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Secretin (SCT) was firstly discovered as a gut peptide hormone in stimulating pancreatic
secretion, while its novel neuropeptide role has drawn substantial research interests in
recent years. SCT and its receptor (SCTR) are widely expressed in different brain regions,
where they exert multiple cellular functions including neurotransmission, gene expression
regulation, neurogenesis, and neural protection. As all these neural functions ultimately
can affect behaviors, it is hypothesized that SCT controls multiple behavioral paradigms.
Current findings support this hypothesis as SCT–SCTR axis participates in modulating social
interaction, spatial learning, water and food intake, motor coordination, and motor learning
behaviors. This mini-review focuses on various aspects of SCT and SCTR in hippocam-
pus, hypothalamus, and cerebellum including distribution profiles, cellular functions, and
behavioral phenotypes to elucidate the link between cellular mechanisms and behavioral
control.

Keywords: secretin, social behavioral, water and food intake, motor coordination and learning, neural transmission,
neural development, knockout mice

INTRODUCTION
For the survival of animals, it is critical to control complex behav-
iors in a timely and precise manner via regulatory pathways
including sensory inputs, integration in the central nervous sys-
tem (CNS), and coordinated motor outputs to peripheral muscles.
Within these modulatory processes, various neuroendocrine fac-
tors exert their roles. Classical neurohormones such as those from
the hypothalamus–pituitary system (i.e., sex hormones, growth
hormone, etc.) have been comprehensively studied regarding their
behavioral effects. Moreover, a recently discovered group of “neu-
ropeptides”began to show plausible neurophysiological functions.
Among those, secretin (SCT) has been repeatedly reported by
independent groups to modulate behavioral paradigms.

Secretin was initially considered to be a duodenum-derived
chemical factor in stimulating pancreatic secretion (1). However,
several studies in 1980s suggested its presence in the brain (2–
4). The introduction of immunohistochemical (IHC) and in situ
hybridization (ISH) staining discovered SCT and its receptor
(SCTR) in multiple brain sites as summarized in Table 1. In adult
brains, SCT and SCTR were: (1) expressed in hindlimb area of
cerebral motor cortex and prominently distributed in hippocam-
pus; (2) abundantly found in thalamus and hypothalamus; (3)
not present in midbrains except for embryos; and (4) widely dis-
tributed in hindbrain regions including cerebellum and medulla
oblongata. During embryonic development, transcripts and pro-
teins of SCT and transcripts of SCTR were found in cerebellar
primordium, tegmentum, and mesenchyme flexure as early as
embryonic day 10.5 (5, 6). As these SCT- or SCTR-expressing
neurons control unique behaviors (i.e., hippocampus: learning
and memory; hypothalamus: sex, drinking, and feeding; cerebel-
lum: motor coordination and motor learning), it was postulated
that SCT had a role in multiple behaviors. The following part

will describe past studies regarding the role of SCT in behavioral
modulations.

SCT IN HIPPOCAMPUS CONTROLS SOCIAL BEHAVIOR AND
SPATIAL LEARNING
Hippocampus has been well-known to be responsible for social
behavior, memory, and spatial learning, all of which are dependent
on neurogenesis and synaptic plasticity (21–23). Hippocampal
neurons were found to express significant SCT and SCTR as
described in Table 1. Functional evidences including activated
adenylate cyclase (24) and increased secretion of neurotransmit-
ter glutamate and gamma-aminobutyric acid (GABA) by SCT (25)
further supported SCT in hippocampal regulated behaviors.

