004,
an N -methyl-d-aspartate (NMDA) receptor antagonist designed
to limit glutamate excitotoxicity and intended to treat moderate
to severe AD patients (40). Namenda is also limited regarding
its ability to slow disease progression and does little to stem the
neuropathology. Recent research has focused on the accumulation

of brain Aβ as an important target in the pathogenesis of AD
(41). There may be a link between Aβ accumulation and NMDA
receptor over activation in that oxidative stress, plus the elevated
intracellular calcium generated due to Aβ accumulation, appear to
enhance glutamate mediated neurotoxicity via increased NMDA
receptor activation (42).

There are many possible reasons for the lack of an effective ther-
apy for AD including the complexity of the disease process and the
resulting inability to identify reliable biomarkers. In addition, it is
now apparent that AD is multifactorial rather than a single disease
(43). To further complicate drug development and diagnosis those
AD criteria behaviors denoting cognitive decline can also result
from a number of other clinical conditions including vascular
disease (44, 45), frontotemporal dementia, PD-induced dementia,
HIV infection (46, 47), as well as cumulative oxidative damage and
toxicities accompanying normal aging (48). The ultimate goal of
development must be a drug that prevents the progressive loss of
synapses and neurons and reverses this degenerative process.

The second major hypothesis concerns amyloid peptides that
range in length from 39 to 42 amino acids and are produced by the
conversion of amyloid precursor protein (APP) (49). It is suggested
that the cellular accumulation of Aβ(1–42) causes the neurodegen-
erative characteristics of AD (41). Treatment with the angiotensin
receptor blocker (ARB) Valsartan has been shown to discourage
amyloid β-mediated cognitive dysfunction in the Tg 2576 mouse
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model of AD (50). Along these lines, intranasal injection of Losar-
tan (also an ARB) resulted in neuroprotection, presumably via its
Aβ-reducing plus anti-inflammatory effects (51).

With the recent clinical trials failure of so called “β-amyloid
buster compounds” by Lilly and Pfizer Pharmaceuticals it now
appears that both of these hypotheses are much too simple and
new approaches must be developed and tested. One very attrac-
tive potential upstream contributor to dementia is the brain RAS.
A potential role for the brain RAS in learning and memory was
proposed some time ago and thus provides justification for the
identification of brain RAS components that may serve as targets
for the treatment of AD [reviewed in Ref. (52–56)]. Recent find-
ings suggest that many of the memory enhancing effects initially
attributed to AngII are likely due to the conversion of AngII to
AngIV, and it is this peptide acting as an agonist at the AT4 recep-
tor subtype, that is responsible for cognitive facilitation (20, 57,
58). Taken as a whole research findings now suggest that AngII
interferes with performance on most memory tasks used with
animal models; while AngIV facilitates performance (59). This
AngIV memory facilitation hypothesis is consistent with the find-
ing that ARBs improve cognitive processing (60–64). It remains
to be determined whether blockade of the AT1 receptor subtype
permits conversion of excess endogenous AngII to AngIV which
then activates the AT4 receptor. This notion is also supported by
the observation that ACE inhibitors enhance cognitive process-
ing in both humans (65, 66) and animal models (67). Specifically,
resulting increases in AngI levels are likely converted to Ang(1–
9) and then to AngIII, AngIV, and Ang(3–7). Both AngIV and
Ang(3–7) act as agonists at the AT4 receptor subtype. See below
for further details concerning AngIV-induced memory facilitation.
It should be noted that ACE has been shown to convert Aβ1–42
to Aβ1–40 (39). Aβ1–42 is the form that appears to be respon-
sible for brain amyloid deposition (9). Thus, treatment with an
ACE inhibitor could, over time, result in greater accumulations of
amyloid plaques.

