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Thyroid hormone (TH) transport into the brain is not only pivotal for development and differ-
entiation, but also for maintenance and regulation of adult central nervous system (CNS)
function. In this review, we highlight some key factors and structures regulatingTH uptake
and distribution. Serum TH binding proteins play a major role for the availability of TH
since only free hormone concentrations may dictate cellular uptake. One of these pro-
teins, transthyretin is also present in the cerebrospinal fluid (CSF) after being secreted by
the choroid plexus. Entry routes into the brain like the blood–brain-barrier (BBB) and the
blood–CSF-barrier will be explicated regarding fetal and adult status. Recently identified
TH transmembrane transporters (THTT) like monocarboxylate transporter 8 (Mct8) play a
major role in uptake ofTH across the BBB but as well in transport between cells like astro-
cytes and neurons within the brain. Species differences in transporter expression will be
presented and interference of TH transport by endogenous and exogenous compounds
including endocrine disruptors and drugs will be discussed.

Keywords: blood–brain-barrier, transthyretin, deiodinase, flavonoids, endocrine disruptors, Mct8, L-type amino acid
transporter, organic anion transporters

MOLECULES INVOLVED IN TH TRANSPORT IN THE BRAIN
The hydrophobic but amphipathic charged amino acid-derived
thyroid hormones (TH) are carried and distributed by several
binding proteins from their site of production, storage, and secre-
tion, the thyroid gland, to their target tissues including the brain.
In human blood, four major proteins, thyroxine-binding globulin
(TBG), transthyretin (TTR), albumin, and apolipoprotein B 100
(ApoB100), bind more than 99% of the circulating TH T4, T3, and
3-iodo-thyronamine (3-T1AM). In contrast, only TTR has been
found as one of the main proteins in CSF where it is produced and
directionally secreted by choroid plexus (CP) epithelial cells into
the liquor, which does not contain the high affinity TBG or the
high capacity albumin TH binding proteins. Whether 3-T1AM, a
TH-derived biogenic amine and its high affinity binding protein
ApoB100 occur in CSF, remains to be studied.

Thyroid hormone enters the brain either directly via the blood–
brain barrier (BBB) or indirectly via the blood–CSF-barrier (B–
CSF-B), with the BBB route as the major entry path for the
prohormone T4. T4 is locally metabolized by selenoenzymes to
either active T3 via Type 2 deiodinase (Dio2) or inactivated by
Type 3 deiodinase (Dio3), to yield reverse T3 (rT3). rT3, devoid of
T3-like action, might be involved in developmental regulation of
neuronal migration guided by astrocytes and glial cells (1). Dio2 is
mostly expressed in astrocytes and tanycytes while Dio3 is mainly
found in neurons. Whether Type 1 deiodinase (Dio1), catalyzing
both 5′-deiodination (activation of T4 to T3) and 5-deiodination
(inactivation of T4 and T3) is species-dependently expressed in
brain remains controversial (2, 3). Dual entry paths of TH and cell
type-specific expression of functional Dio enzymes in the brain
raise the issues of (i) coordinated transport of active TH and
TH metabolites between various brain cell types, (ii) organized
communication between peripheral, thyroid-derived, and brain

TH, and (iii) demands, supply, and disposal of TH precursors,
metabolites, and active TH.

Adequate TH supply for the brain is of eminent importance
during development but not less relevant in the differentiated adult
organism with its changing hormonal requirement for metabolic
and environmental adaptation.

Components controlling TH availability and action have been
described in brain stem and progenitor cells (4) and TH recep-
tor (TR) expression in the human brain has been demonstrated
decades ago (5). Already during the first trimester human brain
expresses various TH transporters (see Table 1), Dio enzymes, TR-
isoforms, and isotypes in a development- and cell type-specific
manner. Later in human pregnancy during weeks 17–20, endothe-
lial cells and astrocytes organize the BBB [see Ref. (6)]. Endothe-
lial cells express the TH transporter organic anion transporter
polypeptide 1C1 (OATP1C1), which limits brain access of TH,
especially T4. At this time point fetal thyroid already starts pro-
ducing TH, thus disconnecting the fetal TH responsive system
from the maternal source of TH, but still depending on further
adequate maternal iodide supply.

