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The vital roles of thyroid hormone in multiple aspects of perinatal brain development have
been known for over a century. In the last decades, the molecular mechanisms underlying
effects of thyroid hormone on proliferation, differentiation, migration, synaptogenesis, and
myelination in the developing nervous system have been gradually dissected. However,
recent data reveal that thyroid signaling influences neuronal development throughout life,
from early embryogenesis to the neurogenesis in the adult brain. This review deals with
the latter phase and analyses current knowledge on the role ofT3, the active form of thyroid
hormone, and its receptors in regulating neural stem cell function in the hippocampus and
the subventricular zone, the two principal sites harboring neurogenesis in the adult mam-
malian brain. In particular, we discuss the critical roles of T3 and TRα1 in commitment to a
neuronal phenotype, a process that entails the repression of a number of genes notably
that encoding the pluripotency factor, Sox2. Furthermore, the question of the relevance of
thyroid hormone control of adult neurogenesis is considered in the context of brain aging,
cognitive decline, and neurodegenerative disease.
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THYROID HORMONES AND ADULT BRAIN FUNCTION
Thyroid hormones (THs) are vital for brain organization and
function throughout life. In the developing mammalian embryo
prior to instigation of fetal thyroid function maternal THs are
required for optimal neurogenesis (1, 2). At all life stages, but
particularly during perinatal growth, T3 is implicated in mul-
tiple processes including neurogenesis (cell cycle control and
exit), synaptogenesis, migration, plasticity, and myelination (3).
In adults, thyroid dysfunction correlates with neurological and
behavioral disorders. Even if developmental hypothyroidism pro-
duces more deleterious, irreversible effects, adult hypothyroidism
alters hippocampus function: memory impairment, anxiety, and
depression-like symptoms in rodent models and humans (4, 5). In
adults, the mechanisms underlying these cognitive problems are
less well understood than during perinatal development. However,
it is established that reduced neurogenesis, especially in the rodent
hippocampus, due to either aging or stress, is associated with
neurocognitive deficits such as anxiety, depression (6), and with
neurodegenerative disease such as Alzheimer’s (7, 8). In mammals,
including humans, the subgranular zone (SGZ) of the hippocam-
pal dentate gyrus and the subventricular zone (SVZ) represent
the two main neurogenic niches. These niches produce newborn
neurons from neural stem cells (NSC) throughout life and so, con-
tribute to brain plasticity during learning, memory, and recovery
from brain damage (9). Many extrinsic and intrinsic signaling fac-
tors regulate different stages of adult neurogenesis (10), with TH
signaling being well known to control NSC homeostasis [see below
and (11–16)]. Understanding the mechanisms underlying T3 reg-
ulation of adult neurogenesis is crucial to develop treatments for
neurocognitive disorders.

A rich literature links thyroid physiology and neurocognitive
dysfunction in humans. Hypothyroidism is associated with mood
instability and depression, dementia, memory impairment, and
psychomotor problems (17). Most often, mood abnormalities
reverse under T4-supplementation, but can persist after long-term
hypothyroidism (18). The mechanisms implicated are unknown,
although T3 levels affect serotoninergic and catecholaminergic
signaling at multiple levels (19, 20), systems often targeted by anti-
depressants. Further, in children and adolescents (21), as well as
adults (22), hypothyroidism, and reduced memory function are
associated with decreased hippocampal size, suggesting that TH
deficiency causes structural alterations. Thus, it is plausible that
neurogenesis in rodents, and depression or other psychiatric dis-
eases associated with hypothyroidism in humans, may be related
to reduced hippocampal neurogenesis.

However, the links between cognitive deficits and neurogene-
sis – “the neurogenic hypothesis of depression” – are still poorly
understood. Even if there is evidence for adult neurogenesis in
both SVZ (23) and SGZ (24) in humans, the contribution of adult
neurogenesis to human brain function, and in particular to behav-
ioral outputs, is still questioned, a point discussed in the next
section.

