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The emergence of obesity as a pandemic
has led to increased efforts to determine the
causes for this disorder and potential new
treatments to prevent and/or treat those
affected by it. The mechanisms under-
lying the ontogeny of obesity are com-
plex. They involve an interaction between
a genetic predisposition to this disorder
and environmental conditions that catalyze
the development of an obese phenotype
(1). It has become evident that stress may
be a strong environmental factor leading
to metabolic changes that lead to obe-
sity. Stress is a concept coined to describe
the state that is generated when physio-
logical or psychological wellbeing is chal-
lenged. It is associated with physiological
and behavioral responses considered adap-
tive and conducive to reduce or to cope
with the challenges posed by the stressor
(2, 3). Continuous stressful events, how-
ever, result in pathological states including
some of the same conditions associated
with obesity (4, 5). In particular, contin-
uous social stressors result in increased
body weight and abdominal fat deposi-
tion, insulin resistance, and cardiovascu-
lar disease (2, 4). The underlying mecha-
nisms and relevant potential treatments are
less well documented. Nevertheless, there
is increasing evidence to suggest that psy-
chological stressors represent a homeosta-
tic challenge, and as such have a strong
impact on the brain systems associated
with homeostatic control (3).

It is clear that the brain plays a criti-
cal role in the regulation of energy bal-
ance, and as such represents a target for
therapeutic intervention. For instance, cells
groups within the hypothalamic arcuate

nucleus (ARC) are important for regulating
food intake and energy balance, whereas
a number of regions across the mesolim-
bic dopaminergic system and ascending
noradrenergic inputs stemming from the
brain stem regulate hedonic and short term
feeding responses (6). In spite of this, few
viable therapeutic options have emerged
from these advances particularly given the
fact that many drugs targeting these sys-
tems have substantial side effects. Here, we
propose that the periphery, and in particu-
lar the gut, may represent an alternate tar-
get for treatments that can reduce obesity,
particularly in the face of stress.

REGULATION OF FOOD INTAKE AND
ENERGY BALANCE BY GUT HORMONES
Recent evidence has brought greater atten-
tion to the gut as a key contributor to the
regulation of food intake and energy bal-
ance. The gut serves both as a sensory organ
for nutrients and can regulate the activity
of brain centers associated with the regula-
tion of food intake and energy balance. One
indication of the importance of the gut–
brain-axis is that gastrointestinal cells serve
as nutrient sensors and produce hormonal
and neural responses to nutrients that tar-
get the brain to modulate food intake and
energy balance (7). A number of experi-
ments have demonstrated that animals can
detect and bar press for intragastric infu-
sions of solutions containing sucrose or fat
infused directly into the gut (7). The pres-
ence of lipids in the gut decreases hepatic
glucose production, linking the gut–brain-
axis with liver function (8).Vagotomy, inhi-
bition of the N -methyl-d-aspartate recep-
tor in the nucleus of the solitary tract,

sympathetic denervation, and blockade of
β2-adrenoceptor abolished the effects of
lipid on the regulation of glucose home-
ostasis (9). Notably, the gut–brain–liver-
axis is disturbed by chronic exposure to
a high fat diet (10). In addition to stim-
ulating the ascending vagus nerve, cells in
the gut signal the brain through a number
of endocrine signals. These include peptide
YY (PYY), neuropeptide Y (NPY), chole-
cystokinin (CCK), oxyntomodulin (OXM),
glucagon-like peptide-1 (GLP1), and ghre-
lin, all of which control appetite and
glucose homeostasis (11–14). While PYY,
CCK, OXM, and GLP1 are anorectic and
some increase energy expenditure, ghre-
lin is a potent orexigenic hormone that
also influences metabolic rate by favoring
the utilization of carbohydrates instead of
lipids as a source of energy, resulting in
increased adiposity and body weight (15).
Given that stressors and the physiologi-
cal responses elicited to cope with them
can generate a substantial energy drain,
it is not surprising that these gut signals
are altered during the stress response, and
hence could represent a novel target to
control stress-induced obesity.

STRESS AND THE GUT–BRAIN-AXIS
The effects of stress on the gastrointestinal
system have been known for a long time,
in particular the effects of stress on gas-
tric motility and on gastric acid secretion.
Continuous stress has been associated with
gastric ulceration and other gastrointesti-
nal disorders like irritable bowel syndrome.
One would presume that, if the gut plays an
important role in the regulation of energy
balance, and if the function of the gut is

www.frontiersin.org July 2014 | Volume 5 | Article 117 | 1

http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/about
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00117/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00117/abstract
http://www.frontiersin.org/people/u/115222
http://www.frontiersin.org/people/u/7780
mailto:chooi.yeng.lee@monash.edu
http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive


Lee and Abizaid Gut peptides and stress-induced obesity

altered during stress, then stress could alter
the function of the gut to promote obesity.
The clearest evidence for this is the effect
of stress on ghrelin secretion. Ghrelin, a
28 amino acid peptide secreted by oxyn-
tic cells in the stomach and upper intestine,
is the only gastrointestinal peptide known
to stimulate food intake and alter energy
expenditure (15, 16). Plasma ghrelin rises
following an acute fast or during periods of
caloric restriction, where the daily intake
of accessible food is lower than the daily
ad libitum access (17). Interestingly, ghrelin
is secreted concomitantly with glucocor-
ticoids following acute and chronic stress
(18, 19) and plasma active ghrelin concen-
trations remain significantly elevated in the
late phase of a stress session (18).

