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Free fatty acids (FFAs) are fundamental units of key nutrients. FFAs exert various biologi-
cal functions, depending on the chain length and degree of desaturation. Recent studies
have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs), acti-
vate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also
known as free fatty acid receptor 4) is activated by unsaturated medium- to long-chain FFAs
and has a critical role in various physiological homeostasis mechanisms such as incretin
hormone secretion, food preference, anti-inflammation, and adipogenesis. Recent studies
showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose
tissue and regulates the whole body energy homeostasis in both humans and rodents.
Genetic study in human identified the loss-of-functional mutation of GPR120 associated
with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as
a novel risk factor for diet-induced obesity. This review aims to provide evidence from the
recent development in physiological function of GPR120 and discusses its functional roles
in the regulation of energy homeostasis and its potential as drug targets.
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INTRODUCTION
Free fatty acids (FFAs) are basic components of biological struc-
tures, precursors of various mediators, and play important roles as
essential nutrients (1). During the past decade, however, a number
of studies revealed that FFAs also act as key signaling molecules to
regulate a number of physiological functions through G-protein-
coupled receptors (GPCRs) (1–4). The superfamily of GPCRs
includes at least 800 seven-transmembrane receptors that have
diverse physiological and pathological functions. GPCRs are the
most successful targets of drug (5). Of interest, FFAs act as lig-
ands of some GPCRs. FFAs can be classified depending on their
chain length as short-chain fatty acids (SCFAs), which have 1–6
carbon chain length; medium-chain fatty acids (MCFAs, 7–12 car-
bon chain length); and long-chain fatty acids (LCFAs), which have
more than 12 carbon chain length. Some of non-esterified FFAs
directly regulate important biological processes such as energy
homeostasis via their corresponding receptors (6–10). The LCFA
receptor GPR40 (also known as FFAR1), SCFA receptors GPR41
(FFAR3) and GPR43 (FFAR2) were identified in 2003 (11–18). In
2005, we successfully deorphanized and identified GPR120 [also
known as free fatty acid receptor 4 (FFAR4)] as a FFAs receptor
(FFARs), which is activated by unsaturated MCFAs and LCFAs
(19). These GPCRs are widely expressed in the body and con-
tribute to maintain systemic energy homeostasis under changing
nutritional conditions. Among these FFARs, GPR120 emerged as
an important checkpoint in regulating energy homeostasis (6, 8).
Previous studies also showed that GPR120 has been implicated in
several key processes including the release of incretin hormone,
anti-inflammation, food preference, glucose homeostasis, insulin
sensitivity, and adipogenesis (6, 8, 19–24). These factors interrelate
to regulate systemic metabolic energy and nutritional homeosta-
sis under physiological and pathophysiological conditions. Hence,

in this review, we attempt to summarize and discuss the recent
advances in research regarding the roles of GPR120.

TISSUE DISTRIBUTION OF GPR120
GPR120 is widely expressed in various tissues and cell types
including intestine, macrophages, adipose tissue, taste buds, brain,
pancreas, lung, thymus, and pituitary (2, 6, 8). Hence, GPR120
has multiple functions in homeostatic regulation of systemic
metabolism and inflammation depending on this diverse tissue
distribution. Furthermore, GPR120 is co-localized with not only
glucagon-like peptide 1 (GLP-1) in the colon and circumval-
late papillae taste bud cells (19, 25, 26), but also with ghrelin
(27) and α-gustducin in the duodenum and type II taste bud
cells, respectively (28, 29). GPR120 was also reported to be co-
expressed with other FFARs, such as GPR40 in STC-1 intesti-
nal cells (19) and GPR43 in the proximal colon in mice (29).
These characteristics of expression patterns and co-localization
might reflect the physiological functions of GPR120 as described
below.