Facilitated uptake and release of TH by TH transmembrane
transporters (THTT) is essential for their intracellular availabil-
ity. TH have to cross multiple membranes in order to reach their
nuclear and mitochondrial receptors. Especially, the entry of TH
into the brain via the BBB and their subsequent distribution
throughout all brain areas poses challenges in form of membranes
of different cell types to be crossed. The complex interaction and
communication between astrocytes and neurons, demonstrated
for metabolic as well as synaptic processes, is in place regarding TH
metabolism and distribution throughout the brain. Therefore, the
specific spatio-temporal distribution of TH in different areas and
cell types of the brain is required during embryonic development
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Table 1 | Summary of expression profiles of thyroid hormone transmembrane transporters (THTT) in various cell types of the brain of several

species.

Transporter Species Areas of the brain References

Slc16a2 (Mct8) Mouse Protein: cortex, hippocampus, cerebellum, choroid

plexus, hypothalamus, tanycytes, vessels

(7–9)

Human Protein: cortex, hippocampus, choroid plexus,

hypothalamus, tanycytes

Widespread expression in fetal brain (6–8, 10–12)

Rat Protein: hippocampus, tanycytes, vessels (8, 11, 13)

Chicken Transcript: brain (14, 15)

Siberian hamster Transcript: hypothalamus (16)

Rabbit Transcript: hypothalamus (17)

Zebrafish Transcript: brain (18, 19)

Fathead minnow Transcript: cortex, cerebellum, hypothalamus (20)

Xenopus tropicalis Transcript: brain (21)

Slc16a10 (Mct10) Mouse Transcript: cortex, hippocampus, choroid plexus (7, 9)

Human Protein: cortex, choroid plexus, hypothalamus (7, 10, 22)

Rabbit Transcript: hypothalamus (17)

Fathead minnow Transcript: cortex, cerebellum, hypothalamus (20)

Xenopus tropicalis Transcript: brain (21)

Slc7a5 (Lat1) Mouse Transcript: hippocampus, choroid plexus (7, 9)

Protein: cortex, cerebellum

Human Transcript: cortex (7, 12)

Xenopus tropicalis Transcript: brain (21)

Slc7a8 (Lat2) Mouse Protein: cortex, hippocampus, cerebellum, choroid

plexus

(7, 9)

Human Protein: adult: cortex, hippocampus, choroid plexus;

fetal: microglia

(7, 12)

Slco1c1 (Oatp14) Mouse Transcript: cortex, hippocampus (7–9, 23)

Protein: choroid plexus, tanycytes, vessels

Human Transcript: cortex (7, 8, 10, 12, 22)

Protein: choroid plexus, hypothalamus

Rat Protein: choroid plexus, vessels (8, 24)

Chicken Transcript: brain (14, 15)

Rabbit Transcript: hypothalamus (17)

Fathead minnow Transcript: cortex, cerebellum, hypothalamus (20)

Xenopus tropicalis Transcript: brain (21)

If available, protein data is preferably mentioned. Transcript data is only mentioned if no or only minimal protein data is available.
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and differentiation, but also for adult maintenance and regulation
of brain activity and metabolism.

ROLE OF TH BINDING AND DISTRIBUTOR PROTEINS FOR TH
AVAILABILITY TO BRAIN CELLS
Tissue and cellular uptake depends on free TH concentrations in
blood and both free T4 and free T3 are available for cellular uptake
by THTT, while TH bound with high affinity to serum distributor
proteins TBG and TTR is assumed not to be directly available for
cellular uptake during organ perfusion by blood (25). In contrast,
TH bound to albumin with high capacity but low affinity is easily
liberated based on the high TH off-rate constants shown in liver
perfusion (26, 27). While peripheral sensory neurons internalize
TTR in megalin-dependent manner in context of neuritogenesis
in vitro (28), evidence is missing, that TH–TTR ligand–protein
complexes are taken up by neurons, astrocytes, or glial cells via
receptors for these proteins expressed on brain cells. Such “trojan
horse” mechanisms of ligand transmembrane transfer have been
demonstrated during fetal development for several protein bound
(pro-)hormones and vitamins such as TH, retinol, vitamin D3,
and steroid hormones (29–31) for several peripheral target tis-
sues including adult kidney but not yet for the fetal brain. Such
mechanisms, mediated by megalin or cubilin receptors, might pro-
vide entry routes for hormones bypassing the concept of the “free
hormone hypothesis” (32) and use of THTT.

