
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 17 July 2014

doi: 10.3389/fendo.2014.00097

The trade-off between dietary salt and cardiovascular
disease; a role for Na/K-ATPase signaling?
Joe X. Xie1, Anna Pearl Shapiro2 and Joseph Isaac Shapiro3*
1 Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
2 Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
3 Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA

Edited by:
Harvey Craig Gonick, University of
California Berkeley, USA

Reviewed by:
Gert Jansen, Erasmus MC,
Netherlands
Harvey Craig Gonick, University of
California Berkeley, USA
Neal S. Bricker, University of California
Los Angeles School of Medicine, USA

*Correspondence:
Joseph Isaac Shapiro, Department of
Medicine, Joan C. Edwards School of
Medicine, Marshall University, 1600
Medical Center Drive Suite 3408,
Huntington, WV 25701, USA
e-mail: shapiroj@marshall.edu

It has been postulated for some time that endogenous digitalis-like substances, also called
cardiotonic steroids (CTS), exist, and that these substances are involved in sodium han-
dling. Within the past 20 years, these substances have been unequivocally identified and
measurements of circulating and tissue concentrations have been made. More recently,
it has been identified that CTS also mediate signal transduction through the Na/K-ATPase,
and consequently been implicated in profibrotic pathways. This review will discuss the
mechanism of CTS in renal sodium handling and a potential “trade-off” effect from their
role in inducing tissue fibrosis.
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INTRODUCTION
Increased dietary sodium chloride (NaCl) intake has been impli-
cated in cardiovascular and renal diseases for some time (1), and
this implication has recently become fairly solid (2). This relation-
ship between dietary sodium intake and cardiovascular disease is
demonstrated in several large scale studies, such as the interna-
tional study of salt and blood pressure (INTERSALT) (3) and the
dietary approaches to stop hypertension (DASH) (4). With this
relationship so demonstrated, understanding the specific mecha-
nisms underlying the deleterious effects of NaCl becomes timely
and relevant to clinical management.

This review will focus on one of the factors linking dietary
NaCl to cardiovascular and renal disease. We will specifically dis-
cuss the role of digitalis-like factors, also known as endogenous
cardiotonic steroids (CTS), which function as innate inhibitors of
the Na/K-ATPase (5). Although the existence of these endogenous
factors has been controversial (6–8), this is no longer the case.
Some of these recent breakthroughs include the chemical identi-
fication of specific CTS in experimental animals and humans (9,
10), establishment of normal and pathological concentrations for

Abbreviations: Ca, calcium; Cl, chloride; CTS, cardiotonic steroid; EGFR, epider-
mal growth factor receptor; EMT, epithelial-mesenchymal transformation; ERK,
extracellular signal-regulated kinase; FAK, focal adhesion kinase; Fli-1, friend
leukemia integration 1 transcription factor; GFR, glomerular filtration rate; Grb2,
growth factor receptor-bound protein-2; MBG, marinobufagenin; Na, sodium;
Na/K-ATPase, sodium potassium ATPase; NAC, N-acetyl cysteine; NHE3, sodium-
hydrogen exchanger 3; PI(3)K, phosphoinositide 3-kinase; PKC, protein kinase C;
PLC, phospholipase C; ROS, reactive oxygen species; SERCA, sarcoplasmic endo-
plasmic reticulum calcium ATPase; Shc, Src homology-2 domain containing protein;
SOS, Son of Sevenless protein; TCB, telecinobufagin; TGF, transforming growth
factor.

these substances as well as defining possible roles for CTS in ani-
mal models of and human disease states (11–13). We would also
stress that the discovery of the cell signaling functions of the Na/K-
ATPase and its role in molecular cellular biology (14–16) has also
been quite relevant to this field. Here, we will emphasize the role
of trade-off with respect to CTS signaling and Na homeostasis.

RENAL SALT REABSORPTION AND THE EVIDENCE FOR
“THIRD FACTOR”
The microscopic architecture of the kidney involves the attach-
ment of vascular filtering units called glomeruli with tubules
that modulate the quantity, electrolytes, and acid-base content
of tubular fluid, which ultimately becomes urine. Simplistically,
the tubules can be roughly broken down into proximal, where
60–80% of all Na and water reabsorption occur and distal, the
nephron segments responsible for the fine tuning of what is
excreted as urine.