A ROLE FOR ANGIOTENSINS IN MEMORY CONSOLIDATION
A number of studies indicate that AngIV, and AngIV analogs such
as Nle1-AngIV, facilitate LTP, learning, and memory consolidation
(68–72). Studies using various animal models of dementia to test
the influence of Nle1-AngIV have demonstrated reversal of deficits
initiated by: (1) treatment with scopolamine (73); (2) kainic acid
injections into the hippocampus (74); (3) perforant path knife-
cuts (72); and (4) ischemia resulting from transient four-vessel
occlusion (12). Consistent with these behavioral and electrophys-
iological results, brain autoradiography-determined binding sites
for [125I]-AngIV have been localized in structures known to medi-
ate cognitive processing including the neocortex, hippocampus,
and basal nucleus of Meynert (26, 56, 75). Denny and colleagues
(76) reported that AngII blocked hippocampal LTP in vivo in
perforant path stimulated dentate gyrus neurons. This inhibi-
tion appeared to be dependent upon AngII binding at the AT1

receptor subtype given that co-application of Losartan with AngII
significantly attenuated this inhibition; while application of the
AT2 receptor antagonist PD123, 319 failed to interfere with this
AngII-induced inhibition (77). Recently it has been established
that AngII, chronically perfused via subcutaneous osmotic pump

in mice, resulted in hypertension and impaired spatial memory as
measured using the Morris water maze task beginning during the
third week of treatment (78). Such AngII-induced spatial memory
impairment has also been reported in rats following acute intrac-
erebroventricular infusion (79). Significant reductions in cerebral
blood flow and brain acetylcholine levels, as well as oxidative stress,
were measured 60 min following AngII injection. Taken together
these results indicate that AngII generally interferes with learning
and memory acquisition.

CURRENT HYPOTHESES OF PARKINSON’S DISEASE
Parkinson’s disease is due to a progressive loss of dopaminergic
(DA) neurons in the substantia nigra pars compacta. The striatum
is the primary projection field of these substantia nigra neurons,
thus the loss of DA results in insufficient stimulation of striatal
dopaminergic D1 and D2 receptors (80, 81). Decreased availability
of DA triggers the symptomatic triad of bradykinesia, tremors-at-
rest, and rigidity. There is evidence from animal models and PD
patients that neuro-inflammatory processes, triggered by reactive
oxygen species (ROS), damage mitochondrial membrane per-
meability, enzymes, and mitochondrial genome resulting in DA
cell death (82, 83). l-DOPA is efficacious at controlling motor
symptoms in the majority of patients but is ineffective regard-
ing non-motor symptoms. Current treatment strategies to relieve
these symptoms include DA replacement via Levodopa (l-DOPA,
the precursor of DA), DA receptor agonists, monoamine oxidase
B inhibitors, and catechol-O-methyltransferase inhibitors, to pro-
tect the DA that is formed (84, 85). As the disease progresses
periods of decreased mobility, dyskinesia, and spontaneous invol-
untary movements complicate treatment (86). Thus, in addition
to treatment with the DA receptor agonists apomorphine and
Levodopa, surgical techniques including pallidotomy and deep
brain electrical stimulation may be required (87, 88). Progressive
neurodegeneration also impacts additional non-dopaminergic
neurotransmitter systems including noradrenergic, cholinergic,
and serotonergic (89). As a result, non-motor symptoms may
develop including depression, sleep disturbances, dementia, and
autonomic nervous system failure (90, 91). l-DOPA is reason-
ably ineffective at combating non-motor symptoms (90). Current
research efforts are three-pronged and directed at extending the
duration of Levodopa’s efficacy, controlling these additional non-
motor symptoms, and developing new strategies designed to offer
neuroprotection and overall disease reversal benefits. Attaining the
goal of slowing or reversing the rate of DA neuron loss may also
result in the protection of non-DA neurotransmitter systems.