INTESTINE
GPR120 is expressed in the intestines of humans as well as mice.
Furthermore, the enteroendocrine cell line STC-1 also expressed
GPR120 endogenously. We have previously shown that GLP-1-
expressing enteroendocrine cells in the colon were expressing
GPR120 in both rodents and human (19, 20, 25). Secretion of
GLP-1 and cholecystokinin (CCK), both known as incretin hor-
mones and involved in the regulation of feeding behaviors, energy
metabolism and bodyweight (30–32), was induced by FFAs stimu-
lation from enteroendocrine STC-1 cells (33). The administration
of FFAs into the murine colon stimulated GLP-1 secretion and
increased plasma level of insulin (19). Furthermore, we have
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found that the knockdown of GPR120 expression by siRNA
inhibited the FFAs-induced [Ca2+]i response and incretin hor-
mones secretion in STC-1 cells. These data highly suggested that
GPR120 indeed mediate and stimulate incretin hormone secre-
tion in vivo. In addition, K cells, which are found in the mucosa
of the duodenum and the jejunum of the gastrointestinal tract
and also synthesize gastric inhibitory peptide (GIP), also express
GPR120 (34). Interestingly, recent reports indicated that GPR120
was co-localized with the orexigenic peptide, ghrelin in duodenal
cells in vivo, and FFAs stimulation reduced ghrelin secretion in
the MGN31 ghrelinoma cell line (35). Furthermore, Gong et al.
revealed that addition of GW-9508, a GPR120 chemical ago-
nist, inhibited the secretion of ghrelin from ghrelin-producing
stomach ghrelinoma (SG-1) cells. They also showed that SG-1
cells highly expressed GPR120 endogenously and the inhibitory
effect of GW-9508 on ghrelin secretion was blocked by siRNA
against GPR120 in SG-1 cells. Furthermore, GW-9508 treat-
ment reduced plasma ghrelin level in vivo (36). These reports
indicate that the decrease of postprandial ghrelin is induced at
least partially by LCFAs included in foods via GPR120. Given
the effects on GLP-1, CCK, and ghrelin secretion, the stimu-
lation of GPR120 might regulate appetite and systemic energy
homeostasis.

MACROPHAGES
GPR120 was found to be expressed in monocytic RAW267.4 cells
and primary proinflammatory M1-like macrophages (6). The
activation of GPR120 by ω-3 LCFAs, such as docosahexaenoic
acid (DHA) and alpha-linolenic acid (α-LA), exerts broad of
anti-inflammatory effects in these cells, all of which were abol-
ished by siRNA against GPR120. These ω-3 LCFAs are identi-
fied as anti-inflammatory fatty acids in the tissue-specific and
systemic levels (9). Oh et al. clearly showed that ω-3 LCFAs
exert anti-inflammatory effects through GPR120. In vitro exper-
iments revealed the molecular mechanism underlying ω-3 FFAs-
mediated anti-inflammatory effects. Stimulation of GPR120 by
ω-3 LCFAs abolished lipopolysaccharide (LPS)-induced phos-
phorylation and activation of IκB kinase (IKK) and c-Jun N-
terminal kinase (JNK) in macrophages. Recruitment of β-arrestin
2 (β-arr2) and following the GPR120–β-arr2 complex internal-
ization is induced by the activation of GPR120. Tumor necrosis
factor-α (TNF-α) and toll-like receptor 4 (TLR4) widely medi-
ate proinflammatory cascades. In addition, tumor growth factor
β (TGF-β) activated kinase 1 (TAK1) interacting with TGF-β acti-
vated kinase 1 binding protein 1 (TAB1) mediate downstream
inflammatory effects via activation of NF-κB and JNK. The inter-
nalized GPR120–β-arr2 complex interacts with TAB1 and inhibits
the interaction between TAB1 and TAK1, leading to the inhi-
bition of the downstream proinflammatory pathways. Further
in vivo experiments demonstrated that administration of ω-
3 FFAs ameliorated tissue inflammation and thereby improved
systemic insulin sensitivity in wild type (WT) mice. The gene
deficiency of GPR120 abolished these effects of ω-3 FFAs (6,
9, 37). These results showed that the activation of GPR120
by ω-3 FFAs exerts potent insulin sensitizing and anti-diabetic
effects in vivo by the repression of macrophage-induced tissue
inflammation.