Clearly the renin–angiotensin–aldosterone system, vasopressin
and the sympathetic nervous system are critically important in
mammalian volume regulation as well as to the maintenance of
blood pressure in the face of a hypovolemic insult (17). How-
ever, it is very clear that perturbations in these systems cannot
explain natriuretic responses to acute or chronic expansion of
blood volume (18). This point was first demonstrated in 1961
in a classic paper by de Wardener and colleagues (19). This study
showed that natriuresis induced by saline infusion occurred even if
renal perfusion pressure and glomerular filtration rate (GFR, fac-
tor 1) and aldosterone concentrations (factor 2) were prevented
from changing. This so called “third factor,” which we now under-
stand is (are) CTS, was a “hot” topic in the 1960s and 1970s,
and was even incorporated into Guyton’s model for circulatory
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homeostasis (20). Cort and Lichardus observed that a circulat-
ing substance in animals subjected to carotid artery occlusion
induced natriuresis in different mammals and inhibited sodium
transport in frog skin (21). Buckalew showed that an ultrafil-
trate of volume-expanded dogs inhibited sodium transport in
toad bladders. They went on to propose that the active substance
was an inhibitor of the Na/K-ATPase (22). Gonick and coworkers
showed that volume expansion in rats, in fact, produced a chem-
ical which did inhibit the ATPase activity of rat kidneys (11). In
1980, Gruber and Buckalew noted that elevated levels of circu-
lating digoxin-like material was seen in volume-expanded dogs
(23). Other important contributions were made in the labora-
tory of Schrier and de Wardener over the next decade (24–26).
However, doubt as to the validity of Na/K-ATPase inhibitors devel-
oped during the 1980s and 1990s because of inconsistencies in
the reported results. In particular, prevailing CTS assays were
based on cross-reactivity of CTS with antibodies to digoxin. This
cross-reactivity of the commercially employed anti-digoxin anti-
bodies to CTS varied considerably (27–32). Probably, the most
important inconsistency was that digitalis did not appear to be
natriuretic in normal subjects (33). On this background, atrial
(and brain) natriuretic peptide(s) were discovered, were obvi-
ously natriuretic, and their concentrations (which could be easily
measured) were increased in volume-expanded states (34–38).
Undoubtedly, these points deflected interest from the study of
CTS. However, enthusiasm was renewed in the recent past for
the following reasons. First, several CTS have been isolated from
experimental animals and humans and chemically characterized.
Specifically, marinobufagenin (MBG) as well as telecinobufagin
(TCB) have been isolated from plasma and urine (9). Ouabain
has also been identified although there is still some debate as
to whether this is ouabain or something distinct, which also
reacts to anti-ouabain antibodies (10, 39). The concentrations of
ouabain (or ouabain like compound) and MBG appear to be in
the range of 200–2700/min in humans, depending on whether
disease is present (5, 40, 41). Plasma levels of TCB and bufalin
are less well defined at present. Also, quite importantly, a sig-
nal cascade has been identified, which does not appear to involve
enzymatic inhibition of the Na/K-ATPase. This signaling pathway
involves CTS binding of the caveolar Na/K-ATPase in the com-
pany of Src and the EGFR and the elaboration of a signal cascade,
which involves the generation of reactive oxygen species (ROS)
(14, 16). Both of these concepts have been extensively reviewed
(42–44).

“TRADE-OFF” CONCEPT, A HISTORICAL PERSPECTIVE
The concept of “trade-off” plays an extremely powerful role in
physiology. This is perhaps best described by Neal Bricker who pos-
tulated that in renal disease, the hormonal forces driving nephrons
to maintain fluid and electrolyte homeostasis would be compli-
cated by the untoward consequences of these elevated hormones
mediating other effects, essentially creating the signs, symptoms,
and pathophysiologic changes associated with the uremic syn-
drome (45, 46). As sodium (Na) handling is so critical to volume
balance, electrolyte homeostasis, and acid-base status, it is not
surprising that Bricker formulated this hypothesis to involve the
Na/K-ATPase.

GFR

Hormone

Solute Excretion

Solute Homeostasis

Restored

Untoward Systemic

Effects

of Hormone

Solute Excretion

FIGURE 1 |The schematic in figure demonstrates Bricker’s proposed
trade-off mechanism by which physiologic changes such as reduced
glomerular filtration rate (GFR) leading to the increased generation of
a hormone can produce the desired effect in solute homeostasis, but
with untoward effects in renal and other tissues.