However, there is increasing cellular and molecular under-
standing of the links between TH signaling and adult neuroge-
nesis in rodents. Adult-onset hypothyroidism reduced the num-
ber of newborn neuroblasts in the dentate gyrus (14). Further-
more, in adult hypothyroid animals displaying depressive-like
behavior, neurogenesis in the dentate gyrus is reduced and den-
dritic arborization is impaired. TH supplementation rescues these
modifications (14).
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THYROID HORMONE REGULATES ADULT NEUROGENESIS
Neural stem cells in adult SGZ and SVZ slowly divide asymmetri-
cally, giving rise to progenitors. In rodents, these highly prolifer-
ative progenitors generate neuroblasts that migrate and integrate
into the pre-existing neuronal networks of the hippocampus and
the olfactory bulb (OB). More recent findings highlight a third
neurogenic niche within the adult rodent hypothalamus, a region
regulating energy balance, food intake, and body weight (25, 26).

In humans, the functional role of adult neurogenesis is con-
troversial (27–30). Both generation of new neuroblasts and their
functional incorporation, especially in the OB, is still questioned.
However, recent data showed that new neurons, probably pro-
duced from the adult SVZ, are observed in the human striatum,
showing that adult human SVZ can contribute to neurogenesis at
least in this region (31). A decrease of neuroblasts, expressing the
neuronal precursor marker doublecortin (DCX), is observed con-
tinuously from the first year after birth, in the SVZ and SGZ (29,
30, 32, 33). However, a recent study shows that a subpopulation
of hippocampal neurons is able to renew, supporting the concept
that adult neurogenesis occurs in humans and could contribute to
cognitive functions (24).

SVZ AND SGZ NICHES
Thyroid hormone signaling is one of the main pathways vital
for adult neurogenesis. Recently, T3 was demonstrated to exert
critical roles in cell proliferation and NSC commitment toward
neuroblasts in both the rodent SVZ and SGZ in vivo (15, 16).
T3 acts on transcription through nuclear receptors, Thyroid Hor-
mone Receptors (TRs). In vertebrates, different isoforms derive
from the Thra (TRα2 and TRα2) and Thrb (TRβ1 and TRβ2)
genes. The adult hippocampus expresses TRα1, TRβ1, and β2 iso-
forms (16, 34), whereas only TRα1 is expressed in the adult mouse
SVZ (13, 15).

T3 regulates adult neurogenesis at different steps (prolifera-
tion, survival, differentiation, and maturation). Hypothyroidism
significantly reduces progenitor proliferation in the SVZ of adult
mice, whereas a short T3 pulse restores mitotic activity to euthy-
roid levels (13). Similarly, using Ki67 as a proliferation marker
and a BrdU incorporation protocol to measure cell proliferation
limiting labeling of postmitotic cells, Montero-Pedrazuela et al.
(14) demonstrated that hypothyroidism in adult rats, induces
a decrease of proliferation (about 30%) in the adult SGZ that
is reversed by T4 treatment. Furthermore, hypothyroidism does
not affect cell survival. In contrast, two others studies shown
that hypothyroidism had no observable effect on numbers of
proliferative progenitors in the adult SGZ progenitor prolifer-
ation but their survival was reduced, suggesting a role of T3

on the postmitotic progenitors (11, 12). The reasons for these
differences may reside in (i) methods for the induction of
hypothyroidism (ii) and potential differences in BrdU protocols
used in these studies that may or may not include postmitotic
cells.

In the SGZ, TRα1 has different effects on proliferation and dif-
ferentiation (16, 35). First, progenitor proliferation is unaffected
by TRα1 loss (TRα1−/− mutant) or overexpression (TRα2−/−

mutant) (35). This finding correlates with the fact that TRα1 is not
expressed in progenitors within the SGZ, but is highly expressed

in post-mitotic progenitors corresponding to immature neurons
(35). Second, neurogenesis is increased in TRα1−/− mice, whereas
in TRα2−/− mice (overexpression of TRα1), decreased survival
reduces numbers of post-mitotic neuroblasts (35). These stud-
ies suggest that in the SGZ, T3 acts at later steps than in the
SVZ, in the post-mitotic progenitors (16, 35) (Figure 1A). Inter-
estingly, the damaging effects of adult hypothyroidism on hip-
pocampal neurogenesis are recapitulated in TRα2−/− mice (35).
The TRα2−/− mutant, in which TRα1 is overexpressed due to the
ablation of TRα2, exhibit a mixed hypo- and hyperthyroid phe-
notype: reduced levels of T4/T3 in serum, decreased growth rate
and body weight, elevated heart rate suggesting that the increased
TRα1 levels is associated with increased receptor effects (35, 36).
In a hypothyroid context, TRα1 – in this mutant – acts as an
aporeceptor due to limited T3 availability. How the role of TRα1
aporeceptor affects adult SVZ neurogenesis is unknown. Exam-
ining this possibility should identify new TRα1 targets (of both
liganded and unliganded receptors) involved in regulating adult
neurogenesis.