A ROLE FOR ANGIOTENSINS IN PARKINSON’S DISEASE
Allen et al. (92) were first to suggest a potential relationship
between the brain RAS and PD. These investigators measured
decreased angiotensin receptor binding in the substantia nigra
and striatum in post mortem brains of PD patients. A number
of studies support an important role for ACE in this disease.
ACE is present in the nigra-striatal pathway and basal ganglia
structures (93–95). PD patients treated with the ACE inhibitor
perindopril revealed improved motor responses to the DA precur-
sor 3,4-dihydroxy-l-phenylalanine (96). Relative to this treatment
with perindopril, elevated striatal DA levels have been measured
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in mice (97). In addition, ACE has been shown to metabolize
bradykinin and thus modulate inflammation, a contributing factor
in PD. Activation of the AT1 receptor subtype by AngII pro-
motes nicotinamide adenine dinucleotide phosphate (NADPH)-
dependent oxidases, a significant source of ROS (98, 99). Treat-
ment with ACE inhibitors has been shown to offer protection
against the loss of DA neurons in 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) animal models (100, 101), as well as
the 6-hydroxydopamine (6-OHDA) rat model (102). The likely
mechanism underlying this ACE inhibitor-induced protection is
a reduction in the synthesis of AngII acting at the AT1 receptor
subtype [reviewed in Ref. (103)]. It is known that AngII binding
at the AT1 subtype activates the NADPH oxydase complex, thus
providing a major source of ROS (104–106). Further, activation
of the AT1 receptor results in the stimulation of the NF-kB sig-
nal transduction pathway facilitating the synthesis of chemokine,
cytokines, and adhesion molecules, all important in the migration
of inflammatory cells into regions of tissue injury (107).

If AngII activation of the AT1 receptor subtype results in facil-
itation of the NADPH oxidase complex and formation of free
radicals, then blockade of the AT1 receptor should serve a protec-
tive function. This appears to be the case. Treatment with an AT1

receptor blocker (ARB) protects DA neurons in both 6-OHDA
(108–110) and MPTP animal models (105, 111, 112). ARBs have
been shown to reduce the formation of NADPH oxidase-derived
ROS following administration of 6-OHDA (113). While the risk of
developing PD is reduced with the use of calcium channel blockers
to control hypertension, the positive influences of ACE inhibitors,
β-blockers, and ARBs are not clear (114). Of relevance to this
issue is the PD patient who showed exacerbated motor dysfunc-
tion when treated with an ARB [Losartan; Ref. (115)]. This patient
experienced severe bradykinesia while on Losartan, accompanied
by frequent episodes of freezing.

The AT2 receptor subtype is present in several fetal tissues
including uterus, ovary, adrenal gland, heart, vascular endothe-
lium, kidney, and brain (particularly neocortex and hippocampus)
(11, 116–119). As the animal matures the expression of the AT2

receptor decreases. It appears that adult mammalian brain levels
of this receptor in the striatum and substantia nigra are reasonably
low (56, 120). The AT2 receptor has been linked with cell prolifera-
tion, differentiation, and tissue regeneration (121, 122). The results
from a study utilizing mesencephalic precursor cells indicated that
AngII, acting at the AT2 receptor, facilitated differentiation of pre-
cursor cells into DA neurons (123). Along these lines, activation of
the AT2 receptor has been shown to inhibit NADPH oxidase acti-
vation (124). However, Rodriguez-Pallares et al. (99) found that
AngII treatment of the 6-OHDA lesioned rat increased DA cell
death. This could be due to the much greater numbers of brain
AT1 receptors, as compared with AT2 receptors, such that the ben-
eficial effects of AT2 receptor activation was overwhelmed by AT1

activation. Finally, the expression of AT2 receptors in PD patients
appears to be decreased in the caudate nucleus but is unchanged
in the substantia nigra and putamen (125).

