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Insulin receptor substrates (IRSs) are well known to play crucial roles in mediating intracel-
lular signals of insulin-like growth factors (IGFs)/insulin. Previously, we showed that IRS-1
forms high molecular mass complexes containing RNAs. To identify RNAs in IRS-1 com-
plexes, we performed ultraviolet (UV) cross-linking and immunoprecipitation analysis using
HEK293 cells expressing FLAG–IRS-1 and FLAG–IRS-2. We detected the radioactive sig-
nals in the immunoprecipitates of FLAG–IRS-1 proportional to the UV irradiation, but not in
the immunoprecipitates of FLAG–IRS-2, suggesting the direct contact of RNAs with IRS-1.
RNAs cross-linked to IRS-1 were then amplified by RT-PCR, followed by sequence analy-
sis. We isolated sequence tags attributed to 25 messenger RNAs and 8 non-coding RNAs,
including small nucleolar RNAs (snoRNAs). We focused on the interaction of IRS-1 with
U96A snoRNA (U96A) and its host Rack1 (receptor for activated C kinase 1) pre-mRNA.
We confirmed the interaction of IRS-1 with U96A, and with RACK1 pre-mRNA by immuno-
precipitation with IRS-1 followed by Northern blotting or RT-PCR analyses. Mature U96A
in IRS-1−/− mouse embryonic fibroblasts was quantitatively less than WT. We also found
that a part of nuclear IRS-1 is localized in the Cajal body, a nuclear subcompartment where
snoRNA mature. The unanticipated function of IRS-1 in snoRNA biogenesis highlights the
potential of RNA-associated IRS-1 complex to open a new line of investigation to dissect
the novel mechanisms regulating IGFs/insulin-mediated biological events.

Keywords: insulin-like growth factor, insulin receptor substrate, snoRNA, U96A, RACK1

INTRODUCTION
Insulin-like growth factors (IGFs) and insulin display a variety of
bioactivities, including embryonic development and growth, post-
natal somatic growth, and regulation of glucose, lipid, and protein
metabolism (1). These bioactivities have been shown to be accom-
plished by IGF/insulin signaling pathways composed of many
signaling molecules (2–4). Insulin receptor substrates (IRS)-1 and
IRS-2 are important substrates of the receptor-intrinsic tyrosine
kinases and serve as adaptor proteins transmitting IGF/insulin
signaling from the IGF-I/insulin receptor to the downstream
effectors. Although the differences in the roles of these IRS iso-
forms in mediation of the IGF/insulin bioactivities remain largely
unknown, it is suggested that IRS-1 plays a predominant role
in somatic growth, and IRS-2 in glucose homeostasis, especially
in liver (5–7). Following tyrosine phosphorylation of IRSs, Src
homology region 2 (SH2) domain-containing proteins bind to

Abbreviations: CLIP, UV cross-linking and immunoprecipitation; DMEM,
Dulbecco’s modified Eagle’s medium; FBS, fetal bovine serum; HEK293, human
embryonic kidney 293; IGFs, insulin-like growth factors; IRSs, insulin receptor sub-
strates; MAPK, mitogen-activated protein kinase; mRNA, messenger RNA; mRNP,
messenger ribonucleoprotein; mTOR, mammalian target of rapamycin; PI3K,
phosphatidylinositol 3-kinase; RNase A, ribonuclease A; snoRNA, small nucleolar
RNA.

IRSs leading to the activation of phosphatidylinositol 3-kinase
(PI3K) and mitogen-activated protein kinase (MAPK) pathways.
The activated PI3K transmits the signal to up-regulate growth and
metabolism through the Akt signaling pathway (8). In particu-
lar, the downstream mammalian target of rapamycin (mTOR) is
thought to play crucial roles in promoting growth-related intracel-
lular activities such as ribosome biogenesis (9, 10). Since previous
reports have shown that aberrant expression of IRS is linked to
certain types of cancers (11–13), unraveling the signaling cascade
of biological events that is involved in IRS regulation is important
to understand the role of IRSs in human pathologies.

The eukaryotic ribosome is a large complex composed of four
RNA molecules, including the 5S, 5.8S, 18S, and 28S ribosomal
RNAs (rRNAs) (14) and about 80 distinct ribosomal proteins
(RPs) (15). Ribosome biogenesis involves several coordinated
steps, such as synthesis, post-transcriptional modification and
processing of rRNA in the nucleus, synthesis of RPs and their
import into the nucleus, the assembly of ribosome subunits,
and the transport of the mature 40S and 60S subunits into the
cytoplasm (16). The post-transcriptional modifications of rRNA
include the two types of chemical modifications, pseudouridine
and 2′-O-methylation, and are added by small nucleolar RNP
complexes (snoRNPs) (17, 18) consisting of snoRNAs and sev-
eral proteins. For both types of modification, site specificity is
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achieved by the snoRNA through base pairing with the target
region. In vertebrates, the great majority of snoRNAs is encoded
within introns of pre-mRNAs (19, 20) and they are processed
from the debranched host introns (21–24). Therefore, the mature
intronic snoRNA is produced concomitantly with splicing of the
host pre-mRNA (22, 25).

Recently, we found that IRSs form high molecular mass com-
plexes containing RNAs as well as a variety of proteins that mod-
ulate or mediate insulin-like bioactivities (29). In addition, we
identified components of messenger ribonucleoprotein (mRNP)
as IRS-1-associated proteins (30). Here, we present the results of
the screening of RNA components of IRS-1 complex and found
that IRS-1 can form a complex with snoRNA, U96A, and its host
pre-mRNA, Rack1 (receptor for activated C kinase 1) RNA. In this
study, we propose the unanticipated role of IRS-1 in the biogenesis
of U96A. This may be a novel mechanism to support the induction
of IGF/insulin bioactivities.

MATERIALS AND METHODS
MATERIALS
Anti-IRS-1 antibody was raised in rabbits as described (31). The
following peptide and antibodies were purchased: FLAG (F3165,
Sigma, St. Louis, MO, USA), anti-FLAG antibody-conjugated
agarose beads (A2220, Sigma), and anti-Myc antibody (9E10, Mil-
lipore, Billerica, MA, USA). All other chemicals were of reagent
grade and were obtained commercially.