Acute stressors elevate plasma ghrelin
through the activation of the sympathetic
and enteric nervous system, but recent
data suggest that stress-induced ghrelin
secretion may be the result of stimula-
tion of corticotropin releasing hormone
(CRH) receptors in the gut, CRH and
CRH-related peptides such as urocortin-
1 and 2 (20–22). For instance, central
stimulation of CRH1 and CRH2 receptors
produces stress like effect in gastrointesti-
nal motility, gastric emptying, and colonic
propulsion,whereas blockade of CRH1 and
CRH2 receptors prevents some of these
effects (22). Ghrelin secretion in response
to stress may also be related to the effects
of locally released urocortin-1 acting on
CRH2 receptors in the gut (21). This
process may be important acutely, given
that urocortin reduces pain in the gastroin-
testinal tract (23), and given that ghrelin
protects the stomach against gastric ulcer-
ation induced by repeated stressors (24–
26). Problems, however, may arise when
the stressor is chronic. For instance, in
mice, chronic social defeat stress regimen
that lasts 10–21 days, increases ghrelin con-
centrations in concert with increases in
caloric intake and weight gain (27, 28). This
stress paradigm also increases hypothala-
mic expression of orexigenic peptides such
as NPY and Agouti-related peptide, and
plasma biomarkers indicative of obesity, an
effect that persisted for at least 2 weeks after
the stress paradigm was terminated (27). In
contrast, GHSR KO mice or mice receiv-
ing chronic intracerebroventricular infu-
sions of a ghrelin receptor antagonist do

not increase their caloric intake or weight
gain in response to the same stressor (27).
Thus, it is clear that prolonged periods
of social stress can lead to high ghrelin
concentrations that promote higher caloric
intake and alterations in energy expendi-
ture that lead to weight gain and adipose
tissue accumulation.

Another mechanism by which stress-
induced ghrelin secretion is the stimula-
tion of the mesolimbic dopaminergic sys-
tem that is critical for the regulation of
reward seeking behaviors. Ghrelin recep-
tors are found in dopamine neurons within
the midbrain ventral tegmental area (VTA),
and here ghrelin can stimulate dopamine
release and food intake and motivation to
obtain palatable foods, and ghrelin recep-
tor antagonism prevents this (1, 29, 30).
Similarly, mice with genetic deletion of
the GHSR show less preference for high
calorie foods. Selectively restoring ghrelin
receptors in dopamine producing cells can
enhance their preference for these foods
(31, 32). During stress, ghrelin may act in
the VTA to increase appetite, but prolonged
exposure to stressors may ultimately pre-
vent ghrelin from increasing appetite in
this region and ultimately lead to anhe-
donia (28, 31). Given these data, ghre-
lin, urocortin-1, and their respective recep-
tors represent promising potential periph-
eral targets to reduce stress-induced weight
gain and appetite.

Besides ghrelin, other gut peptides are
also secreted and may have an influence in
the stress response, although less is known
about how prolonged periods of stress
affect the secretion of these peptides. Acute
stressors like restraint cause increases in
the peripheral and central release of NPY,
GLP1, CCK, OXM, and motilin (33–35). Of
these, NPY has received special attention
for a number of reasons. NPY neurons in
the ARC are important in the integration
of peripheral signals regulating energy bal-
ance including those coming from the gut,
and project to hypothalamic and extrahy-
pothalamic brain region to stimulate feed-
ing and to alter behavior including those
associated with mood (36, 37). Sympa-
thetic nervous system terminals also release
NPY. Following chronic stress, increased
sympathetic release of NPY leads to inflam-
matory responses, fat angiogenesis, and
adipocyte enlargement and proliferation

ultimately leading to obesity, and these
effects are mediated by Y2 receptors local-
ized in adipocytes (38). It is not known if
gut derived NPY is over-secreted follow-
ing chronic stress, or if it has similar direct
effects on adipocytes as NPY secreted by
sympathetic terminals, but it is not unlikely
that this would contribute to an obesogenic
state.