One clinical trial reported that intravenous (IV) SCT injection
improved eye contact, alertness, and expressive language ability on
children with autistic spectrum disorders (ASD) (26). Replicated
studies, however, had no significant effects (27) or only marginal
improvements on some individuals (28–30), thereby rejecting SCT
as an effective treatment against ASD (31). Although clinical stud-
ies did not get satisfactory results, animal experiments did reveal
the role of SCT in social behaviors. A complete behavioral phe-
notyping in SCTR knockout (KO) mice reported impaired social
interaction as shown by higher dominance percentage in a tube test
and lower recognition ratio in a partition test (9). Such behavioral
impairments were attributed to neuroanatomical and electro-
physiological abnormalities: SCTR KO mice had fewer dendritic
spines on CA1 pyramidal cells, in addition to impaired long-term
potentiation (LTP) induction and maintenance (9). This synaptic
plasticity dysfunction reoccurred in SCT KO mice which, however,
had normal dendritic morphology (8). In behavioral studies, SCT
KO mice had impaired spatial learning in the water maze task as
they spent longer time to find the relocated hidden platform (32).
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Zhang and Chow Secretin regulates behaviors

Table 1 | Brain distributions of SCT and SCTR.

Anatomical division Subdivision Neuron/neuron group Expression profile Reference

Telencephalon Cerebral cortex Pyramidal cell SCT peptidea (7)

Hippocampus DG, hilus, molecular layer SCT geneb (8)

CA1 SCTR geneb (9)

Diencephalon Thalamus Laterodorsal thalamic nucleus SCTR gene (10)

Hypothalamus SON, PVN, Arc SCT + SCTR gene + peptide (11–14)

Posterior pituitary Herring bodies in pars nervosa SCT + SCTR peptide (13)

CVO SFO, OVLT SCT + SCTR gene + peptide (15)

Mesencephalon Midbrain NSEc (16)

Rhombencephalon Cerebellum Purkinje neuron, DCN SCT gene + peptide (17–20)

Purkinje neuron, basket cell SCTR gene (17, 19)

Medulla oblongata NTS SCTR gene (10)

aSCT peptide was found in pyramidal cells in cerebral cortex from humans, and colchicine-treated rats (7) but with less (11) or no forebrain expression (18) in untreated

rats.
bSCT and SCTR gene expression was detected by staining the lacZ reporter.
cSCT and SCTR expression was found in embryonic mesencephalic neurons until birth (5, 6) but not in adults (16).

All these cell-specific expression profiles have been reported previously using IHC (for peptide) or ISH staining (for gene expression) in intact rodents, unless otherwise

specified.

DG, dentate gyrus; SON, supraoptic nucleus; PVN, paraventricular nucleus; Arc, arcuate nucleus; CVO, circumventricular organ; SFO, subfornical organ; OVLT, organum

vasculosum of lamina terminalis; NSE, no significant expression; DCN, deep cerebellar nucleus; NTS, nucleus tractus solitarius.

In concurrent histological and electrophysiological examinations,
higher apoptosis of neural progenitor cells in DG during postnatal
development occurred, along with impaired LTP (32). In sum-
mary, SCT was involved in hippocampal neurogenesis and neural
transmission including synaptic plasticity, all of which contributed
to social behavioral and spatial learning as illustrated in Figure 1B.

HYPOTHALAMIC SCT STIMULATES WATER DRINKING
In the classical model for water homeostasis, vasopressin (VP)
from posterior pituitary functions as an antidiuretic factor to
induce renal water reabsorption while liver-originated angiotensin
II (ANGII) has central effects stimulating VP release and water
intake in hypothalamic neurons. Our research group for the first
time reported polydipsia and polyuria in SCTR KO mice under
both normal (33) and hyperosmolality conditions (34). Follow-
up studies revealed that SCT was released from posterior pituitary
following hyperosmolality stress to stimulate VP secretion (13).
Therefore, the interruption of SCT–SCTR axis decreased VP secre-
tion and led to lower renal water reabsorption, which further
induced polyuria and stimulated water drinking as a consequence.
We also measured central effects of SCT in drinking behaviors:
intracerebroventricular (ICV) injection of SCT increased water
intake in both wild type (WT) and SCT KO mice but not in SCTR
KO ones (15). This potentiation, however, did not occur when
SCT is peripherally injected (35). More importantly, ICV ANGII
injection induced dipsogenic effects in WT mice but not in SCT
KO or SCTR KO ones (15). This clearly suggested that ANGII
exerted water intake control via SCT–SCTR-dependent pathways.
Evidences supporting this model came from the co-localization of
SCT and ANGII receptor type 1 (AT1aR) in hypothalamic PVN,
along with the induction of Sct gene expression in SFO, OVLT,
and PVN following centrally (15) but not peripherally injected
ANGII (35). This sequential induction of Sct gene expression plus