PLASMIDS
To generate FLAG-tagged or Myc-tagged IRS-1 and IRS-2, the
open reading frame of rat IRS-1 and human IRS-2 was sub-
cloned into the pCMV–FLAG-2 vector (Sigma) or pCMV–Myc
vector in-frame as described previously (32, 33). Full-length rat
PABPC1 was subcloned into the pCMV mammalian expres-
sion vector containing an N-terminal FLAG tag (FLAG–PABPC1)
as follows. An EcoRI restriction site was introduced at the 5′

end of the PABPC1 open reading frame and a SalI site at the
3′- end by PCR using the oligonucleotides 5′-TTAAGAATTCAA
GATGAACCCCAGCGCCCCCAGCTA-3′ and 5′-TTAAGTCGAC
TTAGACAGTTGGAACACCAGTGG-3′, respectively. The PCR
product was digested with EcoRI and SalI and subcloned into
pCMV–FLAG cut with EcoRI and SalI. Full-length human 15.5K
was subcloned into the pCMV mammalian expression vector con-
taining an N-terminal FLAG tag (FLAG-15.5K) or N-terminal
GFP tag (GFP-15.5K) as follows. A BglII restriction site was intro-
duced at the 5′ end of the 15.5K open reading frame and a SalI
site at the 3′ end by PCR using the oligonucleotides 5′-TTAA
GAATTCAAGATGAACCCCAGCGCCCCCAGCTA-3′ and 5′-TT
AAGTCGACTTAGACAGTTGGAACACCAGTGG-3′. The PCR
product was digested with BglII and SalI and subcloned into
pCMV–FLAG and pEGFP-C1 cut with BglII and SalI. Full-length
human coilin was subcloned into the pCMV mammalian expres-
sion vector containing an N-terminal GFP tag (GFP–coilin) as
follows. A KpnI restriction site was introduced at the 5′ end
of the coilin open reading frame and a BamHI site at the
3′ end by PCR using the oligonucleotides 5′-TTAAGGTACC
ATGGCAGCTTCCGAGACGGTTAGGCTACG-3′ and 5′-TTAA
GGATCCTCAGGCAGGTTCTGTACTTGATGTGTTACTTGG-3′.

The PCR product was digested with KpnI and BamHI and
subcloned into pEGFP-C1 cut with KpnI and BamHI.

Plasmids expressing Myc–IRS-1 fused with SV40 large T
antigen-derived Nuclear Localizing Signal (NLS, PKKKRKV) in its
C-terminus was constructed by PCR using pCMV–Myc–IRS-1 as
template and the oligonucleotides 5′-AAGGCTGTCCTTGGGGG
ATCC-3′ and 5′-ATCGGGATCCCTATACCTTTCTCTTCTTTTT
TGGTTGACGGTCCTCTGGTTG-3′. The PCR product amplified
was digested with BamHI and subcloned into pCMV–Myc–IRS-1
cut with the same restriction enzyme.

For the in vitro RNA synthesis, U96A snoRNA sequence
was amplified by PCR using the oligonucleotides 5′-TTAATCTA
GACCTGGTGATGACAGATGGCATTGTCAG-3′ and 5′-TTAA
CTGGAGTTCAGAATTGCAGGACATGTCCTCACTCC-3′. The
primers were engineered to contain XbaI and XhoI sites to intro-
duce these restriction sites at the 5′ and 3′ end of the PCR product,
respectively. The PCR product was digested with XbaI and XhoI
and subcloned into the downstream of T7 promoter of pBS-KS(+)
cut with XbaI and XhoI, which is referred to as pBS-KS(+)-U96A
snoRNA. U6 small nuclear RNA (snRNA) sequence was also
amplified by the PCR using the oligonucleotides 5′-TTAA
TCTAGAGTGCTCGCTTCGGCAGCACATATACTAAAATTGG-3′

and 5′-TTAACTCGAGAAAATATGGAACGCTTCACGAATTTGC
GTGTCATCC-3′, and subcloned into the downstream of T7
promoter of pBS-KS(+) cut with XbaI and XhoI.

ANIMALS
Insulin receptor substrates-1 knockout mice were kindly donated
by Dr. Kadowaki and Dr. Ohsugi (Faculty of Medicine, The Uni-
versity of Tokyo). All animal experiments in this study were per-
formed according to procedures approved by the Committee on
Laboratory Animal Care, Graduate School of Agriculture and Life
Sciences, The University of Tokyo.

CELL CULTURE AND TRANSFECTION
Human embryonic kidney 293 (HEK293) cells were kindly pro-
vided by Dr. Koichi Suzuki (National Institute of Infectious Dis-
eases, Tokyo, Japan). MCF-7 human breast cancer cells (ATCC
No. CRL8305) were a kind gift from Dr. Yoichi Hayakawa
(Tokyo University of Science, Tokyo, Japan). HEK293, MCF-7
cells, and HeLa cells were maintained at 37°C in a humidi-
fied CO2-controlled atmosphere in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum
(FBS), 0.1% NaHCO3, 50 IU/ml penicillin, 50 µg/ml strepto-
mycin, 100 µg/ml kanamycin, and 0.5 µg/ml amphotericin B.
For the serum-starvation, cells were starved for 16 h in DMEM
supplemented with 0.1% bovine serum albumin (BSA).

Primary mouse embryonic fibroblasts (MEFs) were prepared
from littermates according to the previous report (34) and kept
in culture for 2–3 weeks, respectively. Briefly, MEFs were prepared
from E14.5 embryos. Embryos were dissociated by 0.025% trypsin
in 0.2% EDTA at 37°C for 10 min and then treated with DNa-
seI. After filtering fibroblasts with a 70 µm cell strainer, they were
cultured in DMEM supplemented with 10% FBS, 100 µg/ml strep-
tomycin, 100 U/ml penicillin, and 2 mM glutamine. MEFs were
cultured at 9% CO2 at 37°C and experiments were performed at
first passages (P1–P4).
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For the plasmid transfection, the expression vectors were trans-
fected into HEK293 cells using Lipofectamine 2000 (Invitrogen,
Carlsbad, CA, USA), according to manufacturer’s protocol.