In the SVZ, although TRα1 is absent from NSCs, it appears in
proliferative Dlx2+ progenitors and is high in DCX+ neuroblasts,
suggesting that TRα1 favors NSC commitment toward a neuronal
phenotype [(15), Figure 1B]. This hypothesis is bolstered by the
observation that TRα1 gain of function in vivo generates migrat-
ing neuroblasts entering the rostral migratory stream. Inversely,
shRNA-mediated TRα1 loss of function increases numbers of
SVZ NSC/progenitors. Moreover, hypothyroidism also increases
NSC/progenitor populations, a situation recapitulated in mutant
TRα°/ ° mice (lacking all isoforms encoded by the TRα locus). In
hypothyroidism, NSC/progenitors are blocked during interphase
(13). Thus, absence of either TRα1 or T3 induces similar effects:
increasing NSC and progenitors pools,while decreasing neuroblast
numbers.

In the adult SVZ, T3, through TRα1, acts as a neurogenic
switch by repressing a key gene involved in NSC pluripotency,
Sox2 (15) (Figure 1B). In vivo loss and gain of TRα1 func-
tion approaches demonstrated that Sox2 is directly repressed by
T3/TRα1 in progenitors. Moreover, the progenitor to neuroblast
transition – governed by T3/TRα1 – may be reinforced by T3

repression of CyclinD1 and c-Myc, involved in cell cycle progres-
sion (13, 15, 37). Thus, T3 could regulate adult SVZ homeostasis
at two levels: (i) repression of a master gene involved in NSC
pluripotency and (ii) repression of cell cycle regulators.

TH SIGNALING AND HYPOTHALAMIC NEUROGENESIS?
Some authors consider that certain tanycytes (glial-like cells) in the
ependymal layer are NSCs. An emerging idea is that these tany-
cytes are diet-responsive adult NSCs, linking food intake, body
weight, and energy balance to neuronal plasticity [for reviews, see
(25, 26)]. Interestingly, T3 is a strong regulator of energy metab-
olism at both peripheral and central, hypothalamic, levels (15).
An exciting hypothesis is that T3 may regulate adult hypothala-
mic neurogenesis and thereby modulate plasticity of hypothalamic
neuronal networks regulating energy balance. Many components
of TH signaling are expressed in tanycytes in the rodent brain (D2,
OATP1C1, MCT8, see Figure 1C) and in turn, tanycyte activity
is critical to control of the hypothalamic/pituitary/thyroid (HPT)
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FIGURE 1 |Thyroid hormone signaling regulates adult neurogenesis in
the hippocampus, the subventricular zone and, potentially, the
hypothalamus. (A) In the hippocampal niche (SGZ), NSC gives rise
proliferating progenitors (2a) and then, more committed progenitors (2b)
and post-mitotic neuroblasts (type 3). Type 3 progenitors give rise to
immature and mature granule neurons. A role of T3, in concert with TRα1,
has been observed in non-proliferating progenitors, from type 2b cells to
mature granule cell neurons. Adult-onset hypothyroidism or TRα1
overexpression (TRα2−/− mice) alters survival of post-mitotic neuroblasts,
decreasing hippocampal neurogenesis. (B) In the adult SVZ, lining the
lateral ventricle, three main cell types are located: NSCs that divide
asymmetrically to give rise to proliferating progenitors. Progenitors divide
rapidly producing neuroblasts that migrate along the rostral migratory
stream (RMS) to the olfactory bulb (OB) where they differentiate into
interneurons. SOX2 and TRα1 are inversely expressed within the SVZ: cells

