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Spermatogenesis, a highly conserved process in vertebrates, is mainly under the
hypothalamic–pituitary control, being regulated by the secretion of pituitary gonadotropins,
follicle stimulating hormone, and luteinizing hormone, in response to stimulation exerted
by gonadotropin releasing hormone from hypothalamic neurons. At testicular level,
gonadotropins bind specific receptors located on the somatic cells regulating the pro-
duction of steroids and factors necessary to ensure a correct spermatogenesis. Indeed,
besides the endocrine route, a complex network of cell-to-cell communications regulates
germ cell progression, and a combination of endocrine and intra-gonadal signals sustains
the production of high quality mature spermatozoa. In this review, we focus on the recent
advances in the area of the intra-gonadal signals supporting sperm development.
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INTRODUCTION
In vertebrates, spermatogenesis is a hormonally controlled mech-
anism charged to produce gametes useful for reproduction. The
production of high standard quality gametes is the main goal to
preserve reproduction.

Spermatogenesis develops as a process consisting of mitotic,
meiotic, and differentiation steps promoting germ cell pro-
gression from spermatogonia-to-spermatozoa (SPZ). In male,
the hypothalamus–pituitary–gonadal axis supports germ cell
progression, via gonadotropin releasing hormone (GnRH)–
gonadotropin–steroid production and its activity is finely regu-
lated by positive and negative feedbacks. Furthermore, a network
of intra-gonadal factors, organized in a complex stage-specific
multi-factorial net, is responsible for spermatogenesis control (1).

Using a comparative approach, this review summarizes the
intriguing and sometimes conflicting information about the intra-
testicular role played by GnRH, Kisspeptin, and estrogens in germ
cell progression and production of high standard quality sperm.

GnRH, A HISTORICAL MODULATOR OF TESTIS PHYSIOLOGY
The GnRH, crucial player of the neural control of vertebrate
reproduction, was originally isolated from the hypothalamus of
pig and sheep (2). Basically, GnRH stimulates the synthesis and
the discharge of pituitary gonadotropins [follicle stimulating hor-
mone and luteinizing hormone (FSH and LH), respectively],
which in turn induce both gametogenesis and the production of
gonadal steroids. At present, 25 GnRH forms have been iden-
tified in protochordates and vertebrates (3, 4) and in many
vertebrates three GnRH molecular forms have been identified:
GnRH-1, GnRH-2, and GnRH-3 (formerly known as mammalian,

chicken-II, and salmon GnRH, respectively) (3). GnRH action is
mediated through high-affinity binding with the GnRH recep-
tor (GnRH-R) (5, 6), a rhodopsin-like seven trans-membrane
G protein-coupled receptor (GPCR). In vertebrates, GnRH-Rs
exhibit a wide range of subtypes and alternate splicing derived
forms (1, 3, 5–7). The presence of multiple forms of GnRHs and
GnRH-Rs in the brain, with specific expression profiles, suggests
the existence of different functional roles: in fact, GnRH-1 is con-
sidered the final regulator of the pituitary–gonadal axis; GnRH-2
is supposed to play a function for the control of sexual behavior,
food intake, energy balance, stress, and many other environmen-
tal cues; GnRH-3, found only in the telencephalon of teleost fish,
probably acts as neuro-modulator (1, 3, 8).

Extrahypothalamic synthesis and function of GnRHs and
GnRH-Rs have been detected in many reproductive tissues in ver-
tebrates, including human (gonads, prostate, endometrial tissue,
oviduct, placenta), and in cancer cells (1, 5, 9–11).

GnRH plays several conserved roles in testis physiology, being
the main paracrine modulator of the Leydig–Sertoli, Sertoli–
germ cell, Sertoli–peritubular cell communications (1, 12). In
this context, it drives steroidogenesis, germ cells progression, and
acquisition of SPZ functions (1, 12–15).

The demonstration of a direct GnRH effect on testis has been
provided in fish, frog, rodent, and human Leydig cells showing
GnRH-specific high-affinity binding sites (1, 3, 15, 16). The find-
ing of GnRH mRNA in Sertoli and spermatogenic cells in different
species (17) suggests its involvement in paracrine Leydig–Sertoli
cell communication (12). A similar pattern of expression has
been confirmed in human (17), expressing two GnRH molecu-
lar forms and two GnRH-Rs (18, 19). However, the identification
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of GnRH-R2 antisense transcript in human testis (20) and the
presence of frame-shift mutations and stop codons in human
GnRH-R2 (5) may indicate that these transcripts are not really
functional.