IMMUNOPRECIPITATION AND IMMUNOBLOTTING
Immunoprecipitation and immunoblotting were performed as
described elsewhere (30).

CROSS-LINKING AND IMMUNOPRECIPITATION
Cross-linking and immunoprecipitation (CLIP) was performed
using serum-starved HEK293 cell expressing FLAG–IRS-1 or
FLAG–IRS-2 according to Ule et al. (35) with minor modification.

NUCLEUS AND CYTOPLASM FRACTIONATION
Nucleus/cytoplasm fractions were prepared according to previous
report (36).

RNA EXTRACTION, RT-PCR, AND QUANTITATIVE RT-PCR
Total RNA was extracted from cells using the TRIzol reagent
(Invitrogen) followed by DNase I treatment. For RT-PCR, 1 µg of
total RNA was reverse transcribed using random primers (Invit-
rogen) and SuperScript II reverse transcriptase (Invitrogen). A
fraction of the RT reaction products was used in subsequent PCR
reactions. Amplification parameters were denaturation at 94°C
for 30 s, annealing at 64°C for 30 s, and extension at 72°C for
30 s in a 30-cycle program. Primer sequences were as follows:
Rack1 exon1–exon8 (5′-ACTGAGCAGATGACCCTTCGTG 3′ and
5′-GTTGTCCGTGTAGCCAGCAAAC-3′, 912 bp). The simulta-
neous analysis of serial dilution of the amount of RNA used in the
RT-PCR reactions ensured that these reactions were quantitative.

For quantitative RT-PCR, the cDNA prepared was subjected
to real-time PCR (ABI StepOne™ Real-Time PCR Systems),
using SYBR Green Real-time PCR Master Mix Plus (TOY-
OBO, Osaka, Japan). Data were expressed as relative mRNA lev-
els normalized to housekeeping gene (Gapdh) expression level
in each sample. The primer sequences are as follows: Rack1
exon2–intron2 (5′-GATGGTCAGTTTGCCCTCTC-3′, 5′-CTCA
GTTCTGCCCACTTTCC-3′), Rack1 exon3–exon4 (5′-GTCCCG
AGACAAGACCATAAAG-3′, 5′-TGATAGGGTTGCTGCTGTTC-
3′), Gapdh (5′-GTGTTCCTACCCCCAATGTG-3′, 5′-CCTGCTT
CACCACCTTCTTG-3′).

NORTHERN-BLOT ANALYSIS
To detect small RNAs, total RNA was separated on a 10% dena-
turing acrylamide gel and transferred to Hybond-N+ membrane
(GE Healthcare Biosciences, Pittsburgh, PA, USA) using a Trans-
Blot SD Semi-Dry Transfer Cell (Bio-Rad, Hercules, CA, USA).
For the detection of U96A snoRNA, DNA probes were synthe-
sized with a Megaprime DNA labeling Kit (GE healthcare) and
[α−32P]dCTP using U96A snoRNA cDNA as a template. The
probes were hybridized using prehybridization buffer (50% deion-
ized formamide, 5× SSPE, 5×Denhardt, 10% dextran sulfate,
0.1% SDS, 20 µg/ml salmon sperm) at 50°C. Densitometric analy-
sis of RNA bands was performed using ImageJ gel analysis software
(http://rsbweb.nih.gov/ij/).

CO-IMMUNOPRECIPITATION OF U96A snoRNA WITH PROTEINS
HEK293 cells expressing FLAG-tagged proteins were serum-
starved and washed twice with ice-cold PBS and irradiated with
4000 J/m2 ultraviolet (UV) in ice-cold PBS. The cells were col-
lected in 1.5 ml microtubes and pelleted by centrifugation. The cell
pellets were resuspended with 1 ml of NET-2 [50 mM Tris–HCl,
pH 7.4, 300 mM NaCl, 0.05% NP-40, 500 µM Na3VO4, 10 µg/ml
leupeptin, 5 µg/ml pepstatin, 20 µg/ml phenylmethylsulfonyl flu-
oride (PMSF); 100 KIU/ml aprotinin] containing 100 U of RNase-
inhibitor (Ambion, Austin, TX, USA) and were incubated for
10 min on ice. Cells were lysed by 15 (3× 5) bursts using a Bran-
son Sonifier. Homogenates were centrifuged at 14,000 g for 10 min
at 4°C, cleared by incubation with 20 µl Protein G-Sepharose
beads (GE Healthcare) for 60 min, and incubated with a specific
antibody for 1.5 h at 4°C, after which 30 µl Dynabeads pro-
tein G paramagnetic beads (Invitrogen) were added with gentle
mixing for another 30 min at 4°C. The beads were washed five
times with high-salt wash buffer [50 mM HEPES–KOH, pH 7.5,
500 mM KCl, 0.05% (v/v) NP-40, 0.5 mM DTT] and proteins
on beads were eluted by incubation with lysis buffer containing
150 ng/ml FLAG peptide. Nine-tenth of the eluates was treated
with Proteinase K, and the eluted RNAs were purified with the
TRIzol Reagent and analyzed by Northern blotting. The remain-
der of the eluates was fractionated by SDS-PAGE and analyzed by
immunoblotting.

IN VITRO RNA SYNTHESIS
pBS-KS(+)-U96A snoRNA 0.5 µg linearized with XhoI and gel
purified was used as a template for in vitro transcription with
Riboprobe in vitro Transcription kit (Promega, Madison, WI,
USA). The RNA products were treated with DNase I and puri-
fied with phenol/chloroform/isoamyl alcohol mixture and ethanol
precipitation. The amount of transcribed RNA was quantitated by
absorbance at 260 nm and the product size and purity were verified
by 10% denaturing acrylamide gel.