Bricker speculated that an inhibitor of the Na/K-ATPase would
circulate in increased concentration as a response to decreased
GFR in order to maintain Na homeostasis (45). This inhibition
would subsequently lead to decreased renal Na reabsorption, hence
the maintenance of Na homeostasis (Figure 1). Unintended effects
of higher concentrations of this Na/K-ATPase inhibitor would be
responsible for some of the symptoms, signs, and abnormal labo-
ratory results seen with chronic renal failure as well as potentially
contribute to the progressive nature of chronic kidney disease (45,
47–50). As we will detail in this review, a potential consequence
of increases in natriuretic hormone levels, specifically elevated
CTS levels may be the profibrotic effects of these molecules (51).
Before we address this, however, it may be useful to briefly dis-
cuss the evolution of our understanding of the Na/K-ATPase (45,
46), which had been described and characterized several decades
before (52).

DISCOVERY OF THE Na/K-ATPase, ITS ROLE IN SIGNALING
CASCADES VS. ION TRANSPORTATION
The Na/K-ATPase was discovered by Skou in 1957 (53). This
protein was demonstrated to be responsible for the electrogenic
exchange of sodium and potassium (54). The Na/K-ATPase, also
called the sodium pump, is present in all living cells (55). Although
there has been some evolutionary modification of the sodium
pump, in all multicellular animal cells, the sodium pump con-
sists of (at least) a dimer of an alpha and beta subunit and
is considered a member of P-type ATPases (43). Different iso-
forms of the alpha and beta subunits have been identified and
are believed to have functional differences, a topic which has
been extensively reviewed (56). Genes encoding the alpha-1 and
alpha-2 isoforms reside on the chromosome 1 whereas alpha-3
appears to be coded for on chromosome 19 and alpha-4 (present
only in sperm) is mapped to chromosome 13 in humans (57).
The act of pumping sodium and potassium is accompanied by
changes in conformation and phosphorylation state (43). It also
requires energy provided by the hydrolysis of ATP as was ini-
tially identified also by Skou (58).The work of Skou was ulti-
mately matured into the currently accepted Post-Albers model
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FIGURE 2 | A schematic illustrating the involvement of cardiotonic
steroid (CTS) – induced Na/K-ATPase signal cascade initiated by the
Na/K-ATPase mediated activation of Src tyrosine kinase and
subsequent downstream targets eventually leading to the
development of reactive oxygen species (ROS). Specifically, we
postulate that in the microdomain of caveolae, the Na/K-ATPase functions
as a scaffolding protein, interacting with CTS and changing conformation so
as to active Src. Src then trans-activates the EGFR which leads to a signal
cascade involving FAK, Shc, Grb2, and SOS resulting in the generation of
ROS which in turn activates additional Na/K-ATPase molecules as well as

causes downstream activation of ERK as well as effects on the nuclear
transcription (43). ERK activation has effects on both L-type channels and
possibly the Na/Ca exchanger with net effect to increase cytosolic Ca in
some tissues (15). Nuclear effects in myocardial tissue include
downregulation of SERCA transcription and translation (70). Abbreviations:
EGFR, epidermal growth factor receptor; FAK, focal adhesion kinase; Shc,
Src homology-2 domain containing protein; Grb2, growth factor
receptor-bound protein-2; SOS, son of sevenless protein; ERK,
extracellular-signal-regulated kinase; SERCA, sarcoplasmic/endoplasmic
reticulum calcium ATPase.

for Na/K-ATPase pumping function (43). The alpha 1 subunit
of the Na/K-ATPase has 11 transmembrane domains as well as
several well defined cytosolic regions referred to as the N, P, cat-
alytic, and A domains (43). Interestingly, the development and
maintenance on an evolutionary scale of caveolin and Src binding
motifs, which are scattered throughout these cytosolic domains
appeared to occur between single celled animal structures and
slime mold (59).