The major reported effect of GnRH on vertebrate testis phys-
iology concerns the modulation of steroidogenesis in in vivo
and in vitro systems (1, 21–23). Interestingly, in elasmobranch
and in dipnoi, this effect appears to be exerted trough the
endocrine route (24, 25). Both GnRH-1 and GnRH-2 ago-
nists have the ability to stimulate mouse pre-pubertal Leydig
cell steroidogenesis, in a dose- and time-dependent manner, via
transcriptional activation of 3β-hydroxy-steroid dehydrogenase
(3β-HSD) (23). Accordingly, in human, the expression levels of
GnRH-1, GnRH-2, GnRH-Rs, cytochrome P450 side-chain cleav-
age (CYP11A1), 3β-HSD type 2 enzyme, and the intra-testicular
testosterone (T) levels are significantly increased in patients with
spermatogenic failure (26). At molecular level, the transduction
pathway involving the GnRH agonist-dependent activation of
ERK1/2 has been reported (27). Interestingly, in mouse testis,
GnRH-R activity well correlates with the increased steroidogenic
activity observed during pubertal and adult stages and its decline
parallels the decreased steroidogenic activity observed during the
senescence (28). These expression profiles are consistent with the
increasing expression of the gonadotropin inhibitory hormone
(GnIH) during senescence, providing evidences of local interac-
tion between GnRH and GnIH. The testicular localization of GnIH
and its receptor GPR147, in both mammals and birds, opens new
perspectives in the autocrine/paracrine control of testicular activ-
ity suggesting a possible interplay between GnRH and GnIH in
order to modulate T secretion and spermatogenesis (29). Fur-
thermore, GnRH activity in Leydig cells is not restricted to T
production but is extended to the development of rat progenitor
Leydig cells both in vivo and in vitro (30).

Several studies, carried out in cancer cell lines, demonstrated a
direct anti-proliferative/apoptotic effect of GnRH and its synthetic
agonists (31, 32). Accordingly, GnRH activity is a well-known
modulator of germ cell apoptosis during the regression of fish
gonad (33, 34). In rodents, GnRH agonists stimulate spermato-
genic colony formation following spermatogonia (SPG) trans-
plantation (35, 36) and induce SPG proliferation in damaged testis
(37). In mollusk, a scallop GnRH-like peptide stimulates SPG
cell division (38). In amphibian, a GnRH agonist induces G1-S
transition of SPG cell cycle (39–43) whereas, in mouse, GnRH
is expressed in gonocytes at birth (28). At molecular level, in
the anuran amphibian Rana esculenta, SPG proliferation requires
the cooperation between estradiol (E2) and GnRH, in a mecha-
nism involving the E2-dependent transcriptional activation of c-fos
(42) and a GnRH-mediated translocation of FOS protein from
the SPG cytoplasm into the nucleus (43). Thus, GnRH activity
may represent a key controller of proliferative/anti-proliferative
events characteristic of testis renewal. Consistently, it has been
found that GnRH induces proliferation of partially differentiated
gonadotrope cells (44).

Lastly, the ability of GnRH agonists to induce spermiation (45)
and the localization of GnRH and/or GnRH-Rs in spermatids
(SPTs) and SPZ in mammalian and non-mammalian vertebrates
(17, 28, 46, 47) suggest the involvement of GnRH signaling in

SPZ functions and fertilization. Accordingly, GnRH antagonists
inhibit, in vivo and in vitro, fertilization in rodents (14) whereas
sperm binding to the human zona pellucida and calcium influx
in response to GnRH and progesterone have been reported (13),
providing evidence of functional role of GnRH-Rs in human SPZ.