GEL SHIFT ASSAY
To obtain FLAG-tagged proteins, whole-cell lysates from
HEK293T cells were prepared from transfected cells with lysis
buffer (20 mM HEPES, pH7.5, 150 mM NaCl, 1% Triton X-
100, 1 mM DTT, 1 mM EDTA, 10% glycerol, 10 µg/ml leupeptin,
5 µg/ml pepstatin, 20 µg/ml PMSF, 100 KIU/ml aprotinin). FLAG-
tagged proteins were purified from whole-cell lysates by using
anti-FLAG-M2 affinity resin, washed with high-salt buffer (20 mM
HEPES, pH7.5, 400 mM NaCl, 1% Triton X-100, 1 mM DTT,
1 mM EDTA, 10% glycerol, 10 µg/ml leupeptin, 5 µg/ml pepstatin,
20 µg/ml PMSF,and 100 KIU/ml aprotinin),and eluted with FLAG
peptide. Purity of the eluted proteins was verified by SDS-PAGE,
followed by Coomassie Brilliant Blue staining.

Gel shift assay was conducted using ~50,000 cpm in vitro
transcribed, [32P]-UTP-labeled U96A snoRNA (~100 nt), U95
snoRNA (~100 nt), or U6 snRNA probe (~120 nt). The probe
was heat denatured for 5 min by heating at 65°C and renatured
prior to being added to binding reactions containing FLAG–GFP,
FLAG–IRS-1, FLAG–15.5K proteins (100 ng). The binding reac-
tion was performed at 4°C for 45 min in 20 µl binding buffer
(20 mM HEPES-KOH, pH7.5, 6 mM MgCl2, 60 mM KCl, 7.5%
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glycerol, 4 mM DTT, 125 ng/µl yeast tRNA, 50 ng/µl BSA, and 5 U
RNase-inhibitor) was added. Bound complexes were resolved on
native 5% polyacrylamide gels in 0.25×TAE buffer. Autoradiog-
raphy was performed using a FLA-5000 imaging system (Fujifilm
Life Sciences, Tokyo, Japan).

MEASUREMENT OF DNA CONTENTS
DNA content in cells was determined using PicoGreen dsDNA
Quantitation Reagent (Invitrogen) according to manufacturer’s
procedure.

FACS ANALYSIS
For the analysis of cell cycle distribution, the cells were starved for
48 h in DMEM plus 0.1% FBS. MEFs were trypsinized and thor-
oughly dissociated into single cells in FACS buffer [0.1% FBS,1mM
EDTA, 1 mM NaCl in PBS(−)] and passed through a 40 µm cell
strainer (BD Falcon). The collected cells were fixed in 70% ice-
cold ethanol overnight at −20°C. Fixed cells were subsequently
stained with 20 g/ml Propidium Iodide diluted in PBS contain-
ing 0.2 mg/ml RNAse A for 30 min at 37°C. Cells were sorted
and counted using BD FACSCalibur (BD Biosciences, San Jose,
CA, USA) according to the manufacturer’s instruction. All the
analyses were performed at least three times on different genetic
backgrounds.

IMMUNOFLUORESCENCE
HeLa cells and MCF-7 cells grown on coverslips were serum-
starved for 16 h. The cells were fixed in 4% paraformaldehyde/PBS
for 15 min at room temperature, permeabilized with PBS contain-
ing 0.25% Triton X-100 for 5 min at room temperature, blocked
with blocking buffer (3% BSA and 0.025% NaN3 in PBS) for 1 h at
room temperature. Then, primary antibody against Myc epitope
was added and incubated overnight at 4°C. After the samples were
washed with PBS, secondary antibody incubation was done for
1 h at room temperature using anti-mouse Alexa Fluor 594. The
slides were mounted with Vectashield mounting medium (Vec-
tor Laboratories, Burlingame, CA, USA). Images were captured
using FV500 confocal microscope (Olympus, Tokyo, Japan) and
analyzed with Fluoview version 1.4 and Photoshop CS5.

STATISTICAL ANALYSIS
Data are expressed as means± standard error of mean (SEM).
Comparisons between two groups were performed using Student’s
t -test.

RESULTS
IRS-1, BUT NOT IRS-2 FORMS COMPLEXES WITH RNAs IN CELLS
Our previous studies showed that IRS-1 forms high molecular
mass complexes with mRNPs (30). Importantly, IRS-1 but not IRS-
2 was incorporated into mRNPs (30). Prior to identifying RNAs
in IRS-1 complex, we first examined whether IRS-1 interacts with
RNAs in close proximity or not. To this end, we performed an
UV CLIP analysis (35, 37). HEK293 cells expressing FLAG–IRS-
1 or FLAG–IRS-2 were irradiated with UV to cross-link between
proteins and RNAs in living cells. Cells were lysed, and RNAs
were partially cleaved by the treatment with low-concentrations
of RNase, providing short RNA tags covalently cross-linked to

FIGURE 1 | Purification of IRS-1-RNA complexes by CLIP. (A) HEK293
cells expressing FLAG–IRS-1 or IRS-2 were irradiated with or without UV.
Protein–RNA complexes were immunoprecipitated with anti-FLAG antibody,
and the 5′ ends of immunoprecipitated RNAs were radiolabeled with 32P.
Proteins cross-linked with radiolabeled RNAs were separated by SDS-PAGE
and visualized by autoradiography. Representative autoradiograms from
three experiments are shown. RNA–protein complexes of ~200 kDa
(arrowhead) are seen with FLAG–IRS-1 immunoprecipitates (IP) dependent
on UV irradiation but not control and FLAG–IRS-2 IP. (B) Immunoblot (IB)
analysis of IRS-1 and IRS-2 IP using anti-FLAG antibody.

target proteins. FLAG–IRSs were then immunoprecipitated and
5′ ends of cleaved RNAs in the precipitates were radiolabeled
with polynucleotide kinase (PNK) and [γ−32P]ATP. The immuno-
precipitates were then separated by SDS-PAGE, transferred onto
nitrocellulose membrane, and detected by autoradiography and
immunoblotting (Figures 1A,B). In samples without UV irra-
diation, we observed radioactive signals at 180 kDa around the
band of IRS-1, indicating non-specific phosphorylation of IRS-
1 by PNK in vitro. However, UV irradiation greatly increased
the radioactive signals at 180 kDa, indicating that IRS-1 cova-
lently interacted with RNAs. In the CLIP analysis, a portion of
radioactive signals of the protein–RNA complexes showing slower
electrophoretic mobility are often observed because of covalent
interaction with longer RNAs (35). Indeed, we actually observed
weak but specific radioactive signals with slower electrophoretic
mobility than that of IRS-1 itself (Figure 1A). In contrast to IRS-1,
UV irradiation did not increase the radioactive signals around the
band of IRS-2 (Figure 1A) suggesting that IRS-2 does not interact
with RNAs. These results clearly indicated that IRS-1 is in direct
contact with RNAs in cells.