a higher Fos-immunoreactivity in SFO after ICV SCT injection
(35) suggested that SCT firstly activated SFO, which then relayed
the signal via OVLT to PVN to evoke drinking behaviors. In a
word, SCT worked in conjunction with ANGII to stimulate water
intake.

There were unsolved questions in the aforementioned model:
ICV ANGII still induced water intake in SCT KO and SCTR
KO mice, although at dramatically reduced levels compared to
WT controls (15). This phenotype suggested that some SCT-
independent pathways must exist although SCT-mediated ANGII
regulation was more potent in terms of water intake control. This
riddle has partially been elucidated in our recent study, which pro-
posed a receptor heteromer between SCTR and AT1aR (34). As
illustrated in Figure 1C, this receptor complex endowed strong
synergistic effects to SCT and ANGII as low concentration of
both peptides (10 ng ANGII, 50 ng SCT) had comparable dip-
sogenic phenotypes as those produced by 10-fold concentration
of each peptide alone (34). In addition, we were able to totally
abolish hyperosmolality-induced water intake via ICV injection
of AT1aR transmembrane peptide-1 (ATM-1), which inhibited
SCTR/AT1aR heteromer formation only but not SCTR/SCTR or
AT1aR/AT1aR homomer on the cell surface (34). This working
model indicated the potential in vivo role of SCTR/AT1aR het-
eromer in regulating water drinking behaviors as both receptors
were co-expressed in the same hypothalamic neurons (15).

SCT SUPPRESSES FOOD INTAKE via THE MELANOCORTIN
SYSTEM
Previous studies reported appetite control by SCT but were some-
how inconsistent. Peripheral SCT injection led to depressed food
intake in both normal feeding (36) and fasted animals (37).
Rat feeding pattern, however, was unaffected by intraperitoneally
(IP)-injected SCT (38). Our research group recently reported a
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Zhang and Chow Secretin regulates behaviors

FIGURE 1 | Schematic illustration of SCT as a pleiotropic
neuropeptide in regulating behavioral paradigms. (A) Functional
regions of a mouse brain, in which three sites with prominent SCT and
SCTR expression are further illustrated in (B–E). (B) SCT can modulate
social and memory via both LTP control and neurogenesis in
hippocampal DG and CA1 regions. EC, entorhinal cortex. (C) SCT works
in conjunction with ANGII to exert a synergetic effect on hypothalamic
SFO, which then relays the signal to PVN for the induction of water