Basal ganglia structures possess a local RAS that evidences
increased activity during dopaminergic degeneration (109, 126,
127). Villar-Cheda et al. (128) have reported that reserpine-
induced decreases in DA resulted in a significant increase in the

expression of AT1 and AT2 receptors. A similar pattern was seen
with 6-OHDA-induced DA denervation in which a decrease in
receptor expression was noted with l-DOPA treatment. These
results indicate a direct interaction between the RAS and the
dopaminergic system in basal ganglia structures. Related to this,
Rodriguez-Perez and colleagues (110, 129) used intrastriatal 6-
OHDA injections to produce dopaminergic degeneration and
noted a significant decrease in DA neurons in ovariectomized
rats. This loss of neurons was attenuated by treatment with the
AT1 receptor antagonist Candesartan, or estrogen replacement.
Estrogen replacement also resulted in a down-regulation of AT1

receptors and NADPH complex in the substantia nigra, accom-
panied by an up-regulation of the AT2 receptor subtype. These
results suggest an important relationship among estrogen levels,
brain DA receptors, and the RAS. An increase in the expression
of AT1 receptors and decreased expression of AT2 receptors has
been reported in aged rats (130). This observation is of major
importance given the potentially deleterious consequences of AT1

receptor activation on basal ganglia structures.
Recently Rodriguez-Perez et al. (131) have reported that

chronic hypoperfusion in rats resulted in a reduction in striatal
DA levels accompanied by a large decline in DA neurons and
striatal terminals. This DA neuron loss was countered by orally
administered Candesartan. Further, AT1 receptor expression was
highest in the substantia nigra; while AT2 expression was lower
in rats that experienced chronic hypoperfusion as compared with
controls. Again, Candesartan attenuated such changes in receptor
expression. Taken together these findings argue that inhibition of
AT1 receptor activity serves a neuroprotective role in PD.

The involvement of AngIV in PD has been initially investigated
(132). A genetic in vitro PD model was used consisting of the α-
synuclein over-expression of the human neuroglioma H4 cell line.
Results indicated a significant reduction in α-synuclein-induced
toxicity with Losartan treatment combined with the AT2 receptor
antagonist PD123319, in the presence of AngII. Under these same
conditions AngIV was only moderately effective. Our laboratory
has recently synthesized a metabolically stable AngIV analog that
acts by way of the hepatocyte growth factor (HGF)/c-Met receptor
system (133–136) to overcome the motor dysfunctions that follow
6-OHDA-induced lesions of the substantia nigra pars compacta in
the rat (unpublished results). This compound, called Dihexa, sig-
nificantly improved both rope hang times and stride length over
the course of a 48-day treatment period.

Taken together these findings suggest that treatment with an
ARB may offer some protection against the risk of developing PD.
However, much additional work employing angiotensin mimetics
must be completed to better understand the relationship among
brain angiotensin receptors, angiotensin ligands, inflammation,
and ROS as related to PD.

AngIV, HGF, AND THE BRAIN DA SYSTEM
Aging is one of the major risk factors predisposing individuals
to neurodegenerative diseases (130, 137, 138). The neurodegen-
eration accompanying aging is dependent in part upon oxidative
stress, neuroinflammation, and microglial NADPH oxidase activ-
ity. Each is of significant importance regarding DA neuron loss
(106, 139). Activation of AT1 receptors by AngII has been shown
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to facilitate DA neuron degeneration by activating microglial
NADPH oxidase (109). The activation of AT1 receptors by AngII
failed to cause DA neuron degeneration when microglial cells were
absent (99). Of related importance, Zawada and colleagues (140)
recently reported that nigral dopaminergic neurons responded
to neurotoxicity-induced superoxide in two waves. First, a spike
in mitochondrial hydrogen peroxide was measured 3 h following
treatment with an MPTP metabolite (MPP+). Second, by 24 h
following treatment hydrogen peroxide levels were further ele-
vated. Treatment with Losartan suppressed this nigral superoxide
production suggesting a potentially important role for ARBs in
the treatment of PD. Further, AngII binding at the AT1 receptor
increased DA neuron degeneration initiated by subthreshold doses
of DA neurotoxins by stimulating intraneuronal levels of ROS and
neuroinflammation by activation of microglial NADPH oxidase
(141–144).