IRS-1 COMPLEXES CONTAIN U96A snoRNA
We next sought to identify RNAs that are in direct contact
with IRS-1 in cells. For this purpose, we extracted RNAs from
the radioactive region around IRS-1–RNA complexes (Figure 1,
arrowhead) and amplified them by RT-PCR, followed by sequence
analysis. We excluded tags with imperfect (<80%) matches to
genomic sequences, and accordingly identified 33 IRS-1-bound
RNAs from three experiments, which had an average length of
103 nucleotides (Tables A1 and A2 in Appendix). The resulting
set of tags included not only tags mapped to 25 messenger-RNA-
encoding genes (Table A1 in Appendix) but also tags mapped to
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FIGURE 2 | Complex formation of IRS-1 with U96A snoRNA. (A) U96A is
located in the second intron of human Rack1 gene. Human Rack1 gene
contains 8 exons (black boxes) and 2 snoRNAs (white boxes). Rack1
produces mature Rack1 mRNA and two non-coding RNAs, U95 and U96A.
(B) MCF-7 cells were separated into cytosolic (C) and nuclear (N) fractions.
RNA was prepared from both fractions and 10 µg RNAs from each fraction
were analyzed for U96A snoRNA abundance by Northern-blot analysis. 100,
33, and 11% of 10 µg total RNAs were also loaded. Representative results
from at least four independent experiments are shown. (C) Lysates from
HEK 293 cells overexpressing FLAG–IRS-1, IRS-2, PABPC1 (negative control)
or 15.5 K (positive control) were subjected to immunoprecipitation with
anti-FLAG antibody. RNA–protein complexes were eluted with 3×FLAG
peptides, and RNAs bound to the proteins were extracted with
phenol/chloroform/isoamyl alcohol mixture and ethanol precipitation. RNAs

were subjected to Northern blotting with the indicated probes.
Representative results from three independent experiments are shown.
(D) Gel shift assay was conducted using in vitro transcribed,
[32P]-UTP-labeled U96A probe. The U96A probe was added to binding
reactions containing FLAG–IRS-1 proteins (50, 100, 200 ng), FLAG-tagged
GFP (negative control) or FLAG-15.5K (positive control). Representative
results from three independent experiments are shown. (E) Lysates from
HEK 293 cells overexpressing FLAG, FLAG–IRS-1, FLAG–CBP80 were
subjected to immunoprecipitation with anti-FLAG antibody. RNA–protein
complexes were eluted with 3×FLAG peptides, and RNA bound to the
proteins was extracted with phenol/chloroform/isoamyl alcohol mixture and
ethanol precipitation. RNAs were subjected to RT-PCR using the primers
specific for Rack1, which are designed within the first and last exon.
Representative results from three independent experiments are shown.

8 non-coding RNAs including snoRNAs and snRNAs (Table A2
in Appendix). RNA sequences that we determined were mapped
not only to exons but also to introns or 3′UTRs. As negative con-
trol experiments, we repeated CLIP analysis using cells expressing
FLAG, but could not amplify the tags.

Among IRS-1 bound RNAs, we focused on U96A snoRNA
(U96A), a member of the Box C/D type snoRNAs, which are

well established to function in post-transcriptional chemical
modification of rRNA (19). U96A is encoded in the second intron
of the Rack1 gene (Figure 2A) (38). We first examined the expres-
sion of U96A in MCF-7 cells by Northern-blot analysis and the
result showed that U96A was expressed and localized in the nucleus
(Figure 2B), which is the same subcellular distribution as canon-
ical box C/D snoRNAs. The interaction of IRS-1 with U96A
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FIGURE 3 | Effects of IRS-1 on expression of U96A snoRNA.
Embryonic fibroblasts prepared from IRS-1+/+ and IRS-1−/− mice were
serum-starved for 48 h. Cells were harvested and split into three portions.
One portion was subjected to DNA extraction, which was used to
normalize the amount of RNA. Another portion was used as a source of
RNA, which was analyzed by Northern blotting (B), and by RT-PCR (C,D).
The remaining portion was used for cell cycle analysis (A). (A) FACS
analysis was performed to analyze the cell cycle distribution (n=3).
(B) Relative expression of U96A in MEFs from IRS-1+/+ and IRS-1−/−

animals. 100, 33, and 11% of IRS-1+/+ samples were loaded. n=3, bars

indicate SEM. *P < 0.05 (Student’s t -test). (C,D) Relative expression of
mature Rack1 mRNA and Rack1 pre-mRNA retaining intron2 in MEFs
from IRS-1+/+ and IRS-1−/− animals. n=5, bars indicate SEM. n.s.,
non-significant (Student’s t -test). (E) HeLa cells and MDF-7 cells were
co-transfected with the plasmids expressing Myc–IRS-1 and either
GFP–coilin (Cajal body marker) or GFP-15.5K (nucleolus marker). Following
serum-starvation, cells were fixed and stained with anti-Myc antibody and
Hoechist33342. A merge of the two images is shown with yellow
indicating areas of colocalization. Representative stainings from at least
three experiments using each cell are shown.

was confirmed by co-immunoprecipitation assay, followed by
Northern-blot analysis using labeled U96A as a probe (Figure 2C).
We neither detected U96A in the immunoprecipitates of GFP,
IRS-2 nor poly-A binding protein (PABP). In a positive control
experiment, U96A was detected in the RNAs co-purified with
15.5K, which is known to primarily interact with Box C/D type
snoRNAs as a component of snoRNP (19, 22, 39). Interestingly,
U95 snoRNA, which is encoded in the first intron of Rack1 pre-
mRNA was not co-immunoprecipitated with IRS-1. The direct
interaction between IRS-1 and U96A was also confirmed by in vitro
binding assay (Figure 2D).