ADIPOSE TISSUE
GPR120 was also found to be expressing endogenously in
adipocyte and adipose tissue, but not detected in pre-adipocyte
(8, 22). Furthermore, GPR120 expression was increased accord-
ing to the lipid accumulation in the cells during induction of
adipocyte differentiation in 3T3-L1 cells (22). Knockdown and
gene deficiency of GPR120 by siRNA suppressed the expression
of adipogenic genes and lipid accumulation in 3T3-L1 cells and
mouse embryonic fibroblast, respectively (8, 22). These data indi-
cated that GPR120 might be an adipogenic receptor and might
play important roles in adipocyte differentiation and maturation.
GPR120 mRNA expression was increased in subcutaneous, epi-
didymal, and mesenteric adipose tissue of high fat diet (HFD)-fed
mice (22). Moreover, we have shown that GPR120 expression
in human adipose tissue was significantly higher in obese indi-
viduals than in lean controls (8), suggesting that the expression
of GPR120 could be enhanced by the accumulation of dietary
lipid in both rodent and human. Our previous study revealed
that GPR120-deficient mice fed HFD developed obesity, which
was accompanied with decreased differentiation and lipogenesis
in adipocyte. Furthermore, severe fatty liver, enhanced hepatic
lipogenesis, increased fasting glucose, and impaired responses to
insulin and glucose tolerance were observed in HFD-fed GPR120-
deficient mice. Gene expression analysis in adipose tissue and liver
revealed the molecular basis underlying obesity and insulin resis-
tance of GPR120-deficient mice. Our data showed that HFD-fed
GPR120-deficient mice showed a significantly decreased expres-
sion of adipogenic gene Fabp4 as well as the key lipogenic gene
Scd1. In addition, macrophage marker genes were also increased
in adipose tissue, an indication of adipose tissue inflammation. In
the liver, on the other hand, the key lipogenic gene Scd1 expres-
sion was significantly increased. Insulin signaling-related genes
were significantly decreased in both adipose tissue and the liver of
HFD-fed GPR120-deficient mice. Furthermore, phosphorylation
of IRβ and IRS1 in white adipose tissues and IRS1 and IRS2 in
the liver, all of which are regulators of insulin-stimulated glucose
uptake, were significantly decreased. In addition, Oh et al. reported
that GPR120 induced a translocation of glucose transporter 4 in
3T3-L1 adipocytes and directly increased glucose uptake (6). Tak-
ing together, these data demonstrated that GPR120 acts as a lipid
sensor in vivo and plays a critical role in sensing dietary fat to
regulate glucose and lipid metabolism.

TASTE BUDS
Recent studies strongly suggested that oral perception of dietary fat
was involved in the detection of taste, in addition to texture and
olfaction, of LCFAs (38). GPR120 was reported to be expressed
in taste bud type II cells (28). Matsumura et al. showed the co-
localization of GPR120 with phospholipase-Cβ2 and α-gustducin
in the taste buds by double immunostaining. Cartoni et al. further
showed the expression of GPR120 in circumvallate papillae (CV)
sections by immunohistochemical analysis (39). Short-access test
using a lick meter showed that gene deficiency of GPR120 abol-
ished the preference for fatty acids but not for other tastes. These
data suggest that the upregulation of GPR120 in the taste buds
could induce an excess intake of lipid, leading to obesity. Mar-
tin et al. also reported that GPR120 and GLP-1 were found to
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FIGURE 1 | Schematic diagram of the physiological function of GPR120 related to the energy homeostasis.

be co-localized in mouse taste cells from mouse CV (26). Studies
using GPR120 selective agonist and isolated mouse CV indicated
that GPR120 might be responsible for LCFAs-mediated release of
GLP-1 from CVs and might thus contribute to the high palatability
of foods rich in both fats and sugars. A recent study further showed
that human primary taste bud cells were expressing GPR120 (40).
High concentrations of linoleic acid induced [Ca2+]i signaling via
GPR120 and CD36 in human and mice primary taste bud cells.
These reports strongly suggested that GPR120 expressed in taste
buds plays an important role in sensing fat taste, contributing to
the food intake.