expressing high levels of TRα1 express low levels of SOX2 (neuroblasts). T3

is involved in both progenitor proliferation and determination. TRα1
overexpression in NSC and progenitors drives progenitor commitment
toward a neuronal phenotype since cells overexpressing TRα1 are found in
clusters entering the RMS. (C) In the adult hypothalamus, the third
ventricle is lined by ependymal cells (in gray) interspersed with tanycytes
(in blue). Some of these tanycytes are stem cells. They possess a long
process that projects into hypothalamic nuclei (in pink). Some recent data
support the idea that tanycytes are able to generate new neurons that
migrate into adjacent hypothalamic nuclei. Tanycytes express many key
actors of the TH pathway (Dio2, OATP1C1, and MCT8) thus, facilitating TH
entry into the hypothalamus. These tanycytes could be considered as an
“integrative platform” relaying central and peripheral signals to adapt adult
neurogenesis to food intake and energy metabolism. A key role of TH in the
regulation of adult hypothalamic neurogenesis is an exciting hypothesis.

axis (38). How TH status and signaling affect adult hypothalamic
neurogenesis in relation to feeding and energy balance is an
important future research question.

CONTROL OF T3 AVAILABILITY DURING ADULT
NEUROGENESIS
Some T3 effects on stem cell biology can seem paradoxical, T3

enhancing both proliferation and differentiation and exerting dif-
ferent actions at successive steps of neural commitment. The

biological outcome of TH signaling clearly relates to cellular con-
text, notably, chromatin state and presence of ligand, TRs, and
co-factors.

One hypothesis is that adult NSCs do not integrate T3 signal-
ing until neural determination is underway, as TRα1 appears in
neural progenitors, with the signal increasing in neuroblasts (15).
In the TRα1:GFP knock-in mouse (39), expression of TRα1:GFP
was not investigated closely in the SVZ. Although more data is
needed on the kinetics of TR expression, a critical factor will
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be T3 availability, largely determined by deiodinases. Two deio-
dinases are expressed in the brain, the activating deiodinase 2 (or
D2, encoded by Dio2) and the inactivating deiodinase 3 (or D3,
encoded by Dio3). However, there is little published data on con-
trol of TH availability during neural determination and the little
available is from in vitro systems. For instance, during in vitro neu-
ronal differentiation of a human embryonal carcinoma stem cell
line (NT2 cells derived from a teratocarcinoma), TRα1 and TRβ1
expression is down regulated, with TRα2 expression unchanged
(40). T3 treatment induced stronger upregulation of Dio3 in NT2
precursors than in differentiated cells.

Though hypothyroid brains show reduced NSC/precursor pro-
liferation, no clear relationship between T3 availability and control
of NSC cell cycle has yet been established. Interestingly, Dio3
expression correlates with proliferative status in solid tumors (41).
This finding fits with in vitro data [from Ref. (42)] where Dio3
expression is high in early progenitors compared to human embry-
onic stem cells and neural progenitors. The biological significance
of this finding in terms of NSC biology is hard to decipher. Accord-
ing to current data, local hypothyroidism favors maintenance of
NSC/progenitor populations (13, 15) with T3 being a prolifera-
tion and neurogenic factor (15, 43). Similarly, expression of Dio3
within the imprinted dio3-dlk1 locus is associated with stemness
(44). From an evolutionary point of view, the conservation of syn-
teny in this locus among vertebrates seems to indicate that control
of TH signaling is associated with stemness.

TH CONTROL OF ADULT NEUROGENESIS IN THE AGING
BRAIN
Circulating TH levels decrease as a function of age in humans
(45, 46) and rodents (47). In the aging human population, both
increases and decreases in circulating TSH have been observed
(48–51), suggesting reduced or impaired pituitary responses in
elderly people. However, higher TSH is associated with greater
longevity in numerous human cohorts [see for example: (52)].
Further, neurogenesis decreases with age (53–55). THs being vital
for adult neurogenesis (13), it will be interesting to address the
links between these phenomena during aging.

Among the numerous genes involved in adult neurogenesis, an
increase in p16INKA4 (CDKN2a) has been causally related to neu-
rogenic decline during aging (56). p16INKA4 can itself be inhibited
by the synergistic action of Bmi1 and c-Myc (57, 58). Direct acti-
vation of c-Myc by T3 through a TRE was shown in Xenopus
intestinal stem cells (59), whereas in adult SVZ T3 directly inhibits
a c-myc reporter construct through an identified TRE (13). Thus, a
potential indirect regulation of p16INKA4 by T3 could differ accord-
ing to species, cell populations and function of developmental
context.