intake behavior. (D) Both vagal nerve and Arc neurons are responsive to
SCT and further inhibit food intake via the activation of the melanocortin
system. (E) SCT can induce presynaptic GABA release, and potentiate
LTP in PF–PC synapse. BC, basket cell; PC, Purkinje cell; PF, parallel
fiber. (A) is adapted from an illustration of the Gene Expression Nervous
System Atlas (GENSAT) Project, NINDS Contracts N01NS02331 &
HHSN271200723701C to The Rockefeller University (New York, NY) with
permission.
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suppression of food intake in fasted mice by either IP or ICV
SCT administration (14). This effect was determined to be SCTR-
specific as SCTR KO mice did not exhibit such anorectic effects
(14). Further studies revealed that both central and peripheral
pathways existed under these feeding pattern changes. In hypo-
thalamus, ICV injection of melanocortin-4 receptor (MC4R)
antagonist SHU9119 reduced IP- or ICV-induced food intake
suppression in WT and SCT KO mice (14). This information
plus the SCT-stimulated expression of Mc4r, Trh, and Pomc gene
(14), all of which are factors in melanocortin system for appetite
control, clearly suggested that SCT works via the activation of
melanocortin system to inhibit food intake (Figure 1D). SCT
was believed to be endogenously released from hypothalamic
neurons (12), although in vivo evidence was still lacked. In addi-
tion to this central mechanism, circulated SCT functioned via
vagal afferent nerves as either surgical vagotomy or neurotoxin
capsaicin treatment eliminated food intake suppression caused
by IP- but not ICV-injected SCT (39). This is consistent with
previous studies showing that peripheral SCT is able to acti-
vate vagal afferent and area postrema (AP) neurons (40). SCT
induced Fos-immunoreactivity in NTS, AP, and dorsal vagal com-
plex (DVC) after IP injection in intact mice but not in vagotomized
or capsaicin-treated ones (39). Brainstem activation then stimu-
lated POMC neurons in Arc, which is Fos-positive after IP SCT
infusion (14). However, this effect was abolished when animals are
vagotomized or capsaicin-treated (39). In summary, SCT either
locally activated the melanocortin system in an auto-/paracrine
manner or worked via vagal nerve to suppress food intake (see
Figure 1D for a simplified working model).

Besides direct regulation on food intake, SCT may also par-
ticipate in the regulatory network and cross-talk with other hor-
mones to control the appetite. One possible candidate leptin, was
synthesized from adipocytes and inhibited Arc neurons express-
ing neuropeptide Y (NPY) and agouti-related peptide (AgRP)
whilst stimulated α-melanocyte-stimulating hormone (α-MSH),
thereby suppressing food intake. The IV infusion of SCT increased
plasma leptin levels (41), thereby inhibiting feeding behavior. It
was further noticed that ICV-leptin elevated SCT expression in
ventromedial hypothalamus (42). So SCT and leptin may work
synergistically to exert the anorexic effect, as those for SCT and
ANGII in water intake control. Such cross-talk may be further
broadened, for example, cholecystokinin (CCK) can also syn-
ergistically interact with SCT at the vagal afferent nerve (43).
More gastrointestinal hormones including glucagon-like peptide-
1 (GLP-1), ghrelin, and amylin also activated certain SFO neurons
(44). Thus SCT may collaborate with other gut peptides to form
an integrated network modulating feeding behavior.

SCT REGULATES MOTOR COORDINATION AND MOTOR
LEARNING BEHAVIOR via THE FACILITATION OF PURKINJE
NEURON INHIBITORY TRANSMISSION
Motor effects of SCT were initiated by Charlton’s group, who dis-
covered a lowered open-field activity and novel object approach
after ICV injection of SCT (45), and a later one in which SCT
was found to increase the latency of withdrawal jumping response
(46). In SCTR KO mice, lower open-field activity and deficits
of motor learning on rotarod were reported (9). Other groups

showed that stereotypic circular movements in Japanese waltzing
mice were attenuated by ICV or intranasal application of SCT,
which improved horizontal movements but did not influence the
explorative behavior (47, 48). One recent study suggested SCT
in enhancing eye-blink conditioning, a classical cerebellar-related
learning behavior (49). In summary, past researches provided
knowledge about SCT’s neuropeptide function regarding motor
behaviors. Nonetheless, systematic behavioral phenotyping was
lacked, neither was the underlying mechanism.

Our research group for the first time developed a conditional
SCT KO mouse model (Pur-SCT KO) in which Sct gene was specif-
ically eliminated in cerebellar Purkinje neurons (20). We focused
on Purkinje neurons because they regulated motor coordination
and motor learning, as reported in Profilin 1 KO (50) and tbl mice
(51). Motor behavioral genotyping in Pur-SCT KO mice showed
significant impaired motor coordination and motor learning abil-
ities (20): KO mice held a bar for a shorter time, spent longer
climbing a wire mesh, and displayed insignificant improvements
of rotarod latencies after repeated training. These abnormalities
were replicated in SCT KO and SCTR KO mice (20), suggesting
that Purkinje-derived SCT and SCT–SCTR axis were indispensable
for motor behavioral controls.