Independent from such a mechanism, the high expression of
evolutionary conserved TTR in CP and meninges of the devel-
oping and adult brain offers a further exchange compartment
for TH, especially T4, a high affinity ligand of TTR. During fetal
brain development, the prominent voluminous CP is required for
proper CNS growth and differentiation. TTR is the only TH bind-
ing protein expressed and directionally secreted into CSF. TTR,
first described in CSF and subsequently in plasma, constitutes up
to 20% of CSF protein and its secretion into CSF starts already in
fetal week 8 before its hepatic production (28). Whether its ade-
quate function as binding and distribution protein for two major
morphogen precursors, T4 and RBP-bound retinol, is essential or
redundant, remains to be established. Lack of a major phenotype
of TTR gene inactivation in the mouse came as a surprise with
respect to normal brain development, HPT axis, TH homeostasis,
and retinol-dependent functions (33). These mice grew normal,
were fertile and had normal tissue T4 levels though plasma TH
concentrations were significantly reduced. Apparently, lack of TTR
can be compensated by a shift of TH binding to rodent TBG, which
has lower TH affinity compared to human TBG (34). TH metabo-
lism and T3-responsive gene expression of HPT axis and liver was
unchanged in TTR knock-out mice. These observations either sug-
gest a minor role for TTR-dependent TH binding and directional
transport into CSF for proper brain development (35) or indicate
existence of still unknown compensatory mechanisms active in
absence of TTR during mouse development. At least this mouse
model did not support the hypothesis that hormone binding and
distribution proteins such as TTR in case of TH directly con-
tribute to cellular hormone uptake as proposed by Pardridge (36)
in distinction to several observations by the group of Willnow (31).

In contrast to these observations in the TTR knock-out mouse
model are some findings on effects of endogenous or exogenous

ligands of TTR, such as (iso-)flavonoids and endocrine disrup-
tors, interfering with TH homeostasis in circulation, in CNS, and
during fetal development. Several natural flavonoids, secondary
metabolites of plants contained in our regular diet, avidly bind to
TTR and displace TH from TTR binding based on their structural
resemblance to TH. Resulting elevated free TH blood concentra-
tions increase renal TH loss (transiently), elevate TH tissues levels,
and enhance TH transfer via the placenta into fetal circulation
including the fetal brain. In vitro as well as rodent animal studies
provided evidence for interference of flavonoids and other TTR
binding endocrine disruptors with CP-derived TTR-mediated TH
transfer into CSF and the brain, resulting in disturbed homeostasis
of brain TH levels and bioavailability (37).

More studies are needed analyzing (i) interference by nat-
ural and synthetic flavonoids with TH transport, (ii) action of
endocrine disrupters such as the flame retardants polybrominated
diphenylethers (PBDE) during neuronal stem cell development
(38), or (iii) impact of ligands and pharmaceuticals, structurally
related to TH (39) and interfering with THTT function (40).
Recently, molecular actions and biological functions have been
initially characterized for so far “neglected or minor” endogenous
TH metabolites such as acetic acid- (Tetrac, Triac) or amine-
derivatives (3-T1AM) of TH (41) and 3,5-T2, the latter abundantly
present in the CNS (42). This raises the questions, (i) whether they
are active players in TH-regulated brain function during devel-
opment and in the adult organism, (ii) whether and how these
metabolites are generated and transported in the brain, and (iii)
how their mode of action interferes with classical TH action, which
is mainly mediated via T3-liganded TR. New modes of action may
be envisaged for these TH metabolites at the plasma membrane, on
cytosolic signaling cascades, or on other subcellular compartments
of brain cells (43–45).

THTT AMONG SPECIES
Many transporters have been shown to transport TH. The most
specific THTT is the monocarboxylate transporter 8 (Mct8;
Slc16a2). Up to date, it is the only transporter with TH as the
exclusive substrate. All other transporters out of the classes of
monocarboxylate transporters (MCT),organic anion transporting
polypeptides (OATP), and l-type amino acid transporters (LAT)
also transport other substrates like amino acids. Most data about
the presence and localization of THTT has been generated in mice
and humans. The following table summarizes expression of the
most researched THTT Mct8, Mct10, Lat1, Lat2, and Oatp1c1 in
various vertebrate species (Table 1).

