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Imbalances in energy regulation lead to metabolic disorders such as obesity and diabetes.
Diet plays an essential role in the maintenance of body energy homeostasis by acting not
only as energy source but also as a signaling modality. Excess energy increases energy
expenditure, leading to a consumption of it. In addition to glucose, mammals utilize short-
chain fatty acids (SCFAs), which are produced by colonic bacterial fermentation of dietary
fiber, as a metabolic fuel. The roles of SCFAs in energy regulation have remained unclear,
although the roles of glucose are well-studied. Recently, a G-protein-coupled receptor deor-
phanizing strategy successfully identified GPR41 (also called free fatty acid receptor 3
or FFAR3) as a receptor for SCFAs. GPR41 is expressed in adipose tissue, gut, and the
peripheral nervous system, and it is involved in SCFA-dependent energy regulation. In this
mini-review, we focus on the role of GPR41 in host energy regulation.
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INTRODUCTION
Dysfunctional energy regulation leads to a variety of metabolic dis-
orders, including obesity (1, 2). Mammals utilize not only glucose
as the main energy source, but also short-chain fatty acids (SCFAs),
such as acetate, propionate, and butyrate, which are produced by
colonic bacterial fermentation of dietary fiber, in a significant pro-
portion of their daily energy requirement (3, 4). The connections
between gut microbiota, energy homeostasis, and the pathogene-
sis of metabolic disorders are now well-established (5, 6). In 2003,
several groups reported that two orphan G-protein-coupled recep-
tors (GPCR), namely GPR41 (also called free fatty acid receptor
3 or FFAR3) and GPR43 (also called free fatty acid receptor 2 or
FFAR2), are activated by SCFAs (7, 8). GPR41 is reported to couple
with Gi/o protein. It is also reported that GPR41 is expressed in adi-
pose tissue, the gut, and the peripheral nervous system. Moreover,
GPR41 is reported to be involved in energy regulation in response
to SCFAs produced from the gut microbiota. In the following
sections, we discuss the role of GPR41 in host energy regulation.

ADIPOSE TISSUE
In adipose tissue, the role of GPR41 in the release of leptin, a
polypeptide hormone with pleiotropic effects on appetite and
energy metabolism, is the subject of much discussion. Gpr41
mRNA is known to be expressed in human (7–9) and mouse (10)
adipose tissue. Xiong et al. showed that propionate-stimulated
activation of GPR41 increases the release of leptin (10). In mice,
oral administration of propionate increased plasma leptin levels
(10). Furthermore, in experiments using Ob-Luc cells, leptin

secretion was increased through overexpression of exogenous
Gpr41 and was decreased by siRNA-mediated knockdown of
Gpr41 (10). Another group showed that propionate-dependent
increase in Leptin mRNA and protein levels could be inhibited by
pretreatment with the Gi/o protein inhibitor, pertussis toxin (9).

However, Hong et al. (11) were unable to detect Gpr41 mRNA
in differentiated 3T3-L1 cells or in mouse white adipose tissue
(subcutaneous, perirenal, mesenteric, and epididymal fat pads)
(11), even though they used the same PCR primers as Xiong
et al. (10). We also previously reported that Gpr41 expression
could not be detected in mouse adipose tissue by quantitative RT-
PCR or in situ hybridization analysis (12, 13). In contrast, Gpr43
mRNA, rather than Gpr41 mRNA, is expressed in mouse adipose
tissues (11, 13, 14). Zaibi et al. showed that acetate, rather than
butyrate, stimulates leptin secretion by mesenteric adipocytes in
wild-type mice (14). GPR41 is activated equally by propionate
and butyrate, whereas GPR43 is preferentially activated by propi-
onate rather than butyrate (7). Because of the difference in ligand
preference between GPR41 and GPR43, it was suggested that
SCFA-stimulated leptin secretion is mediated by GPR43, rather
than GPR41 (14). To clarify these discrepancies, the generation
of adipose tissue-specific Gpr41 or Gpr43 knockout mice will be
invaluable.

GUT
In the gut, GPR41 regulates host energy balance by modulating
gut motility. By using in situ hybridization analysis, Samuel et al.
showed that mouse Gpr41 mRNA is expressed in cells with the
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morphologic appearance of enteroendocrine cells (15). The body
weight and fat pad weight of Gpr41 knockout mice are signifi-
cantly reduced compared to wild-type mice, and this difference
is abolished in germ-free conditions (15). These results indicate
that the function of GPR41 depends on the SCFA produced by
the fermentation of microbiota. Tazoe and colleagues also found
the human Gpr41 is expressed in peptide YY (PYY)-containing
enteroendocrine cells (16). Recently, several groups have con-
firmed Gpr41 mRNA expression in mouse intestinal L cells, which
secrete incretin hormones such as GLP-1 and PYY (17, 18). Samuel
and colleagues (15) showed that co-colonization of human gut-
derived microbiota in germ-free mice led to significantly increased
circulating levels of PYY, which suppresses gut motility. Further-
more, this increase was significantly suppressed in their Gpr41
knockout littermates, although Gpr41 deletion did not affect the
amount of chow consumption. Intestinal transit rate was signif-
icantly faster in Gpr41 knockout mice compared with wild-type
littermates; this phenotype was abolished in germ-free conditions.
Moreover, the SCFA content in feces of Gpr41 knockout mice was
significantly higher than in wild-type mice. These results led the
authors suggest that the decreased PYY level in Gpr41 knock-
out mice increases gut motility, which leads to reduced SCFA
absorption and consequently a lean phenotype (15).