DECREASING CIRCULATING THs ARE ASSOCIATED WITH COGNITIVE
DECLINE AND NEURODEGENERATION
Cognitive deficiency is frequently observed in the elderly humans
and in aging rodents (60, 61). Marked effects are seen on learning
and memory, processes that implicate neurogenesis in the dentate
gyrus of the hippocampus (62, 63), a structure that diminishes
with age and in many neurodegenerative pathologies (62, 64).
TH treatment can improve cognitive performances in hypothyroid

mice (8) and in humans (65), leading to speculation that cognitive
deficiency can be causally linked to reduced TH signaling in aging.
Despite declining neurogenesis with age, Yeung et al. recently
demonstrated that 13-month-old mice still have the capacity to
generate new neurons after a selective neuronal loss in the hip-
pocampus, but without cognitive recovery (66). These results
suggest that although some neurogenesis can still occur in aged
mice, it might not be sufficient to compensate for neurodegenera-
tion. TH facilitate repair after neurodegenerative lesions (67, 68).
It is plausible that their decline is linked to decreased repair in
neurodegenerative diseases of aging.

Mitochondrial biogenesis also reduces with aging (69), along
with an increase in mitochondrial dysfunction (70). Thyroid sig-
naling influences cellular metabolism and mitochondrial func-
tions (71). Impaired thyroid signaling impacts mitochondrial res-
piration and hence reactive oxygen species (ROS) production, with
either beneficial or damaging cellular effects (72). Since activity
changes in mitochondrial respiration are linked to changes in cell
proliferation rates (73), such as those occurring in the early phases
of NSC differentiation, it can be postulated that mitochondrial
dysfunctions impact neurogenesis, again linking reduced neurode-
generative repair capacity to decreased circulating T3/T4 levels.
However, little is known about control of T4/T3 availability (deio-
dinase and TH transporter expression) during aging in the NSC
niches, nor on the consequences of these modification for NSC
metabolism, questions that it will be interesting to address.

Circadian rhythm perturbations also increase with age (74,
75). TSH (and to a lesser extent T3) levels display circadian
rhythms (76–78), as does neurogenesis (79). Moreover, circadian
clock-associated genes influence neuronal differentiation of adult
NSC/progenitors (80). Two major circadian rhythm regulation
genes, Bmal1 and Clock, are cooperatively activated by Sirt1 and
Pgc1a, a function that changes with age (81). In turn, SIRT1 can act
as a coactivator of TRβ (82) and is implicated in neurogenesis (83).
Further, Pgc1a is directly regulated by T3 (84), and can itself mod-
ulate Thra expression (85). Some circadian clock-related genes are
regulated by T3 (86). Thus, multiple arguments converge to sug-
gest that impairments of circadian rhythm with age can be linked
to changes in thyroid signaling, thereby impacting neurogenesis.

Induction of a chronic inflammatory state has been asso-
ciated with aging (87, 88), and inflammation can significantly
reduce neurogenesis (89–91). Brain inflammation is character-
ized by macrophages and microglia producing proinflammatory
cytokines (TNFα, IL-1β, and IL-6) during prolonged inflamma-
tion. These same cytokines increase in the aging brain (92), and
may enhance gliogenesis at the expense of neurogenesis (93–96).
TNFα activates the p38 MAP kinase (MAPKp38) that triggers IL-
1β production (97). As T3 can represses MAPKp38 activation by
TNFα (98), reduced T3 dependent repression of proinflammatory
cytokines with aging could negatively impact neurogenesis.

CONCLUSION
Thyroid hormone is one of the few endocrine signals that exerts
marked effects on both hippocampal and SVZ neurogenesis in
adult mammalian brains. Although distinct differences are noted
in expression of TRs and the consequences of their activation in
these respective niches, it is well established that hypothyroidism
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adversely affects both populations. Given the frequency of thy-
roid disorders in the general population, notably in women and
during aging, it is important to consider the consequences of
these disorders on the incidence and severity of psychiatric and
neurodegenerative disease.
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