Research focus has been on the only THTT identified to cause
a human disease so far, i.e., Mct8. MCT8 is widely expressed in the
human fetal brain in several cell types (Table 1). Strong transcript
and protein signals were observed in the cortical plate and subplate,
as well as in ventricular and subventricular zones. Throughout fetal
development CP epithelial cells and ependymal cells express high
levels of MCT8 (6–8).

Comparably high MCT8 expression has been reported for
monkey brain, which expresses OATP1C1 and LAT1 albeit at
much lower levels (46). MCT8 mutations cause a severe syndrome
of psychomotor retardation, the Allan–Herndon–Dudley syn-
drome (AHDS) (47–50). This syndrome also comprises endocrine
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manifestations with high circulating T3, low T4, and normal to
elevated TSH levels. The mouse model for Mct8-deficiency repli-
cates the endocrine phenotype, but it does not mimic the psy-
chomotor retardation of the human syndrome (7, 51, 52). Since
AHDS is not comparable to the classical phenotype of congen-
ital hypothyroidism or cretinism, it is of great importance to
identify THTT in brain areas of human brains, as well as in the
model organism used for analyzing TH transport to be able to
understand phenotypic variations between these models. Other
animal models apart from Mct8-deficient mice will be needed to
evaluate the involvement of THTT in basic brain development.
Recently, zebrafish has been evaluated for developmental effects of
Mct8-deficiency. Significant species differences with respect to cell
types, time point, dynamics, and regulation of THTT especially
in the developing but also the adult brain have been reported
for humans, monkey, chicken, rodent, fish, and amphibian brain
(Table 1). For example, we demonstrated the expression of an
additional transporter, Lat2, in mouse neurons during develop-
ment, which is not expressed in human developing neurons (7).
Research on double knock-out mice of Mct8 with either Mct10
or Oatp1c1 yielded valuable data on the interplay and possible
compensation between these transporters (53, 54). Simultaneous
deletion of Mct8 and Oatp1c1 lead to the ablation of both T3

and T4 transport across BBB. Symptoms of brain hypothyroidism
were intensified underlining the importance of THTT for proper
brain development and function. Further research analyzing the
developmental expression of THTT and comparing effects of loss
of function among different species will yield important infor-
mation on the temporal effects of these transporters on brain
development.

STRUCTURAL ASPECTS OF THTT
Thyroid hormone transport proteins MCT8, MCT10, OATP1C1,
as well as LAT1 and LAT2 belong to different subfamilies within
a huge protein superfamily of transport proteins, the major facil-
itator superfamily, MFS (55). General insights into the function
of such transmembrane proteins can be derived from pathogenic
mutations, e.g., in MCT8 from patients affected by AHDS (56).

Substrate recognition by transport proteins is fundamentally
different from ligand binding in, e.g., nuclear receptors: while
receptors are optimized for high affinity binding of their ligands,
this would be detrimental for transporters, as these have to release
their substrates easily. Most receptors have one binding site, while
THTT should have at least two – one accessible from the exterior
and one accessible form the interior of the cell. These two bind-
ing sites may overlap and differ only according to conformational
changes associated with transport. The question is thus, how can a
transporter achieve specificity and at the same time prevent tight
binding?

With the exception of MCT8, all other THTT transport addi-
tional substrates, namely amino acids, bile acids, or conjugated
steroids. It should therefore be of particular interest to com-
pare how different protein families have adapted to transport TH
and whether the substrate–protein interactions are similar or not.
Experimental structures are not available for any of the THTT.
Homology models based on experimental structures have been
created for OATP1C1 (57), MCT8 (39), and LAT1 (58).

The homology model of rat Oatp1c1 was based on three high
resolution crystal structures of bacterial transport proteins, lac-
tose permease LacY, glycerol–phosphate transporter GlpT, and
multidrug resistance protein EmrD. Authors achieved similar
models with all templates and highlighted sequence identities
between Oatp1c1 and templates below 10%. Conserved amino
acids between Oatp1c1 and bacterial transporters were known to
be functionally important in LacY and GlpT and may therefore
not be involved in substrate specificity. While this work nicely
shows that Oatp1c1 conforms to the overall structure of the bac-
terial transporters, there is no information on how specificity is
established (57).