Because snoRNAs were generally excised from an intron of
protein-coding mRNAs coupled with splicing (22, 25), we exam-
ined the possibility that IRS-1 also interacts with Rack1 pre-
mRNA. RNAs co-immunoprecipitated IRS-1 was subjected to RT-
PCR using Rack1 specific primers designed within the first and last
exon. As a result, we detected single band with a size around 1400
bases (Figure 2E). By sequencing analysis, The PCR product was
proved to be Rack1 pre-mRNA that retains only intron 2. A similar
size DNA was amplified using RNAs co-immunoprecipitated with
CBP80, a protein that can bind pre-mRNAs (40, 41).

IRS-1 POSITIVELY REGULATES U96A snoRNA BIOGENESIS
To gain insight into the biological significance of the association of
IRS-1 with Rack1 pre-mRNA and U96A, we examined the amount

of U96A in embryonic fibroblasts derived from IRS-1-deficient
mice (IRS-1−/− MEFs) and wild-type MEFs (IRS-1+/+ MEFs).
Embryonic fibroblasts prepared from littermate IRS-1+/+ MEFs
and IRS-1−/− MEFs were cultured under serum-free condi-
tions and total RNAs were normalized to DNA content since
cell cycle distribution was the same in IRS-1+/+ and IRS-1−/−

MEFs (Figure 3A). Northern-blot analysis showed that the U96A
levels in IRS-1−/− MEFs were less than those in WT MEFs
(Figure 3B). These results demonstrated that IRS-1 positively
regulates the abundance of U96A. It is also important to note
that the amounts of both Rack1 mature mRNA and Rack1 pre-
mRNA retaining only intron 2 were unchanged, suggesting that
the effect of IRS-1 depletion on the reduction of U96A in IRS-
1−/− MEFs is not due to altered Rack1 transcription and splicing
(Figures 3C,D).

Small nucleolar RNAs are generally produced concomitantly
with transcription/splicing of pre-mRNA in nucleoplasm and
translocated to the nucleolus, which is the site of rRNA tran-
scription and processing. Several snoRNAs are also reported to
be detected in Cajal bodies, where they mature (20, 42). On
the other hand, a part of IRS-1 is reported to be localized in
nucleus (43–49). To investigate the possibility that nuclear IRS-
1 is linked to snoRNA biogenesis, we performed immunoflu-
orescent staining of NLS-fused Myc–IRS-1 (Myc–IRS-1–NLS)
using HeLa cells and MCF-7 cells expressing either GFP–coilin or
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GFP-15.5K, a molecular component of Cajal bodies and nucleolar.
As shown in Figure 3E, Myc–IRS-1–NLS certainly localizes to
nucleus and exhibits a punctate staining pattern as well as gen-
eral staining of the nucleoplasm. We found that Myc–IRS-1–NLS
significantly colocalizes with GFP–coilin, suggesting that a func-
tion of IRS-1 in the nucleus might be related to snoRNA
biogenesis.

DISCUSSION
We had shown that IRS-1 and RNAs co-exist in high molecular
weight complexes in cells. In this study, we identified several RNAs
that physically interact with IRS-1. They included some mRNA
species and non-coding RNAs. Among them, we focused on U96A
snoRNA, and our results suggest a novel role of IRS-1 in U96A
biogenesis.

Using CLIP analysis, we demonstrated that IRS-1 is in close
proximity to RNAs including some mRNA species and non-coding
RNAs. In vitro binding assay using purified IRS-1 and U96A, one
of RNAs associating with IRS-1, also suggest that they interact
with each other directly, although it cannot be ruled out that
another RNA-binding protein(s) is co-purified with IRS-1 and
mediates the interaction of IRS-1 with U96A. Because IRS-1 does
not possess a known RNA-binding domain as far as we searched,
it is important to determine the region in IRS-1 responsible for
interaction with RNAs.

Since snoRNAs are encoded in protein-coding genes (host
genes), the expression level/efficiency of snoRNA is dependent
on the transcription of their host genes and splicing (21, 22). We
observed that the U96A levels were reduced in IRS-1−/− MEF
(Figure 3A), while the amounts of mature and intron2-retained
pre-mRNA of Rack1 were not affected (Figure 3C), indicating that
IRS-1 positively regulates the U96A levels after the step in which
U96A was removed from Rack1 pre-mRNA by splicing. These
steps include assembly of snoRNPs, debranching of removed lariat
intron, or translocation of snoRNP into nucleolus.

We found that Rack1 pre-mRNA that retains the only intron
2 was accumulated in the IRS-1-immunoprecipitates. We found
that the second intron of Rack1 where U96A is encoded possesses
an atypical 5′ splice site (5′ss) with a GC dinucleotide in the first
two intron positions, whose splicing-promoting activity is rela-
tively weak. Thus, the retention of only the second intron may
be due to this unique 5′ss sequence rather than the binding of
IRS-1 to the intron. The mechanism by which this intrinsically
weak 5′ss is efficiently selected by splicing factors and the GC
5′ ss-containing intron removal is promoted are poorly under-
stood (50, 51). It is possible that the retention of the intron 2
is the rate-limiting step and plays important roles in expression
of U96A. Given that our result shows IRS-1 forms a complex
with U96A but not U95 (Figure 2C), which is encoded within
the first intron of Rack1, splicing retention of intron 2 may pro-
vide the temporal opportunity for IRS-1 to access to the site of
encoding U96A.

It is well established that snoRNAs form snoRNP complexes,
and function to guide modification enzymes to newly synthesized
rRNAs in the nucleolus (52, 53). Thus, snoRNAs are essential for
the post-transcriptional chemical modification of rRNA, which is
required for ribosome maturation and functions such as rRNA

processing, ribosome structure, and IRES-mediated translation
(53–56). Although the loss of all of snoRNAs individually in yeast
causes no obvious effect on cell growth (57), depletion of the
modifications in multiple sites resulted in severe growth retar-
dation (53, 58). Furthermore, recent studies have shown that
dysfunction of snoRNAs and their host pre-mRNA may have a
role in the human cancers (26), implying their contribution to
the cancer development caused by the alterations of ribosome
biogenesis (27, 28). On the other hand, although IRS-1 is pre-
dominantly a cytoplasmic protein, earlier studies demonstrated
that endogenous IRS-1 is also detectable in the nucleus (43–49),
where its precise functions and biological relevance remain largely
unknown. So far, in the nucleus, it has been reported that IRS-1
regulates transcription of rRNA and several genes implicated in
cell proliferation and cancer progression (47, 48). Our findings
that repression of U96A in IRS-1 knockout cells and the presence
of nucleus-targeted IRS-1 in Cajal bodies suggest that IRS-1 func-
tions in ribosome biogenesis by affecting the quality control of
rRNA as well as rRNA abundance, which may contribute to the
efficient cell growth mediated by IRS-1 and cancer development
as well.