This study supported the role of SCT in potentiating Purkinje
neuron inhibitory transmission as previously reported (17). In
this working model, SCT was endogenously produced from Purk-
inje neurons (52) following cytosolic calcium peak. It then func-
tioned as a retrograde messenger, binding on presynaptic basket
neurons, and induced inhibitory neurotransmitter GABA release
(17). Other possible mechanisms still existed, however, as recent
finding suggested that SCT suppressed intracellular trafficking of
potassium channel Kv1.2 in both basket cell axonal terminals and
Purkinje neuron dendrites (49). These reduced Kv1.2 ion currents
led to presynaptic GABA release (53) and post-synaptic facilita-
tion of parallel fiber–Purkinje neuron long-term depression (LTD)
(54). Therefore, SCT worked via both pre- and post-synaptic
pathways to modulate inhibitory transmission of Purkinje neu-
rons (Figure 1E). In addition, SCT was also found in DCN (20),
which were under inhibitory innervation of Purkinje neurons and
sent output transmissions to premotor area in brain stem. Thus,
SCT may mediate cerebellar transmission at multiple levels to
accomplish motor behavioral control. Besides electrophysiological
effects, SCT also affected cerebellar neurogenesis as that in hip-
pocampal neurons. Supporting evidences included neural protec-
tion of cerebellar granular cell progenitors against ethanol toxicity
(55) and behavioral phenotyping with later onset of cerebellar-
related neural reflexes in Pur-SCT KO juveniles (20). Further
studies are required to describe in vivo neural developmental
profiles under the application or deprivation of SCT.

FUTURE PERSPECTIVES: THE FULL PARADIGM OF SCT IN
NEUROBEHAVIORAL REGULATIONS
Our current knowledge has established SCT as a pleiotropic neu-
rohormone in behavioral modulations as summarized in Figure 1.
These studies, however, are far from complete as SCT’s entry routes
to CNS, its functioning sites, and cellular mechanisms largely
remained unknown. As mentioned above, peripheral SCT can
directly stimulate CVO neurons without crossing the blood–brain
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barrier (BBB) or activating vagal afferent to inhibit food intake.
On the other hand, the possibility of SCT to cross the BBB has also
been reported (56) by transmembrane diffusion (57). In addi-
tion to peripheral sources, SCT is produced also from multiple
central neurons, for example, in hypothalamus (12) and cere-
bellum (52). Within the CNS, SCT may reach its target sites by
axonal transport. The multiple routes of SCT in affecting central
functions are supported by the observation that either of ICV, IV,
IP, or even intranasal administration of SCT (48) could induce
behavioral changes.

Secretin’s precise functioning sites and mechanisms can be
investigated by more behavioral experiments, conditional KO ani-
mals, and in vivo neurophysiological studies. Firstly, the more
robust and site-specific behavioral test can help to locate SCT-
mediated neurons. One example is eye-blink conditioning, which
is closely related to LTD at parallel fiber–Purkinje cell synapse
(58). Secondly, Sct or Sctr gene can be turned-off in a spatial- or
temporal-specific manner by various Cre–Loxp models. As each
behavior involves multiple neurons, cell-specific KO models can
better elucidate sources and functional sites of SCT. Temporal-
specific KO models, on the other hand, play an irreplaceable role
in studying developmental effects of SCT. Lastly, we recommend
the usage of in vivo electrophysiological and imaging techniques
to study the real-time neural activity when animals are perform-
ing behavioral tasks. This should help us to establish more valid
link between cellular pathways and behavioral phenotypes. By
all these advanced methods, behavioral paradigms modulated by
SCT could further be elaborated. These results can help us to
better understand neurobehavioral modulations and to develop
potential drug candidates against various behavioral disorders.
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