The above indicated intra-testicular activity of GnRH has been
described in detail in the frog R. esculenta, a species showing a com-
plex GnRH system, deeply characterized at testicular level (46). In
this seasonal breeder, two GnRH molecular forms (GnRH-1 and
GnRH-2) and three receptor forms (GnRH-R1, -R2, -R3) (48)
with specific expression pattern and localization in testis during
the annual reproductive cycle (46) have been identified. In situ
hybridization suggests a different role for GnRH-1 and GnRH-2,
as GnRH-1 and GnRH-R1 seem to be linked to germ cell pro-
gression and interstitial compartment activity, whereas GnRH-2
and GnRH-R2 seem to be linked to sperm function and release
(46), confirming the hypothesis that each ligand might be involved
in the modulation of specific processes. Interestingly, this func-
tional portioning well correlates with the differential modulation
of GnRH system counterparts exerted via the activation of endo-
cannabinoid system, an evolutionarily conserved system deeply
involved in central and local control of reproductive functions
(49–52). At central level, in mammals, endocannabinoids inter-
fere with GnRH production (53, 54) and signaling (55). In frog
diencephalons, they modulate the expression of GnRH-1/GnRH-2
(48, 56, 57) – both hypophysiotropic factors (1), GnRH-R1 and
GnRH-R2 (48) (Figure 1). Furthermore, in frog testis, the endo-
cannabinoid anandamide (AEA), via type 1 cannabinoid receptor
(CB1) activation, modulates testicular GnRH activity at multiple
levels and in a stage-dependent manner (46) (Figure 2). Inter-
estingly, the activation of cannabinoid receptors other than CB1,
such as the vanilloid transient receptor type 1 (TRPV1), differ-
entially modulates the expression level of GnRHs/GnRH-Rs, but
in an opposite manner as compared with CB1 (58). Thus, the
transcriptional switch on/off of testicular GnRH system is finely
toned through the activation of specific endocannabinoid recep-
tors, providing evidence of a central role of this system in the local
modulation of GnRH activity.

KISSPEPTINS, POSSIBLE PLAYERS IN TESTIS PHYSIOLOGY
CURRENTLY UNDER INVESTIGATION
Kisspeptins are a novel class of neuro-peptides with a key position
in the scenario of reproduction. They are encoded by the kiss1
gene, originally discovered as a metastasis-suppressor gene in 1996
(59), and they are initially produced as an unstable 145-amino
acid precursor peptide (kp145), then cleaved into shorter pep-
tides (kp-54, kp14, kp-13, and kp-10). Interestingly, all kisspeptin
shorter peptides are biologically active due to the binding to the
“kiss” receptor GPR54 (60). The primary targets of kisspeptins are
just the hypothalamic GnRH-secreting neurons (61) and, simi-
larly to the deletion/mutation of GnRH or GnRH-R genes, target
disruption of both kiss1 and GPR54 leads to hypogonadotropic
hypogonadism and lack of sexual maturation (62, 63). Accord-
ingly, the administration of kisspeptins accelerates the timing of
puberty onset in fish (64–67) and mammals (68, 69), whereas cir-
culating higher kisspeptin levels have been observed in clinical
cases of precocious puberty in human (70, 71).
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Several studies have been focused on the characterization of the
kisspeptin-dependent signaling in the hypothalamus, with partic-
ular concern to the negative and the positive feedback action of
sex steroids on kiss1 gene expression in the arcuate and the antero-
ventral-preoptic nucleus, respectively [for review see Ref. (72)].
Therefore, in the last years, the idea that kisspeptin signaling is an
essential guardian angel of reproduction, through the regulation
of GnRH neurons, took place. These views strongly stride with evi-
dences that genetic ablation of nearly all kisspeptin neurons does
not impair reproduction, suggesting that possible compensatory

FIGURE 1 | A schematic view of the effects of AEA incubation on
GnRH-1 (G1), GnRH-2 (G2), GnRH-R1 (R1), and GnRH-R2 (R2)
expression in frog R. esculenta diencephalon. Animals were collected in
June and testes were incubated in vitro for 1 h. Via CB1 activation, AEA
treatment significantly increased the expression of GnRH-R1 and GnRH-R2
whereas it decreased the expression of both GnRH-1 and GnRH-2; no
effect on GnRH-R3 was observed.

mechanisms rescue reproduction (73). Probably, kisspeptin neu-
rons and related products are in excess of what is really required to
support reproductive functions. In this respect, male and female
mice with a 95% reduction in kiss1 transcript levels are normal
and sub-fertile, respectively. This suggests that an overproduc-
tion of kisspeptin represents a failsafe to guarantee reproductive
success (74).