In the late 1990s, the laboratory of Dr. Zijian Xie added a signif-
icant wrinkle to this understanding. While it is certainly possible
that some signaling does occur through the chemical inhibition
of the plasmalemmal Na/K-ATPase, it does appear that other
mechanisms must be proposed to explain the signaling. In fact,
it appears that the specific Na/K-ATPase molecules responsible for
the greatest amount of signaling in response to the binding of CTS
are actually not involved in pumping sodium or potassium (60).
In the late 1990s, Dr. Xie and colleagues observed that in neonatal
cardiac myocytes, ouabain caused increases in ROS measured with
CMDCF (14). It was further noted that some of the downstream
effects of ouabain were blocked by N -acetyl cysteine (NAC) or vit-
amin E. These increases in ROS could be demonstrated even when
cytosolic calcium was maintained low by removal of extracellular
calcium (16). It was further noted that Ras activation appeared to
be necessary to see increases in ROS (16). Other studies determined
that interactions between the Na/K-ATPase and Src appeared to
initiate the signal cascade. The alpha 1 subunit of the Na/K-ATPase
binds Src and appears to maintain it in an inactive state. However,

binding a CTS appears to alter the Na/K-ATPase structure allowing
Src to became activated which, in turn, trans-activates the EGFR,
and begins the signal cascade which causes increases in ROS (61–
64). The Na/K-ATPase–Src complex appears to function similar to
a receptor tyrosine kinase. Downstream activation of PLC, PI(3)K,
and PKC has also been established (15, 65–68) (Figure 2). The role
of ROS in pump signaling has been extensively reviewed elsewhere
(14, 16, 51, 69).

Although inhibition of the Na/K-ATPase is certainly one possi-
ble mechanism by which digitalis and related molecules might“sig-
nal,” it is important to emphasize that even transporting epithelia
typically have a redundancy of Na/K-ATPase pumping units given
that cytosolic Na levels live within a range ideally suited to regulate
Na/K-ATPase activity. While it is possible that certain compart-
ments of the cell see higher local concentrations of Na with modest
inhibition of Na/K-ATPase pump activity, we emphasize that phys-
iological and even pharmacological concentrations of digitalis do
not demonstrably increase cytosolic Na concentrations in physi-
ologically relevant preparations (42). We would further point out
that most studies, including those from our lab, which demon-
strate inhibition of the Na/K-ATPase by circulating substances do
so with strategies to control for the cytosolic Na concentration
(71–74).

Approximately one decade ago, a further analogy of Na/K-
ATPase signaling to the signaling of receptor tyrosine kinases
was established with the observation that CTS binding to
the Na/K-ATPase in renal tissues triggers endocytosis of
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the CTS-Na/K-ATPase complex (75). Subsequent studies have
demonstrated that this internalization is associated with endoso-
mal accumulation of the Na/K-ATPase and its caveolar signaling
partners, and that the process requires both caveolin (and caveolar
structure) and clathrin (76, 77). We have gone on to demonstrate
that this process appears to also regulate the expression of the api-
cal sodium transporter,NHE3,as well as impact renal salt excretion
in vivo (78–80). Recent data from the laboratory of Dr. Lingrel
utilizing novel genetic manipulations of the different alpha 1 iso-
forms in mice indicate that it is the alpha 1 subunit, which can
be considered the functional receptor for these CTS. Interestingly,
the amount of Na/K-ATPase alpha 1 subunit as well as it is affinity
for CTS appear to both positively correlate with the magnitude of
the signaling effect (81–84).