As explained in the introduction, IGF/insulin signals through
IRSs induce translation of mRNA by activating the PI3K and
MAPK pathways. In this study, we propose a novel mechanism
by which IRSs could potentiate protein synthesis through the
interaction of IRS-1 with snoRNA (Figure 4).
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FIGURE 4 | A working hypothesis of IRS-mediated control of
protein synthesis. Following IGF stimulation, intracellular signaling
through IRS activates downstream PI3K–mTOR signaling pathway,
which is well known to promote translation of mRNAs. Up-regulation
of protein synthesis is supported by ribosome maturation, which is

accomplished by multiple coordinated processes, including rRNA
transcription and ribosome activation (e.g., ribosomal protein S6
phosphorylation). The transcribed rRNAs in nucleus undergo chemical
modification by snoRNP complexes whose biogenesis is controlled by
nuclear IRS-1.
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APPENDIX

Table A1 | Annotated list of IRS-1 CLIP tags (mRNA).

CLIP tag Gene Length Location

GGTCACGATCTCACCCAGCTTAAGCTTGTAGGATCGTGGTC

TTCCCT

ADP-ribosylation factor 1 (ARF1) 47 Exon 3

ATACCACCCTGAACGCGCCCGATCTCCTCTGATCTTTGAAGC

TAAGCAGGGTCGGGGCTGGTTACTACTTGGATGGGAGACC

GCCTGGGAATACCGGGTGCTGTGGGCTT

Hypothetical LOC728649 110

ATCGACTGTGGGGGCGGCTATGTGAAGCTGTTTCCTATAGTTT

GGACCAGACAGACATGCACGGAGACTCAGAATAC

Calreticulin (CALR) 77 Exon 3

GTTTCCACATACAAATTATAAAACGTGTTTATTTTGCTGGGC

GCAGTGGCTCATGCCTGTAATCCTAGCACTTTGGGAGGCCAA

GGCGGGTGGATCACCTGAGGTCAAGAGTTCGAGACCATCC

TGGCCAACA

Family with sequence similarity 118, member A

(FAM118A)

134 3’ UTR

GAGCCTGTCACCACGCCTGGCTAATTTTTTGTATTTTTAGTAG

AGACGGGGTTTCACCACCACGTTGGCCAGGCTGGTCTCGAA

CTCTTGACCTCAGGGGATCCACCCACCTCGGCCTCCTAAAGTGC

TGGGATTACGGGCGTCAGTCACCGCACCCGGCCCAAGACAGGT

GATCTTTTTAAAGATCAACGTTGGT

IWS1 homolog (S. cerevisiae) (IWS1) 196 Intron

AGGACACATTGATCATCGACACTTCGAACGCACTTGCGGCCCC

GGGTTCCTCCCGGGGCTACGCCTGTCTGAGCGTCGCT

Hypothetical protein LOC100132755 80

AGTATTTGCTCCAGCTGATATTTTGGTAATATTTTCTAAAGATAA

GAAAAGACAGGGGTTTCATATAAC

PABP1-dependent poly A-specific ribonuclease

subunit (PAN3)

69 Intron

AGTCTATAGTCCTTGTGTGTATGGGTGGCACCATGATGGAGT

GGAAACAGCACTGGCCT

Leucine rich repeat containing 1 59 Intron

AGCTGTTGAAGCTCAAAGCTGGAGGTGAGCTTCTGAGGCC

TTTGCCATTATCCAGCCCAAGATTTGGTGCCTGCAGCCTCTTGT

CTGGTTGAGGACTTGGGGCAGGAAAGGAATGCTGCTGAACTT

ATP-binding cassette, sub-family F (GCN20), member

1 (ABCF1)

126 3’ UTR

AACTCTTCCCAGATGATGACAATGAAATTAGTGCCTGTTTTCTT

GCAAATTTAGCACTTGGAAC

TIMP metallopeptidase inhibitor 3 (Sorsby fundus

dystrophy, pseudoinflammatory) (TIMP3)

64 3’ UTR

AACCGGGTGACCGAGATCCTCGATT Component of oligomeric Golgi complex 4 (COG4) 25 Exon19

TCTGCCACTAATCAATCCTTCTGTATTTTCCTTTGACCCTGTT

CACTGGGGGTGGTGGGCAGAGATCCAAACTCTTTAATTCTGC

ATCGTCCTCTCT

Syntaxin 7 (STX7) 97 Exon4/5

junction

AATCCATCCTCGGATGTCGCTGCCTTGCATAAGGCCATAAT

GGTTAAAGGTGTGGATGAAGCAACCATCATTGACATTCTAACT

AAGCGAAAC

Annexin A1 (ANXA1) 93 Exon2/3

junction

AAGGAGAAGCGGGTAGGAGGTGTGCATGGCACCTCCG

TCAGTCTTTGCCGAGGTTCCGCAGGCCCAGCCTGTCCT

GGTCTTCAAGCTCACTGCCGACTTCAGGGAGGATCCGGACCC

CCGCAAGGTCAACCTGGGAGTGGGAGCATATCGCACGGATGA

CTGCCATCCCTGGGTTTTGCCAGTAGTGAAGAAAGTGGAGCA

GAAGATTGCTAATGACAATAGCCTAAATCACGAGTATCTGCCAA

TCCTGGGCCTGGCTGAGTTCCGGAGCTGTGCTTCTCGTCTTG

CCCTTGGGGATGACAGCCCAGC

Glutamic-oxaloacetic transaminase 1, soluble

(aspartate aminotransferase 1) (GOT1)