A novel chapter of kisspeptin saga concerns the possible intra-
gonadal action of these molecules. Kiss1 and/or GPR54 have been
observed in several peripheral tissues, gonads included. In partic-
ular, the presence of both ligand and receptor has been observed
in the human placenta (75) and testis (60, 75) whereas GPR54
alone has been detected in mouse (76), rat (77), rhesus monkey
(78, 79), and frog (80) testis. However, the functional mechanisms
of kisspeptin/GPR54 system in gonads remain to be elucidated
and several conflicting data concerning the direct involvement of
kisspeptin activity in testis physiology emerged.

Long term kisspeptin-10 (kp-10) (81) and/or kp-54 (82)
administration in maturing and adult rat testes gives rise to degen-
erative effects on spermatogenesis and suppresses the circulating
levels of LH and T; no effects have been registered upon FSH levels.
Specifically, germ cell number significantly decreases, many germ
cells appear regressed, atrophied, and in necrosis; round and elon-
gated SPTs show abnormal acrosome; intraepithelial vacuolization
is visible, interstitial spaces are enlarged, and the germinal epithe-
lium is irregularly shaped. Leydig cells frequently lose contacts
with the seminiferous tubules and Sertoli–germ cell interaction
is destroyed (81). A similar degenerative effect – caused by con-
tinuous administration of kp-10 – has also been discovered in
rat seminal vesicles (83) and pre-pubertal prostate gland (84).
Conversely, a physiological role of kisspeptins in testis has been
completely excluded in mouse (85) and conflicting data concern-
ing the localization of kiss1/GPR54 protein and mRNA recently
emerged. The use of different antisera, strategies, and strains as
well might be taken in account to explain these discrepancies and
the missing overlapping in mRNA/protein detection described

FIGURE 2 | A schematic view of the effects of AEA treatment on
GnRH-1 (G1), GnRH-2 (G2), GnRH-R1 (R1), GnRH-R2 (R2), and
GnRH-R3 (R3) expression in frog R. esculenta testis. Animals were
collected in June (A) and February (B) and testes were incubated in vitro
for 1 h. In June, AEA treatment significantly increased the expression of

GnRH-R1 and GnRH-2 whereas it decreased those of GnRH-1 and
GnRH-R2, and had no effect on GnRH-R3; in February, AEA treatment
increased GnRH-2 and GnRH-R3 expression, decreased GnRH-R2, and
had no effect on GnRH-1 or GnRH-R1. In both periods, AEA-dependent
effects occurred via CB1 activation.
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so far. In fact, in transgenic mice with LacZ targeted to either
kiss1 or GPR54 genes, kiss1 and GPR54 mRNA have been local-
ized in mouse round SPTs, whereas kisspeptin protein has been
shown in Leydig cells, with no staining in SPTs (85). Conversely,
both GPR54 and kiss1 immunoreactivity has been provided in
both Leydig and germ cells (primordial germ cells and elon-
gating SPTs) with significant age-related variations (28). Studies
conducted in Leydig cell line MA-10 – a cell line that expresses
LH receptors and responds to human chorionic gonadotropin
(hCG) stimulation, producing progesterone as major steroid hor-
mone – confirm that these cells produced GPR54 mRNA, but were
unable to show any kiss1 expression (85). Despite GPR54 expres-
sion, from a functional point of view kp-10 does not exert any
significant direct effects on steroid production in both MA-10
cell line or in physiological systems, such as mouse seminifer-
ous tubule explants (85). However, evidences reported in other
species examined so far, pointed out a possible role of kisspeptin
system just in steroidogenetic activity. Although Leydig cells do
not show any kisspeptin and/or GPR54 immuno-localization in
rhesus monkey (78), intra-testicular action on steroidogenesis
(79) has been demonstrated in monkeys treated with acyline, a
GnRH-R antagonist (86), just to exclusively investigate kisspeptin
activity without any influence of pituitary gonadotropic drive. In
these clamped monkeys, kp-10 has a synergic effect with hCG to
induce T production (79). Anyway, the real possible mechanism
through which kisspeptin enhances T production in primates is
not clear and may require additional paracrine routes involved
in Leydig–Sertoli cell communications. In fact, in rhesus monkey
kisspeptin immunoreactivity has been detected in spermatocytes
(SPCs) and SPTs, whereas GPR54 has been localized in SPCs and
Sertoli cells (78). Thus kisspeptin – produced by germ cells – might
act in an autocrine/paracrine manner to control the progression
of the spermatogenesis and/or to modulate Sertoli cells activ-
ity. It is noteworthy, however, that intravenous injection of the
kisspeptin antagonist 234 (kp-234) (87) does not alter plasma T
levels in adult rhesus monkey. Interestingly,Anjum and co-workers
reported that kisspeptin expression – analyzed by slot blot analy-
sis in Leydig cells of Parkes strain mice – significantly decreases
from birth to pre-pubertal testis, increases during pubertal period,
decreases in reproductive active mouse to further increase during
the senescence. These expression profiles well correlate to GnIH
expression and to the decreased steroidogenic activity observed
during the senescence, providing evidence of a possible involve-
ment of kisspeptin in the control of steroidogenesis in cooperation
with testicular GnIH (28).