OTHER TISSUES
GPR120 is also expressed in other tissues and cells. Cintra et al.
performed immunostaining analysis and found that GPR120 co-
localized with neuropeptide Y centrally in the arcuate nucleus
(41). An acute injection of ω-3 and ω-9 FFAs-induced GPR120–
β-arr2 complex and β-arr2–TAB1 complex as well as inhibited the
interaction between TAB1 and TAK1, leading to the reduction of
the downstream proinflammatory pathways in the hypothalamus.
Furthermore, Wellhauser et al. analyzed the molecular mecha-
nisms to modulate hypothalamic function via GPR120 in vitro
using a hypothalamic neuronal model, rHypoE-7 cells, isolated
from the rat. They showed that the anti-inflammatory effect of
DHA was significantly reduced by siRNA against GPR120 in

rHypoE-7 cells (42). Numbers of studies showed inflammatory
response in the hypothalamus in reaction to excessive nutrients
contributes to diet-induced obesity and type 2 diabetes mellitus
(43–45). Hence, the anti-inflammatory effect mediated by GPR120
in hypothalamus might play an important role in the regulation
of systemic energy homeostasis.

Recently, Xhao et al. showed mRNA and protein expression
of GPR120 in human and rat pancreas (46). Immunohistological
analysis demonstrated that GPR120 is co-localized with CD68, the
specific marker of macrophages, and with CD34 and CD117, the
markers of interstitial cells in the pancreas. Furthermore, Stone
et al. generated Gpr120-knockout/β-galactosidase knock-in mice
and showed the distribution of GPR120 (23). Immunofluores-
cence analysis demonstrated the co-localization of GPR120 with
somatostatin, suggesting that GPR120 is selectively expressed in
islet delta cells. They also demonstrated that treatment of GPR120
selective antagonist inhibited glucose induced somatostatin secre-
tion from isolated islet. Additionally, GPR120-deficiency abolished
this effect. Hence,GPR120 expressed in pancreatic delta cells might
regulate somatostatin secretion. Further studies are required in
order to reveal the functional roles of GPR120 in pancreas.

GENETIC CONTRIBUTION TO TYPE 2 DIABETES
We previously reported two non-synonymous mutation p.R270H
and p.R67C by exon sequencing of GPR120 in obese and lean
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European subjects. Following in vitro experiments revealed that
the p.R270H mutant, which significantly associated with obe-
sity, lacked the ability to transduce LCFAs signal, contrary to
the p.R67C mutant, which was not associate with obesity. Taken
together these human and GPR120-deficient mice, the dysfunc-
tion of GPR120 leads to obesity in both mice and human (8).
In addition, the systems genomics approach to identify genes for
type 2 diabetes showed that GPR120 was placed in the top 16 of the
ranked list (47). Taneera et al. reported that GPR120 expression in
human islets was positively correlated with both secretion and con-
tents of insulin as well as lower HbA1c levels. These data suggested
that GPR120 might have a protective role on human islet.

CONCLUSION
GPR120 regulates the metabolic homeostasis by sensing LCFAs
provided by dietary fat in several tissues (Figure 1). Further inves-
tigations to uncover the precise physiological functions of GPR120
are mandatory for a better understanding of systemic nutrient
metabolism and energy homeostasis. The current studies suggest
that GPR120 activation might have positive outcomes on health.
Hence, GPR120 might be a promising pharmaceutical target for
the treatment of metabolic diseases.
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