309 Exon1/2

junction

(Continued)
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Table A1 | Continued

CLIP tag Gene Length Location

TATCAAGCTAGCCAGGCTCTTAACTGCTGTGTTGATGAAGAA

CATGGAAAAGGGTCCCTAGAAGAAGCTGAAGCAGAAAGACTT

CTTCTAATTGCAAGTAAGTGTGATGCACCTGAAAGAGTTCCAA

CGTGTCAG

Anillin (ANLN) 135 Exon13

AGTCTTCGTTCCACTGGACAGGGAAAGCTTGAAACTTTGGC

TCTGCCGTCCAGAAAGGTTTGTTTTCAGAAGCACTTCCTTTTCC

SMEK homolog 1, suppressor of mek1

(Dictyostelium) (SMEK1)

85 Exon15

GAAACAAACAGTTCTGAGACCGTTCTTCCACCACTGATTAA

GAGTGGGGTGGCAGGTATTAGGGATAATATTCATTTAGCCTTC

TGAGCTTTCTGGGCAGACTTGGTGACCTTGCCAGCTCCAGC

AGCCTTCTTGTCCACTGCTTTGATGACACCCACCGCAACT

GTCTGTCTCATATCACGAACAGCAAAGCGACCCAAAGGTGGAT

AGTCTGAGAAGCTCTCAA

Eukaryotic translation elongation factor 1 alpha 1

(EEF1A1)

226 Exon8

CCTCATCAAGAAAGGTTTGTTTATAGTATTTTTACTATAGCTT

CATCCTTGATAACGTCCTAATTTCCTTCTGGACAACCTCCTT

GACTAATGGCATATTGAGATCTATGTGACATGAGGATATTTCT

CAGTACCACTTTGTTACTGGTACCTGATGCACACGGATTGCC

ACCAGAGCATGATGCCTCCATCAAGTGGTAATATGTTTGC

AGCCTGCTGTCCAGCCAAGA

Zinc finger protein 317 (ZNF317) 230 3’ UTR

AAGCGTTGTTAGGTTTTTGTGTAAGATTCTTGCTGTAGCGTGG

ATAGCTGTGATTGGTGAGTCAACCGTCTGTGGCTACCAGTT

ACACTGAGATTGTAAC

Acidic (leucine-rich) nuclear phosphoprotein 32 family,

member B (ANP32B)

100 3’ UTR

ATTTTCAGAGTCTTGTCCCCGGGGTATTAGCACCTCTTTTT

GAACAGGGAATTGATTCAAGATTGGACATGGTCTCCTCT

Citrate synthase (CS) 80 3’ UTR

GTTCTCCAGGATGGCGCAGATGGTACGGGTAGTGGCGCACAT Seryl-tRNA synthetase (SARS) 42 Exon 10

AAGCGGCAATTTCCAGTTTCTATTCGTGGAACTGGAATGCC

ATAGATGAGGGGCCCAAGAGGGACATTGTCAAGGAACCTG

AGGTAGCCATTAGGAACAGAACTGACCTGCGT

Fucosidase, alpha-l-2, plasma (FUCA2) 113 Exon3

CTGACACGAGTGTCAGTGATGGTGAGGTAAGTTCT Ribosomal RNA processing 12 homolog (S. cerevisiae)

(RRP12)

35 Exon18

GAGTGTATAACGGTATACAACAAAATACTTTTTGTAATTAAATC

TAGTCACTTTGACTCTAAGTAAATTCT

Homo sapiens similar to FUS interacting protein

(serine–arginine rich) 1

71 3’ UTR

ACAAAGTTTGAGAATGCTTTCTTGTCTCATGTCGTCAGCCA

GCACCAAGCC

ATP synthase, H + transporting, mitochondrial F1

complex, alpha subunit 1, cardiac muscle (ATP5A1)

51 Exon12
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Table A2 | Annotated list of IRS-1 CLIP tags (non-coding RNA).

CLIP tag Gene Length Location

ACAGCCGCGCTGAGAATGAGCCCCGTGTGGTTGGTGCGCGGACACGCACTGCCTGCGTA

ACTAGAGGGAGCTGACGGATGACGCCCCCGCGCCACGCCGCTCAGCGGGATACGCTTCTT

RNA component of

mitochondrial RNA processing

endoribonuclease (RMRP)

119

GCCGCCATCTTTTCCTGTGTGACCGCACATGTCCACCACCATGCTAACCACTTAACAAAGCC

TCGCCCATCATGATGTGGCCTTCCCGCCACTTGAACACTGCGACAGAACTGGATCCGCCA

TTTTTCCTCCA

X (inactive)-specific transcript

(XIST)

133

AGAAGATTAGCATGGCCCCTGCGCAAGGATGACACGCAAATTCGTGAAGCGTTCCATATTTTT U6 small nuclear RNA (U6

snRNA)

63

CAGTTTAATATCTGATACGTCCTCTATCCGAGGACAAT U2 small nuclear RNA (U2

snRNA)

38

CCTGGTGATGACAGATGGCATTGTCAGCCAATCCCCAAGTGGGAGTGAGGACATGTCCTGC

AATTCTGAAGGG

C/D box 96A small nucleolar

RNA (SNORD96A)

73

ACCACTCAGACCGCGTTCTCTCCCTCTCACTCCCCAATACGGAGAGAAGAACGATCATCAA

TGGCTGACGGCAGTTGCAGCCAAGCAACGCCAGAAAGCCGGCTTCACGCTCAGGAGAAAA

CGCTACCTCTCTTCCTCGTGGTTTTCGGTGCTCTACACGTTCAGAGAAACTTCTCTAGTAACAC

C/D box 3A small nucleolar

RNA (SNORD3A)

185

ACCGAAAACCAAGAGGAAGAGAGGTAGCGTTTTCTCCTGAGCGTGAAGCCGGCTTTCTGGC

GTTGCTTGGCTGCAACTGCCGTCAGCCATTGATGATCGTTCTTCTCTCC

C/D box 3A small nucleolar

RNA (SNORD3A)

110

TTGGTCAGACGGGTAATGTGCCTACGTCGTAACAAGGTTC C/D box 13 small nucleolar

RNA (SNORD13)

40
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