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Spermatogenesis is a complex process of male germ cells proliferation and maturation
from diploid spermatogonia, through meiosis, to mature haploid spermatozoa.The process
involves dynamic interactions between the developing germ cells and their supporting Ser-
toli cells. The gonadal tissue, with abundance of highly unsaturated fatty acids, high rates
of cell division, and variety of testis enzymes results very vulnerable to the overexpres-
sion of reactive oxygen species (ROS). In order to address this risk, testis has developed
a sophisticated array of antioxidant systems comprising both enzymes and free radical
scavengers.This chapter sets out the major pathways of testis generation, the metabolism
of ROS, and highlights the transcriptional regulation by steroid receptors of antioxidant
stress enzymes and their functional implications. It also deals with of the advantages
of the system biology for an antioxidant under steroid control, the major selenoprotein
expressed by germ cells in the testis, the phospholipid hydroperoxide glutathione perox-
idase (PHGPx/GPx4) having multiple functions and representing the pivotal link between
selenium, sperm quality, and species preservation.
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INTRODUCTION
Spermatogenesis appears to be a fairly conserved process through-
out the vertebrate series. The balance between spermatogonial
stem cell self-renewal and differentiation in the adult testis grants
cyclic waves of spermatogenesis and potential fertility. These
replicative processes imply a highest rate of mitochondrial oxy-
gen consumption and reactive oxygen species (ROS) genera-
tion. Enzyme complexes of the respiratory chain of the oxidative
phosphorylation, localized on the crests of the mitochondria, as
the xanthines, the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase and cytochrome P450, represent a source for
a variety of ROS. As known, ROS are free radicals and/or oxy-
gen derivatives that include superoxide anion, hydrogen perox-
ide, hydroxyl radical, lipid hydroperoxides, peroxyl radicals, and
peroxynitrite. They have a dual role in biological systems, both
beneficial than harmful depending on their nature and concen-
tration as well as location and length of exposure (1). In this
mini-review, we focused our attention on the relevance of ROS
role in the spermatogenesis.

REACTIVE OXYGEN SPECIES AND TESTIS MECHANISTIC
ANTIOXIDATIVE AND REDOX DEFENSE
Reactive oxygen species are involved in all cell physiological
processes. In testis, they may be beneficial or even indispensable
in the complex process of male germ cells’ proliferation and
maturation, from diploid spermatogonia through meiosis to
mature haploid spermatozoa (2). Conversely high doses, and/or
inadequate removal of ROS caused by several mechanisms, i.e.,
ionizing radiation, bioactivation of xenobiotics, inflammatory

processes, increased cellular metabolism, activation of oxidases,
and oxygenases, can be very dangerous, modifying susceptible
molecules including DNA, lipids, and proteins. In addition, testis
as tissue, containing large quantities of highly unsaturated fatty
acids (particularly 20:4 and 22:6), results vulnerable to ROS attach.
The low oxygen tension that characterizes this tissue may be an
important component of the self-defense mechanism from free
radical-mediated damage during spermatogenesis and Leydig cell
steroidogenesis (3); together with an elaborate array of antioxidant
enzymes and free radical scavengers ensures that spermatogenic
and steroidogenic functions of Leydig cells are not impacted by the
overexpression of ROS. In order to have a better understanding
of ROS testis’ neutralization or limitation by the antioxidant
systems, we summarize the major pathways of ROS generation
and the mechanistic antioxidative defense in Figure 1. Supero-
xide radical can be generated by specialized enzymes, such as the
xanthine or NADPH oxidases,or as a by-product of cellular metab-
olism, particularly the mitochondrial electron transport chain, and
are converted to hydrogen peroxide by the superoxide dismutase
(SOD). Hydrogen peroxide, present as superoxide radical and iron,
forms a more reactive form, subsequently converted in lipid perox-
ide. Lipid peroxide is scavenged to H2O by glutathione peroxidase
(GPx) or glutathione-S-transferase (GST) (4). The SOD defense
by Cu/Zn-SOD, Fe/Mn-SOD, and extracellular SOD, is generally
achieved by catalase or peroxidases, such as the GPxs, which use
reduced glutathione (GSH) as electron donor. Glutathione keeps
cells in a reduced state, acting as electron donor for other antiox-
idative enzymes too, and as a source for the formation of conju-
gates with some harmful endogenous and xenobiotic compounds,
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FIGURE 1 | Reactive oxygen species generation and the mechanistic
antioxidative and redox defense. The testis overexpression of ROS
accelerates a response by the superoxide dismutase (SOD), glutathione
peroxidase (GPx), and the glutathione-S-transferase (GST). The resulting
oxidation product is recycled by glutathione reductase (GR), which
transforms the oxidized glutathione (GSSG) back to reduced form of
glutathione (GSH) [from Ref. (13)].