In contrast, Bellahcene et al. reported a male-specific increase
in body fat mass of Gpr41 knockout mice when compared to their
wild-type littermates; this was observed when mice were fed with
either a low- or high-fat diet (19). Deletion of Gpr41 had no effect
on the amount of food intake by either sex, regardless of the type
of diet. This included mice of the same age (10 weeks) as those
used in the report by Samuel and colleagues (15). The differences
in sex hormones could explain why the energy expenditure of
female Gpr41 knockout mice is similar to that of wild-type mice.
Nevertheless, it is also possible that reduced SCFA absorption due
to increased gut motility is responsible for the alleviation of obe-
sity in Gpr41 knockout mice (19). Alternatively, reduced energy
expenditure in Gpr41 knockout mice might be caused by reduced
sympathetic activity (see Peripheral Nervous System below).

The altered body weight of Gpr41 knockout mice may be
due to differences in genetic backgrounds, or due to the precise
constitution of gut microbiota in each animal cohort.

Tolhurst et al. suggested that SCFAs could directly enhance the
release of incretin hormones such as GLP-1 and PYY from L cells in
gut. In Gpr41 knockout mice, glucose-stimulated GLP-1 secretion
was lower than wild-type mice (17); this was confirmed by Nøhr
et al. using the GPR41-selective agonist, AR420626 (18). Consis-
tent with these findings, oral glucose tolerance was impaired in
Gpr41 knockout mice (17).

PERIPHERAL NERVOUS SYSTEM
GPR41 regulates host energy balance by modulating sympathetic
activity and intestinal gluconeogenesis. By using in situ hybridiza-
tion and quantitative RT-PCR analysis, we have reported that
Gpr41 mRNA is abundantly expressed in the mouse sympathetic
ganglion (12). Gpr41 knockout mice exhibit a retardation of sym-
pathetic nerve growth. However, further studies will be required
to elucidate the precise molecular mechanism by which GPR41
modulates sympathetic nerve differentiation and growth.

FIGURE 1 | Effects of SCFAs in energy utilization mediated by GPR41.
Under “fed” conditions, SCFAs are produced in the gut by bacterial
fermentation of dietary fiber. SCFAs increase energy utilization by two
mechanisms. One is to activate the sympathetic nervous system by
stimulating GPR41 in sympathetic ganglia, leading to an increase in energy
expenditure. The other is to activate inducing intestinal gluconeogenesis by
stimulating GPR41 in the nerve fibers of the portal vein, leading to an
improvement of glucose tolerance. In contrast, the β-HB produced in the
liver under “fasting” conditions suppresses the activation of GPR41.

In adult wild-type mice, energy expenditure and heart rate are
increased by propionate administration; these effects are abolished
in Gpr41 knockout mice (12). The effect of propionate on the heart
rate is inhibited by pretreatment with the β-adrenergic recep-
tor blocker propranolol, but not by the nicotinic acetylcholine
receptor blocker hexamethonium. These results indicate that pro-
pionate activates the sympathetic nervous system (SNS) via GPR41
at the ganglionic level (12). The function of GPR41 in sympa-
thetic ganglia is consistent with the lower energy expenditure and
obese phenotype of Gpr41 knockout mice reported by Bellahcene
et al. (19). Furthermore, our laboratory showed that propionate
increased the release of norepinephrine from sympathetic neurons
through the GPR41–Gβγ–phospholipase C (PLC) β 3-ERK1/ 2-
synapsin 2 (synaptic vesicle-associated phosphoprotein) pathway
(12, 20). In addition, we found that β-hydroxybutyrate (β-HB) has
a potent antagonistic effect on GPR41 (12). β-HB is a ketone body
that can be produced in the liver under ketogenic conditions such
as starvation, low-carbohydrate dietary intake, and diabetes. β-HB
suppressed propionate-induced sympathetic activation in both
primary cultured sympathetic neurons and mice (12, 20). How-
ever, acetoacetate, another major ketone body, had no significant
effect (12).

Recently, another group demonstrated that SCFA-mediated
GPR41 activation improves glucose tolerance by inducing intesti-
nal gluconeogenesis via a gut–brain neural circuit (21). They found
Gpr41 mRNA in the nerve fibers of the portal vein (21). The
SCFA-fed rats exhibited improved glucose tolerance compared
with standard-diet-fed rats. This effect of SCFA was abolished
by portal denervation with capsaicin. Propionate infusion in the
portal vein activated jejunum G6Pase, the rate-limiting enzyme
for gluconeogenesis. On the other hand, β-HB, an antagonist of
GPR41, slightly decreased G6Pase activity when infused alone and
reversed propionate-mediated induction of G6Pase (21).
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These findings suggest that GPR41 functions as an energy
sensor in the peripheral nervous system to maintain energy
homeostasis (Figure 1).

CONCLUDING REMARKS
It is clear that GPR41 plays a critical role in host energy regulation,
although not all of the intracellular signaling cascades that are
required for GPR41 function have been elucidated. We envisage
that future studies of the interaction between gut microbiota and
GPR41, with a particular focus on SCFAs, will provide a more com-
plete picture of GPR41 biological function. Given the beneficial
effects that SCFA-dependent GPR41 activation on regulation of
metabolism, we suggest that modulating GPR41 by using synthetic
ligands will be a promising therapeutic strategy for the treatment
of metabolic disorders.
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