From the above observations it follows that AT1 receptor block-
ade should have a neuroprotective effect on DA neurons in PD
patients as demonstrated in animal models (112). Less obvious is
the likelihood that AT1 receptor blockade results in accumulating
levels of AngII that are converted to AngIII and then to AngIV. This
conversion cascade has been shown to occur intracellularly (145).
In fact, this conversion of AngII appears to be necessary for DA
release to occur in the striatum (146). Thus, an intriguing alter-
native explanation of these AT1 receptor antagonist results is that
the increased endogenous levels of AngIV facilitate activation of
the HGF/c-Met receptor system and neuroprotection of DA neu-
rons. In this way AngIV may act in combination with AT1 receptor
blockade to protect DA neurons. Our laboratory has offered evi-
dence that AngIV, and AngIV analogs, are capable of facilitating
HGF/c-Met activity (133). Support for this claim is presented in
several recent reports. First we found that the action of AT4 recep-
tor antagonists depends on inhibiting the HGF/c-Met receptor
system by binding to and blocking HGF dimerization (134,147). In
contrast, AT4 receptor agonists facilitate cognitive processing and
synaptogenesis by acting as mimics of the dimerization domain of
HGF [hinge region; Ref. (135, 148)]. This work has culminated in
the synthesis of a small molecule AT4 receptor agonist capable of
penetrating the blood-brain barrier and facilitating cognitive pro-
cessing presumably by increasing synaptogenesis (133). This small
molecule (MM-201) has a K d for HGF≈6.5 or 13 pM (136). This
AngIV-HGF/c-Met interaction could explain earlier reports indi-
cating that activation of the AT4 receptor facilitates cerebral blood
flow and neuroprotection (149–151).

In agreement with the above findings, HGF has been shown to
positively impact ischemic-induced injuries such as cardiac (152)
and hind limb ischemia (153, 154). HGF has also been shown
to eliminate hippocampal neuronal cell loss in transient global
cerebral ischemic gerbils (155), and transient focal ischemic rats
(156). Date and colleagues (157, 158) have reported HGF-induced
improvements in escape latencies by microsphere embolism-
cerebral ischemic rats using a circular water maze task. These
authors measured reduced damage to cerebral endothelial cells in
ischemic animals treated with HGF. Shimamura et al. (159) have
recently shown that over-expression of HGF following permanent
middle cerebral artery occlusion resulted in significant recovery
of performance in the Morris water maze and passive avoidance

conditioning tasks. Treatment with HGF was also found to increase
the number of arteries in the neocortex some 50 days following the
onset of ischemia.

In sum, these results suggest a role for the HGF/c-Met receptor
system in cerebroprotection and are consistent with the notion
that AngIV increases blood flow by a NO-dependent mechanism
(141). In support of this hypothesis a report by Faure et al.
(160) indicated that increasing doses of AngIV via the inter-
nal carotid artery significantly decreased mortality and cerebral
infarct size in rats 24 h following embolic stroke due to the intrac-
arotid injection of calibrated microspheres. Pretreatment with
the AT4 receptor antagonist Divalinal-AngIV, or the nitric oxide
synthase inhibitor Nω-nitro-l-arginine methyl ester (l-NAME),
abolished this protective effect. Sequential cerebral autoradiog-
raphy indicated that AngIV caused the redistribution of blood
flow to ischemic areas within a few minutes. Thus, AngIV may
yield its cerebral protective effect against acute cerebral ischemia
via an intracerebral-hemodynamic c-Met receptor-mediated NO-
dependent mechanism. Should these relationships hold then a
metabolically stable blood-brain barrier penetrant small molecule
that activates the HGF/c-Met system could prove highly efficacious
in the treatment of PD.