via GST’s catalysis. Levels of the reduced glutathione (GSH)
are maintained via two ATP-consuming steps, involving c-glut-
amylcysteine synthetase (cGCS) and glutathione synthetase. The
other option constitutes a recycling system involving glutathione
reductase (GR): it reduces the oxidized glutathione (GSSG) back
to GSH in an NADPH-dependent way. In the interaction of GSH
with ROS, GSH serves as an electron donor. The resulting oxida-
tion product, GSSG, is either recycled by GR via electron transfer
from NADPH or pumped out of the cells. Thus, GR indirectly
participates in the protection of cells against oxidative stress (5, 6).
In addition to the major ROS processing enzymes, in testis small
molecular weight antioxidant substances are present, protecting
against oxidative damage. These factors include ions, as zinc and a
wide variety of free radical scavengers, vitamins C or E, melatonin
and cytochrome C (7).

REACTIVE OXYGEN SPECIES AND SPERMATOGENESIS
TRANSCRIPTIONAL CONTROL
In vertebrates, the spermatogenesis is controlled by a complex
network of endocrine, paracrine, and autocrine signals (8–10)
Recent studies summarize different transcription factors, with
a regulatory function, who modulate cellular and stage-specific
gene expression. In particular, they can be subdivided in general
transcription factors; nuclear receptors superfamily; transcription
factors involved in testicular functions; testis-specific gene tran-
scription, and transcriptional regulators of cell junction dynamics
(11). As reported in Figure 2 in response to the hypothalamic

FIGURE 2 | Spermatogenesis ROS endocrine gene transcriptional
regulation. FSH acts through its receptors in Sertoli cells (FSHR) to
regulate the spermatogenesis and LH stimulates androgen production by
Leydig cells after binding to LHR. However, steroid hormones, i.e.,
androgen and estrogen, and other agents that bind or prevent binding to
steroid hormone receptors, which are present in Sertoli cells, germ cells,
and Leydig cells also regulate testicular function as several growth factors,
e.g., insulin like growth factor-1 (IGF-1) and epidermal growth factor (EGF),
acting via their receptors possibly modulate AR and ERalpha and
beta-mediated pathways. The pathway, mediated by adenosine
monophosphate (cAMP), appears to be the primary intracellular signaling
pathway in all testicular cells and stimulates the cAMP-dependent protein
kinase (PKA). Thus, testicular function is disrupted by interactions between
ROS and lipids, proteins, DNA, and several signaling pathways, some acting
locally, e.g., AR and ER-mediated pathways, and others indirectly by
modulating hypothalamus–pituitary function. Hormonal activation of
transcriptional gene activity results in changes in cell differentiation and
function. PMC, peritubular myoid cell; CRE, cAMP responsive elements;
ARE, androgen-responsive elements; ERE, estrogen-responsive elements
[modified from Ref. (15)].