The detection of kiss1 and GPR54 mRNA in round/elongating
SPTs (28, 78, 85) raises the possibility that autocrine or paracrine
kisspeptin actions might be involved in spermiogenesis and in
the acquisition of sperm functions, as recently demonstrated
in human SPZ by Candenas and co-workers (88). This group
immunolocalized kisspeptin and GPR54 in the post-acrosome
region of the human SPZ head and in the equatorial segment of
the tail, providing also evidence of some regulatory actions. In fact,
1 µM kp-13 increases [Ca2+]i and induces a small, but significant
change in sperm motility, leading to motility trajectories that char-
acterize hyper-activated SPZ. Instead, the same treatment has no
effect on acrosome reaction (88). Very recently, in mouse, GPR54

has been specifically localized in the acrosomal region of SPTs and
mature SPZ whereas kisspeptin expression has been detected in the
cumulus–oocyte complex and oviductal epithelium of ovarian and
oviductal tissue (89). Since SPZ treatment with kp-234 decreases
the in vitro fertilization rates, evidence emerged that kisspeptin
modulates fertilization capability in mammals (89).

Interestingly, in sexually immature scombroid fish, kp-15
peripheral administration induced spermiation (67), accordingly
to GPR54 expression detected in the myoid peritubular cells
in amphibians (80), indicating a possible involvement in sperm
transport and release.

Compelling evidence about gonadal activity of kisspeptin sys-
tem recently comes from a non-mammalian vertebrate, the anuran
amphibian, the frog R. esculenta. In this seasonal breeder, germ
cell progression is under the control of endocrine, environmental,
and gonadal factors (90, 91), whereas spermatogenesis proceeds
in cysts, typical formations consisting of Sertoli cells envelop-
ing cluster of germ cells at a synchronous stage (91). During
the frog annual sexual cycle, GPR54 mRNA has been analyzed
in testis, showing higher expression at the end of the winter sta-
sis and during the breeding season (80). In these periods, in an
E2-dependent fashion, the recruitment of SPG and the onset of a
new spermatogenetic wave take place (42, 91, 92). Consistently,
in February, GPR54 mRNA has been revealed in primary and
secondary SPG by in situ hybridization (Figure 3) (80) accord-
ingly to kisspeptin localization in primordial germ cells observed
in mouse (28). In proliferating germ cells, a strong expression
of GPR54 mRNA has been found in interstitial compartment of
frog testis all over the annual sexual cycle (Figure 3). Contrary
to human, in frog post meiotic cells and SPZ do not express
GPR54 mRNA, but it is not excluded that the GPR54 mRNA
produced in SPG might be translated in later stages. Since E2 is
likely to be involved in various aspects of testicular activity such
as steroidogenesis and primary SPG proliferation (42, 93–95), a
possible relationship between E2 and kisspeptin/GPR54 has been
analyzed in frogs. In this respect, an E2-dependent modulation
of GPR54 expression has been reported in testis. In addition, kp-
10, in vitro, is able to modulate both GPR54 and ERα expression
at the end of the winter stasis (February) as well as during the
breeding season (March) (80). Therefore, via kisspeptins/GPR54
activation, E2 might regulate steroidogenic activity and SPG prolif-
eration. This hypothesis is supported by the localization of GPR54
mRNA that well correlates with the sites of E2 action occurring
in frog testis (90). Thus, the expression of GPR54 inside the
interstitium and in proliferating SPG, as well as its E2-dependent
expression, strongly support the hypothesis that kisspeptin might
have a direct involvement in the onset of the spermatogenetic
wave. Accordingly, subcutaneous administration of kp-15 acceler-
ates spermatogenesis in the pre-pubertal teleost Scomber japonicus
without any significant change in the expression of hypothal-
amic GnRH-1 and pituitary FSHβ and LHβ subunits (66). In
addition, kp-10 involvement in differentiation events has been
further confirmed in the rhesus monkey derived stem cell line
r366.4 (96).