FUTURE RESEARCH DIRECTIONS
The use of ACE inhibitors and AT1 and/or AT2 receptor blockers
have shown preliminary experimental promise in the treatment
of stress, depression, alcohol consumption, seizure, AD, PD, and
diabetes. A number of AT1 receptor antagonists, capable of pene-
trating the BBB, are now available with new ones in clinical trials
(161, 162); however, the vast majority of clinical studies con-
cerned with the use of antihypertensive agents to treat dementia
have focused on ACE inhibitors and diuretics (163, 164). This
is also true of studies concerned with cerebroprotection against
stroke (165). Traditional antidepressant drugs for patients suffer-
ing from depression and migraine pathophysiology have taken
precedence over the use of ARBs (166). Similarly, the testing of
ARBs with seizure and PD patients has yet to gain momentum.
The treatment of diabetic patients with ARBs is just now receiv-
ing attention (167), particularly with patients suffering diabetic
related nephropathy (168, 169). The AngIV/AT4 receptor system
has been implicated in memory facilitation, cerebroprotection,
seizure, Alzheimer’s, and PDs. The lack of BBB penetrating AT4

receptor agonists and antagonists has limited our understanding
concerning the relative importance of brain AT1 and AT4 receptor
subtypes in the etiology and treatment of dementias, stroke, and
related memory dysfunctions. Although current drug develop-
ment efforts show promise regarding small molecules that interact
specifically with the AT4 receptor, much additional effort is needed
in this important research area.

There remain a number of important unanswered questions
regarding whether the observed biological effects of AngIV and its
analogs are mediated by the HGF/c-Met system. (1) What is the
complete brain distribution of the c-Met receptor and is this recep-
tor expressed in significant levels within cognitive mediating brain
structures? (2) Can AngIV, and AngIV analogs, specifically acti-
vate the HGF/c-Met receptor system in vivo to induce AngIV/AT4

receptor associated functions? (3) Are the levels of endogenous
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AngIV sufficient to augment the HGF-dependent activation of
brain c-Met receptors? This is a very significant issue in that the
in vivo half-life of AngIV appears to be very short. Related to this
point, what is the affinity of AngIV for HGF? (4) Does LVV-H7
bind to HGF, and if so, at what affinity? and (5) Does the activation
of brain c-Met receptors produce neurogenesis, and if so can this
phenomenon be utilized to replace experimentally and clinically
damaged pathways? Until these questions are answered an under-
standing of the true mechanism of action of AngIV and its analogs
will remain uncertain.

CONCLUSION
The classic RAS was originally described as a circulating hormonal
system involved in cardiovascular regulation, vasopressin release,
sympathetic activation, and body water/electrolyte balance. These
functions appear to be primarily mediated by the AT1 receptor sub-
type. With the recognition that local tissue RASs exist has come
research interest in additional physiological and pharmacological
functions that permit better understanding of clinical dysfunc-
tions such as inflammation, cellular proliferation, apoptosis, and
fibrosis accompanied by an increased appreciation for the role of
both the AT1 and AT2 receptor subtypes [reviewed in Ref. (170,
171)]. It is now clear that the brain RAS is involved in a number of
novel physiologies and behaviors that have important implications
for the design and development of new drug treatment strategies.
This review focused on the importance of the RAS with regard

to two neurodegenerative diseases, Alzheimer’s and PDs. The use
of ACE inhibitors and ARBs with Alzheimer’s patients suggests
an involvement by the brain RAS in this dysfunction. Such posi-
tive results force the need to further investigate the potential roles
of several angiotensins, not only the AngII/AT1 receptor system.
Clearly the AngII/AT2 receptor and AngIV/AT4 (c-Met) receptor
systems have been shown to exert positive influences on memory
acquisition and retrieval and are worthy of additional attention.
The Ang(1–7)/Mas receptor system has been implicated in neu-
roprotection and the facilitation of LTP and also deserves further
experimental evaluation.

Taken together these findings encourage new clinically relevant
approaches to understanding the memory enhancing effects, espe-
cially of the angiotensin IV system, on cerebral blood flow, neu-
roprotection, stress and depression, alcohol consumption, seizure,
Alzheimer’s and PDs, and diabetes (12, 172, 173). The develop-
ment of blood-brain barrier permeable AT4 receptor agonists and
antagonists presents a novel and promising new strategy for the
treatment of several of these clinical dysfunctions (174–177).
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