gonadotropin hormone releasing (GnRH), the pituitary gland
secretes two hormones, the luteinizing hormone (LH), and the
follicle stimulating hormone (FSH), involved in the regulation
of spermatogenesis, together with other important transcription
factors (3). LH regulates the testosterone secretion by somatic
Leydig cells located in the interstitium, between seminiferous
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tubules; FSH acts in Sertoli cells by stimulating signaling, gene
expression, and the secretion of peptides and other signaling mol-
ecules (12) In Sertoli cells, i.e., the cAMP response element binding
protein (CREB) transcription factor, an important transducer of
FSH signals. Transcription factors belonging to the CREB family
are involved in the regulation of gene expression in response to
a number of signaling pathways inducted by ROS overexpression
(13). In rat testis, alternatively, the spliced variant CREB mRNAs
are spermatogenic, cycle dependent, and expressed during deve-
lopment of the germ and Sertoli cells, indicating that the CREB
isoforms may be the major players during spermatogenesis. The
transcription factor cAMP response element modulator (CREM)
is highly expressed in male germ cells and regulates the expression
of several post-meiotic genes, such as the transition proteins and
protamines, and it likely is the key regulator of gene expression
during spermatogenesis. Targeted disruption of the CREM gene
blocks the differentiation program in the first step of spermiogene-
sis. These findings indicate a crucial role of CREM in post-meiotic
germ cells differentiation, linking the action of hormonal stimuli
to direct regulation of spermatogenesis genes (14). Now, it is also
clear that, not only testicular somatic cells (Leydig and Sertoli
cells), but also germ cells express P450arom mRNA, which is trans-
lated in a biologically active enzyme involved in the production
of estrogens. Therefore, the androgen/estrogen ratio is modified
in germ cells, and if testosterone is involved in the regulation of
testicular functions, estrogens are also necessary not only in the
control of gonadotropins secretion but also in the modulation
of the Leydig cells development and steroidogenesis, as well as
in the development and/or maintenance of spermatogenesis and
spermiogenesis in some mammalian species (15). However, the
physiological linkage between different transcription factors and
ROS overexpression showed regulation by the estrogen receptor
of antioxidative stress enzymes (16), the molecular target genes of
these transcription factors at different stages of the seminiferous
epithelial cycle are largely unknown and this shall provide an
unprecedented opportunity for further investigation in the field.

REACTIVE OXYGEN SPECIES AND SPECIE PRESERVATION
The maintenance of a high redox potential is a prerequisite to
maintain the reproductive systems in a healthy state (17). Repro-
ductive system needs ROS for reproduction, and minimizes the
risk caused by ROS using antioxidative systems, such as SOD
and GPx. When ROS levels exceed the scavenging capacity of the
redox system, under such situations, can repair oxidized and dam-
aged molecules using NADPH as an original electron source. In
the context of defense against ROS, selenium as the glutathione
(GSH) system plays key functions (18). Selenium has long been
known to be necessary for the basal function of many systems
of the male reproduction, also (19) is required for the synthe-
sis of testosterone and the formation and development of the
sperm (20); its deficiency affects testicular mass with damage to
sperm motility, the sperm mid piece, and the shape of the sperm
(21). In testis, however, most of the selenium, incorporated into
proteins as selenocysteine, is associated to the enzyme phospho-
lipid hydroperoxide GPx, PHGPx/GPx4 (22), member of the GPx
named EC 1.11.1.12. PHGPx protects liposomes and biomem-
branes from peroxidative degradation and exhibits GPx activity

on phosphatidylcholine hydroperoxides. It is, infact, able to react
with hydroperoxides of fatty acids esterified in the phospholipids
(23, 24); use protein thiol groups as donor substrates, to protect
germ cell, by eliminating oxidative stress and reducing the levels
of oxidized molecules. In rodents’ testis, PHGPx is localized in the
interstitial cells of Leydig, in the nucleus of round spermatids, at
the level of the cytoplasm and in the mitochondrial capsule of
spermatozoa (25). Here, it is present in three different isoforms: as
a cytosolic, mitochondrial, and nuclear protein (26). Functional
cis-regulatory elements are identified in the promoter region of
nPHGPx (27), whose expression is mediated by the transcription
factor CREM-t (28). In spermatids, it is abundantly expressed as
active peroxidase and during final maturation, it is transformed
into a structural protein enzymatically inactive; it surrounds the
helix of mitochondria in the midpiece of the sperm. The nuclear
isoform, in particular, is involved in the process of the chromatin
condensation, which occurs in the final steps of spermatogene-
sis and requires the replacement of the majority of histones, with
transition proteins and protamines, essential for the stabilization
of DNA and condensation of spermatocytes. These changes in
location suggest that the nPHGPx can play more than a role in
spermatogenesis (29). PHGPx gene expression and activity are
hormone dependent processes, and they are influenced by the lev-
els of testosterone during spermatogenesis (30). Steroid hormones
do not directly activate transcription and it has been documented
that, in vivo, testosterone promote the expression only, as a conse-
quence of the induction of spermatogenesis (30). The study of the
mechanisms of gene transcription in testis (31), suggests a crucial
role of this antioxidant in male fertility and its usefulness in the
screening of a potential threat to the species’ continuity (1, 32).

CONCLUDING REMARKS
The overall objective of our mini-review was to highlight
the beneficial and detrimental role of ROS that comparatively
determine and influence the cyclic waves of spermatogenesis and
the species preservation.
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