It is evident that the several controversies regarding the
“kisspeptin saga” make their history more intriguing with many
“behind-the-scenes” yet to be written.
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FIGURE 3 | Sections of R. esculenta testis, collected in February,
analyzed by in situ hybridization for GPR54. GPR54 mRNA was
detected in the interstitial compartment (A,B), in primary
spermatogonia (B), in secondary spermatogonia cysts (B) as well as in

myoid peritubular cells (B). The specificity of signals was tested through
the reaction with a sense riboprobe (C). i, Interstitial compartment;
white arrow head, ISPG; dark arrow head, IISPG; m, myoid peritubular
cells; scale bar: 20 µm.

ESTROGENS AND SPERM QUALITY
Traditionally, E2 is stereotyped as the “female” and T as the “male”
hormone. E2 and T are instead present in both males and females,
and in male the ratio between the two hormones controls repro-
duction via specific receptors (16). To date, nuclear (ERα and ERβ)
and membrane-bound (GPR30) receptors, able to respond to E2

via genomic and non-genomic pathways, respectively, have been
identified [for review see Ref. (97, 98)].

Estrogens are synthesized via the irreversible transformation of
androgens by the aromatase (P450arom; Cyp19A1 is the related
gene), an enzyme expressed in the endoplasmic reticulum of tes-
ticular cells. In male, E2 is indeed primarily synthesized in the
testis, which expresses also the specific receptors, ERα and ERβ

(16). Recently, GPR30 has been studied in fish, rat, and human
and localized in somatic (rat and human) and germ (fish and rat)
cells (99–102).

P450arom and ERs expression has been studied in mammalian
and non-mammalian testis and the specific mRNA and/or proteins
localized in the interstitial (Leydig cells) and tubular (Sertoli and
germ cells) compartments, depending on the species [for reviews
see Ref. (1, 16, 97, 103)], demonstrating that both somatic and
germ cells are able to produce E2 that can act locally.

In vertebrates, E2 acts at both central (hypothalamus
and hypophysis) (55, 104) and local (testis, efferent ductules, and
epididymis) (1, 105, 106) levels and studies in mammalian and
non-mammalian species show that E2 regulates proliferation
(gonocytes, SPG, Leydig cells), apoptosis (pachytene SPC, Ser-
toli cells), and differentiation (SPTs) of germ and somatic cells,
as well as it regulates spermiation, transport and motility of SPZ,
epididymal sperm maturation, and scrotal testicular descent (42,
43, 80, 97, 107–116). Some of these functions are evolutionarily
conserved from fish to mammals demonstrating that E2 plays an
important role in male reproduction physiology in vertebrates (1,
90, 117). Expression profiling of spermatogenesis in the rainbow
trout identifies evolutionarily conserved genes involved in male
gonadal maturation (118). Accordingly, E2-responsive genes have
been characterized in gonads enriched of SPG or in isolated germ
cells: in both frog (42, 108) and fish (118, 119), some of these genes
are associated to proliferation.