Recently, we have made several observations that bring the con-
sideration of ROS in the context of Na pump signaling in a new
light. First, we found that the Dahl salt-resistant (R) strain of rats
had a natriuretic response to a high salt diet, which did not require
substantial increases in blood pressure (hence the term “salt resis-
tant”) and was accompanied by activation of Src and ERK as well
as redistribution in the renal proximal tubule cells of the basolat-
eral Na/K-ATPase and apical NHE3. This was previously observed
with the wild type Sprague Dawley animals (which were used as
a founder population to generate Dahl R and salt sensitive, S,
rats). In contrast, the Dahl S rats did not have this redistribution.
Isolated proximal tubules from young Dahl R and S rats main-
tained on a low salt diet demonstrated ouabain sensitivity and
insensitivity, respectfully, in terms of Src and ERK activation as
well as redistribution of the NaK-ATPase and NHE3 (85). Mov-
ing back to LLC-PK1 cells, we noted that the signaling observed
with ouabain or other CTS could be duplicated by exposure to
an ROS generation system (Glucose Oxidase + Glucose), blocked
by anti-oxidants (e.g., N -acetyl cysteine) and was accompanied by
specific carbonylation of two amino acids in the A domain por-
tion of the alpha 1 subunit (86). Given that the proximal tubules
of Dahl S rats demonstrate considerable carbonylation of plasma
proteins including the Na/K-ATPase prior to exposure to high salt
in vivo or ouabain in vitro (unpublished data), this suggests that
chronic oxidation of the Na/K-ATPase may lead to impaired sig-
nal transduction in the proximal tubule and a form of oxidant
“fatigue.” Perhaps of even greater importance, the protein oxi-
dation seen with both ouabain and glucose oxidase/glucose was
found to be reversible in a biochemical rather than a physiolog-
ical sense since removing ouabain or glucose oxidase/glucose led
to the return to non-carbonylated proteins regardless of whether
new protein synthesis or protein degradation were inhibited. In
addition, signaling through the Na/K-ATPase appeared to impact
the amount and degree of protein carbonylation induced by glu-
cose oxidase/glucose suggesting a role for the Na/K-ATPase as
both a receptor and amplifier of ROS (86). We had seen in vivo
data supporting this concept in earlier studies discussed below.
Although a feed-forward system (which this appears to be) sug-
gests ongoing amplification, it seems clear that endocytosis of this
molecular machinery would be an effective termination mecha-
nism (87). Whether the oxidatively modified Na/K-ATPase is a
trigger for endocytosis is a topic we are actively investigating at
present.

On this background, it is useful to consider whether a CTS
is effectively natriuretic in vivo. This discussion began many years
ago regarding the CTS pharmacological agent, digoxin, or digitalis,
which was noted to effect natriuresis in patients with congestive
heart failure but not normal subjects (88). Currently, there remains
debate as to whether a CTS such as ouabain is, in fact, natriuretic
(89). Although clearly this is important in understanding the phys-
iological relevance of the molecular mechanisms described above,
we would caution the reader that the answer to this question may
be different depending on the physiological state of the experi-
mental animal or subject at the time of the study (80, 85, 90).
That said, we would certainly concede that a correlation between
renal Na/K-ATPase signaling or inhibition and natriuresis may not
always be present.

ROLE IN CARDIAC AND RENAL FIBROSIS WITH
EXPERIMENTAL RENAL FAILURE
Concern that CTS signaling through the Na/K-ATPase might be
profibrotic grew from several studies. First,we observed that exper-
imental renal failure produced cardiac fibrosis in both rat and
mouse (91). We would stress that human uremic cardiomyopathy
is believed to also be complicated by fibrosis. When we performed
active immunization prior to induction of experimental renal fail-
ure, the cardiac fibrosis was markedly attenuated. In a separate
group of animals, infusion of MBG designed to achieve similar
plasma levels of MBG as seen with experimental renal failure also
caused cardiac fibrosis. Evidence for Na/K-ATPase signaling (e.g.,
Src and ERK activation) was see in both animals subjected to
experimental renal failure or MBG infusion whereas active immu-
nization against the MBG-Albumin conjugate attenuated this in
the experimental renal failure group (51, 70, 91, 92). In addition,
blockade of Na/K-ATPase signaling with active (or passive) immu-
nization as well as pharmacologic blockade (see below) dramati-
cally attenuated the oxidant stress in tissues seen with experimental
renal failure (51, 91, 93, 94). Based on these animal studies, we
next examined how CTS affected fibroblasts grown in culture. We
noted that CTS (e.g., MBG, ouabain) induced increases in fibrob-
last collagen production as evidenced by either increased labeled
proline incorporation or procollagen expression determined with
Western blot. Evidence for Na/K-ATPase signaling (e.g., Src or
ERK activation) could be observed as well. Moreover, ROS scav-
enging or pharmacological or molecular biological Src inhibition
prevented increases in proline incorporation and collagen produc-
tion seen with CTS. An increase in transcription was identified as
we saw substantial increases in both mRNA for collagen as well as
luciferase in cells transfected with a reporter construct following
exposure to CTS. However, we did not see evidence for increased
TGF beta signaling in these cells although pharmacological antag-
onism of the TGF beta system did block CTS stimulated collagen
production (51). We next examined how CTS affected Fli-1 expres-
sion, stimulated by work performed by Watson and colleagues.
Fli-1 is a negative regulator of collagen synthesis (95), and we
noted that CTS induce decreases in Fli-1 expression in several
types of fibroblasts (cardiac, renal, and dermal). We also observed
that decreases in Fli-1 appear to be necessary for MBG to induce
increases in collagen. Additional work showed that CTS induce
translocation of PKCdelta from the cytosol to the nucleus in a PLC
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dependent manner. It appears that the translocation of PKCdelta
causes Fli-1 phosphorylation and subsequent degradation (94).