Chemical probes reactive with cysteines (p-chloromercury
benzenesulfonate, pCMBS) or histidines (diethylpyrocarbonate,
DEPC) were used to modify MCT8 and to test its activity after-
ward (59, 60). This approach suggested that Cys481, Cys497, and
His192 may be close to the substrate translocation channel. Muta-
tion to Ala of these critical amino acids rendered MCT8 resistant
to pCMBS and DEPC.

We created a MCT8 homology model based on the inward-open
conformation of GlpT and identified two charged amino acids
within the transmembrane domains, Asp498 and Arg445, which
are essential for transport (39). The homology model predicted a
salt bridge between both residues. We suggested interaction of TH
carboxyl and amino groups with these amino acids during trans-
port, since TH analogs lacking the carboxyl or amino groups are
not transported by MCT8 (39). The salt bridge was later indepen-
dently confirmed by charge reversal mutants (61). MCT8 accepts
only L-T3, L-T4, L-rT3, and L-3,3′-T2 as substrates (39). Based on
the occurrence of a His–Arg clamp pinching T3 in the T3 receptor
β structure, we tested the hypothesis that a His–Arg pair spaced by
about 15Å could serve the same purpose in MCT8 (62). Mutation
of His192 (which may work together with Arg445 in an outward
open conformation) clearly demonstrated His192 participation in
substrate recognition (63). Interestingly, His192 corresponds to
Gln88 in MCT10, a closely related homolog of MCT8 unable to
transport T4 (64). Mutation of His415 and Arg301, conserved in
MCT8 and MCT10, affected transport kinetics as expected from
substrate interactions (63). These findings corroborate the useful-
ness of the MCT8 homology model and suggest how the substrate
is bound by MCT8 – at least in the inward-open conformation.

Recently, a LAT1 homology model was presented based on
the crystal structure of bacterial agmatine antiporter AdiC (58).
Iodotyrosines were identified in silico as LAT1 substrates and con-
firmed experimentally. Interestingly, while carboxy and amino
groups are present in all LAT1 substrates, modeling suggests that
these functions are sampled by the transporter by backbone polar
contacts instead of side chain contacts as predicted in MCT8 (58,
63). Different transporters may have adapted different strategies
to recognize iodinated TH substrates.

THTT IN CELL TYPES OF THE BRAIN
Analyses of brain regions provide important insight into THTT
distribution. Immunohistochemical staining for Mct8 in mouse
brains did not only show typical neuronal staining patterns, but
also staining in astrocytes, CP, and tanycytes (7). However, most
techniques like in situ hybridization or immunohistochemistry
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do not allow for a real cell type-specific resolution and detec-
tion. Effects of TH uptake into neurons vs. astrocytes can not be
dissected in complete brains. Primary cultures of mouse brain
cells facilitate selection of a single cell type and the evaluation
of effects of THTT deletion. Primary cultures of mouse neurons,
astrocytes, and microglia can be used to detect THTT expression
and functionality, as well as the reaction of specific cells on differ-
ent conditions of TH access. Genetically engineered mouse lines
can be used to create cell cultures originating from wildtype and
transporter-deficient mice. Employing these cultures, we detected
expression of Mct8, Lat1, and Lat2 transcripts and proteins in
neurons and astrocytes, while Lat2 is additionally expressed in
microglia (9, 65). Functional uptake studies in Mct8- and Lat2-
deficient primary neuronal and astrocyte cell cultures demon-
strated involvement of both transporters in T3 and T4 uptake into
neurons and astrocytes (7, 9). The fraction of TH uptake medi-
ated by transporters of the Mct, Lat, and Oatp groups can also
be monitored by utilizing inhibitors of these transporters. Trans-
port by Mct can be inhibited with bromosulphophtalein (BSP),
while 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH)
is a Lat inhibitor and probenicid inhibits transport by Oatps.
Uptake studies with these inhibitors gave very similar results on
the involvement of these groups of transporters in TH uptake to
genetic inactivation (7, 9).

Up to date, all concepts of interaction and cooperation between
neurons and astrocytes imply astrocytes as providers of energy,
communication and T3 for neurons. However, it has been shown
that neurons are generally able to carry out all functions needed
for energy metabolism by themselves. It is therefore quite possible
that neurons are able to convert T4 to T3 by expressing functional
Dio2. Cell type-specific animal models and primary cell cultures
are of great importance to study the interaction of neurons and
astrocytes regarding transfer of TH metabolites and regulation of
deiodinases independent of TH uptake at the BBB.
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