To date, although tissue and cell culture experiments show that
E2 may act on germ cells, its direct effect in in vivo systems has not
yet been fully elucidated. However, data obtained in mouse, rat,

and human models clearly show that E2 is important to produce
and sustain high standard quality mature SPZ. Two main observa-
tions suggest that E2 is able to act locally into the testis: (1) germ
cells express both P450arom and ER, in particular SPTs (120) pro-
duce E2 that may act via specific receptors (121); (2) Sertoli cell
barrier envelops the germinal epithelium, from SPCs to SPTs/SPZ,
ensuring a specific micro-environment that allows a correct germ
cell progression.

In mouse, P450arom activity is high in germ cells and in par-
ticular in SPTs, while is lowered in the interstitial compartment
(120). Among germ cells, mainly SPTs and SPZ are responsive to
inhibition/inactivation of P450arom and to low E2 levels. Early
studies, demonstrated that when rat (122, 123) or bonnet mon-
key (115) were treated with aromatase inhibitors, degeneration of
round SPT and a massive decrease of elongated SPTs was found.
Later, D’Souza showed that round SPT differentiation (steps 1–6)
was largely dependent on E2, whereas SPT elongation (steps 8–
19) was androgen dependent (124). Indeed, high intra-testicular
E2 levels preserve round SPTs (steps 1–6) whereas T deficiency,
induced by E2, originate pyknotic bodies in elongated/condensed
SPTs (steps 8–19) (124). Consistently, loss of E2 in human testis
promotes apoptosis of round SPTs with loss of elongated SPTs
(125) and viable SPZ (126). Therefore, E2 is now considered as a
survival factor for SPTs and SPZ.

The bulk of information about the role of E2 in germ cell dif-
ferentiation, from SPT-to-SPZ, came from studies on mutant mice
such as the hypogonadic (hpg ), the Cyp19A1 knock-out (ArKO),
and the Cb1 knock-out (Cb1−/−) (55, 127, 128).

Due to a natural GnRH gene deletion, the hpg mice are func-
tionally deficient in gonadotropins and sex steroids and show
meiosis arrest at pachytene stage. Treatment with E2 or ERα ago-
nists restored meiosis in these animals which, in absence of T,
produce haploid elongated SPTs (129). The E2 treatment alone
was as effective as FSH alone and the combination of both hor-
mones did not produce a greater effect (130). Authors concluded
that E2 likely acts on hpg testis via a mechanism involving a weak
neuroendocrine activation of FSH secretion (128–130).

The phenotype of ArKO mice and experimental analysis car-
ried out using this mutant mice counteract with this conclusion.
ArKO males (127) are initially fertile, but they develop progres-
sive infertility between 4.5 months and 1 year. In the SPTs of
these animals, multiple acrosome vesicles, irregularly scattered
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over the nuclear surface, are observed (127) suggesting that acro-
some biogenesis may be an E2-dependent process. Accordingly,
P450arom is at high levels in the Golgi complex of developing
SPT (120). In ArKO mice, spermatogenesis is primarily arrested at
early stages, with a decrease of round and elongated SPT num-
bers, without any detectable change of circulating FSH levels
(127). Dietary phytoestrogens may partially prevent disruption
of ArKO mice spermatogenesis, avoiding the decline of germ cell
number. Interestingly, when young ArKO mice were exposed to a
phytoestrogen free diet, the phenotype was severely disrupted as
compared with mice under normal diet. This occurred in absence
of a decreased gonadotropic stimulus, suggesting that the effects
of dietary phytoestrogens are independent of changes concern-
ing the pituitary–gonadal axis and they are probably related to
direct activation of testicular ERs (131). In agreement with this
conclusion, E2 administration in irradiated rats suppressed serum
LH, FSH, and T (both plasma and intratesticular) levels (132) and
produced the recovery of spermatogenesis (133, 134) suggesting
a gonadotropin-independent E2 activity. However, gynecomastia
and cardiovascular problems are secondary effects related to E2

treatment and represent the major impediment to clinical appli-
cation. Recently, it has been suggested that the phytoestrogen
genistein may be a true substitute for E2 (135).