These studies next led to work examining the effects of min-
eralocorticoid antagonists. We should first say that Finotti and
colleagues reported 30 years ago that spironolactone and can-
renone were antagonists of ouabain binding to the Na/K-ATPase
(96). We looked at whether this observation was applicable to our
system. In vitro, we saw that both spironolactone and canrenone
could attenuate MBG-induced increases in collagen production
in cardiac fibroblasts. Interestingly, we could not see a substantial
effect of aldosterone on cardiac collagen production. Our in vitro
observations were extended to in vivo studies where we saw that
administration of spironolactone to rats with experimental renal
failure markedly attenuated the observed cardiac fibrosis (94). This
suggests the Na/K-ATPase signaling cascade may be a useful target
for therapeutic drug development.

Further studies have demonstrated that the effects of MBG
(and other CTS) are not specific for cardiac fibroblasts. We have
noted that renal fibroblasts have a very similar response as cardiac
fibroblasts, suggesting a potential pathological role for MBG in
producing renal fibrosis and progressive renal failure. Using MBG
infusion in the rat, we saw that such infusion was associated with
the induction of Snail, a transcription factor known to be involved
in epithelial–mesenchymal transformation (EMT). In LLC-PK1
cells grown in culture, MBG induces EMT in a dose and time
dependent way (97).

TRADE-OFF WITH RESPECT TO CTS
With the aforementioned data, we would suggest that the CTS
signal cascade through the Na/K-ATPase fits the concept of “trade-
off.” Specifically, CTS concentrations increase in response to vol-
ume expansion and/or salt loading. These CTS mediate increases
in urinary Na excretion, maintaining Na homeostasis, but the

CTS

Increased Sodium Load

Natriuresis

Cardiac and Renal

Fibrosis

Hypertension

Adverse

Cardiovascular

Outcomes

Sodium Homeostasis

High Fat Diet, Obesity

Metabolic Syndrome, etc.

Inducing Oxidant Stress

FIGURE 3 |The schematic shown in figure illustrates the balance
between the natriuretic effect of cardiotonic steroids (CTS) and the
trade-off of inducing Na/K-ATPase-mediated signal transduction
leading to cardiac and renal fibrosis, eventually contributing to the
development of hypertension and adverse cardiovascular outcomes. In
addition, chronic metabolic states resulting in the production of reactive
oxygen species (ROS) creating oxidative stress may exacerbate the
progression of cardiac and renal disease.

endocytosis machinery may fatigue with ongoing stimulation.
Moreover, there are other consequences of the elevated CTS
concentrations, namely vasoconstriction and hypertension along
with fibrosis, which was described above (Figure 3). The fibro-
sis may lead to further renal insensitivity in terms of natriuresis,
and the combination of events cascading to produce progressive
cardiovascular disease.

FUTURE DIRECTIONS
As we better understand the role of CTS signaling through the
Na/K-ATPase, several therapeutic targets come to mind, which
may provide novel and effective therapy for different chronic
diseases. First, there is the interaction of the CTS with the Na/K-
ATPase. This has been addressed experimentally in our laboratory
with both active and passive immunization (51, 91, 93, 98) as
well as pharmacologically with several different approaches (94,
99). Other groups have developed different substances which can
loosely describe as “ouabain antagonists” which we have recently
reviewed (5). Rostafuroxin has been very well characterized and
appears to have potential for the treatment of hypertension (100,
101). Recently, our laboratory has begun to develop strategies to
alter the interaction between the Na/K-ATPase alpha 1 subunit and
Src (102). However, it is clear that the aforementioned signaling
cascade affords a number of possible sites for intervention includ-
ing but not limited to the generation of ROS (69), activation of
Src and activation of ERK. Unfortunately, these molecular targets
will also fit under the general rubric of “trade-off.”Although some
aspects of CTS and signaling through the Na/K-ATPase may be
maladaptive as we have discussed in this review, it is almost cer-
tain that that inhibition of this CTS-Na/K-ATPase pathway may
have deleterious effects which need to be navigated.
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