Concerning the Cb1−/− mouse, it is a genetically modified ani-
mal model showing Cb1-gene deletion (136). This gene codifies
CB1, which is broadly expressed in hypothalamus, pituitary, and
testis (137, 138) of many vertebrates, from fish to mammals [for
review see Ref. (52)]. CB1 is involved in GnRH and gonadotropin
production (55–57, 139–141) at testicular level, it regulates both
spermatogenesis (15, 46, 58, 137, 138, 142–145) and steroido-
genesis (146, 147). Interestingly, Cb1−/− mice exhibit endocrine
features in common with hpg and ArKO models: (1) down reg-
ulation of GnRH and GnRH -R mRNA, (2) low LH release and
low expression of FSHβ mRNA, (3) low T production, and (4) low
E2 plasma levels. Morphological and molecular analyses of epi-
didymis and 3β-HSD, which are responsive to T, suggest that even
low, T levels are enough (55). Unlike hpg and ArKO mice, Cb1−/−

mutants are fertile; they show a quantitatively normal produc-
tion of SPZ although, similarly to some fertile men, a consistent
aliquot shows abnormalities (148, 149) that are mainly related to
the motility and to chromatin quality (histone content, chromatin
packaging, DNA integrity, and nuclear size, useful parameters to
classify sperm chromatin quality). Therefore, Cb1−/−mice exhibit
endocrine and phenotypic features, which are useful to extend the
above studies about the role of E2 in SPT differentiation and in the
maintenance of sperm quality. Interestingly, when Cb1−/− mice
were treated with E2, all the abovementioned chromatin quality
indices improved in SPZ (55, 150). Therefore, sperm chromatin
quality appears to be responsive to E2 treatment (151). Interest-
ingly, ERα and ERβ polymorphisms have been associated with
semen quality (152). Accordingly, P450arom, either mRNA or
protein, has been proposed as marker of sperm quality in men.
Indeed, Carreau and co-workers reported that, in human ejac-
ulated SPZ, the immotile sperm fraction showed low levels of
P450arom, both mRNA and protein activity (30 and 50%, respec-
tively), as compared with the motile sperm fraction (153–155). In
addition, the same authors have recently reported that in SPZ

from asthenospermic, teratospermic, and asthenoteratospermic
patients, P450arom mRNA levels were progressively lower as com-
pared with SPZ from control patients (156). The hypothesis that
E2 treatment improves motility by enhancing oxidative metabo-
lism and the intracellular ATP concentrations in human sperm
(157, 158) well fit with the observation that E2 can regulate mito-
chondrial function in MCF7 cells by increasing nuclear respiratory
factor-1 expression (159). However, in mouse, E2 and phytoestro-
gens are able to improve capacitation as well as acrosome reaction
and fertilizing capacity of SPZ (160), while natural and syn-
thetic estrogens have stimulatory effect on boar sperm capacitation
in vitro (161).

Results from mutant animal models,here reported, in combina-
tion with case reports concerning patients with few testicular germ
cells or decreased sperm motility and number, have a common
root: they are characterized by E2 deficiency due to the mutation or
low expression of Cyp19A1 gene ((126, 162–164), suggesting that
E2 may have a instrumental role in quality sperm and its action
is much more complex than previously predicted or suggested by
ERα knock-out mice, which show impaired fluid re-adsorption
within the efferent ducts as cause of sterility (105).

CLOSING REMARKS
In the last years, data provided by literature evidence that, besides
endocrine route, intra-testicular paracrine and autocrine commu-
nications are fundamental to sustain spermatogenesis in order
to gain high standard quality SPZ. New roles for stereotyped
hypothalamic and female hormones – GnRH and E2, respectively
emerged, new potential modulators such as kisspeptins have been
identified as well,but conflicting data reveal that several issues need
to be further investigated. The modulators here reported – GnRH,
kisspeptin, and estrogens – are critical for a successful spermato-
genesis as clearly demonstrated by clinical cases of infertility in
humans. However, several questions are still open. These different
modulators strongly cooperate at hypothalamic level whereas, at
testicular level, they control similar events (Leydig cell functions,
proliferation/differentiation events, sperm functions); conversely,
their possible local crosstalk is far away to be elucidated. Simi-
larly, they may trigger, independently from each other, pathways
controlling the same aspects that might represent two sides of the
same coin. Both a comparative approach and the use of genet-
ically modified experimental models may represent a successful
tool to make giant strides in the building of general models,
but to extricate this intriguing story, there is still much to be
done.
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