A hormone that could counter the NPY
effects is GLP1. This peptide is released
by L-cells in the gut and has emerged
as an important player in the regula-
tion of appetite and glucose homeosta-
sis (39). In addition, GLP1 is released
centrally and acts both in the hypothal-
amus and midbrain VTA dopamine cells
to reduce appetite, increase energy expen-
diture, and decrease motivated behaviors
(40–43). Interestingly, GLP1 KO mice have
abnormal hormonal responses to acute
stressors (44). Within the periphery, GLP1
can act locally to protect the gut from
stress-induced gastric acid secretion, and
is important for altering gastric motility
(45, 46). More importantly, GLP1 pro-
tects a number of tissues affected by
chronic stress including pancreatic β-cells,
cardiomyocytes, and kidney cells, while
reducing cytokine induced inflammation
(47–50). Whether chronic stress results in
altered secretion of either of these peptides
is not known, and it may be critical to deter-
mine if this is the case in order to fully
determine the usefulness of these peptides
as potential treatments for stress-induced
pathology.

POTENTIAL FUTURE DIRECTIONS
One of the problems that exist with trying
to counter pathological conditions associ-
ated with stress is that either the stressor
is difficult to remove or the stressor leaves
symptoms that persist in spite of the stres-
sor being removed. In this sense, pharma-
cological interventions derived from gut
peptides and aimed at reducing metabolic
alterations caused by stress may not rep-
resent a “magic bullet” that can reverse
metabolic changes to an optimal state.
These, however, may become interventions
that can help to deal with these prob-
lems in the short term while a patient
finds a way to deal or remove herself from
the stressor. For example, drugs that act
to decrease ghrelin signaling (i.e., ghrelin
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receptor antagonists or inverse agonists)
could be used to decrease stress-induced
caloric intake and weight gain as well
as stress-induced gastric alterations (51,
52). Nevertheless, enthusiasm for these
types of drugs has been hampered by
evidence suggesting that stress-induced
ghrelin secretion is necessary not only to
maintain metabolic homeostasis but also
to prevent stress-induced depressive like
behaviors and reduce anxiety (28, 53, 54).
These data remain unclear, however, as
other studies show that ghrelin is actu-
ally anxiogenic and increases the formation
of fearful memories (55–59). Clearly, an
in depth analysis of these data is required
to explain these paradoxical results, but
at the very least, they suggest that drugs
blocking the ghrelin system could have a
negative impact on mood. Furthermore,
the use of ghrelin receptor antagonists or
inverse agonists may cause undesired side
effects given the ligand independent inter-
action between ghrelin receptors and other
G-coupled protein receptors in the central
nervous system (60).

Perhaps a better alternative would be to
use drugs that decrease acyl-ghrelin levels
without depleting the system from ghre-
lin, or altering GHSR signaling thereby
maintain ghrelin’s protective effects. One
potential target for this is ghrelin-O-
acyltransferase (GOAT, also known as
MBOAT4), an enzyme that is required
for the esterification process that links n-
octanoic acid to the ghrelin molecule (61).
The GOAT enzyme is produced by the same
cells that secrete ghrelin (61), and drugs
that reduce the activity of this enzyme
not only reduce plasma active (acylated)
ghrelin concentrations, but they also cause
a decrease in weight gain and adiposity
in mice (62). Whether GOAT inhibitors
improve metabolic changes caused by
stressors remains to be determined. Alter-
natively, des-acyl ghrelin may also be use-
ful given that, like GOAT inhibitors, des-
acyl ghrelin and its analogs decrease acyl-
ghrelin concentrations, decrease high fat
diet intake, weight gain, and adiposity,
improve glycemic index, and are protective
in cardiomyocytes in a GHSR independent
manner (63–65). Finally, CRH2 receptor
antagonists could be used to prevent stress-
induced release of ghrelin to prevent the
over-secretion of this peptide.

Nevertheless, GLP1 may be the most
viable target at the moment since a number
of analogs for this peptide are already FDA
approved and currently used in the con-
trol of type II diabetes. Thus, drugs that
mimic GLP1 or that decrease the activ-
ity of dipeptidyl-peptidase IV, an enzyme
that cleaves GLP1 into an inactive byprod-
uct, may be useful in increasing incretin
tone and reducing the effects of stress on
metabolism by doing so. GLP1 treatments
may, however, be most useful when acting
peripherally and not centrally, as GLP1 and
its analogs can exacerbate stress responses
and decrease motivated behaviors acting in
the brain (66, 67). This, however, may not
be the case as a GLP1 analog that crosses the
blood brain barrier did not have an anx-
iogenic effect, and increased hippocampal
neurogenesis (68).

In conclusion, it is only through iden-
tifying and understanding the mechanisms
responsible for stress-induced obesity that
effective therapeutics can be generated. Gut
peptides associated with hunger and satiety
may represent important players in these
mechanisms, as they are also modulated
by the responses to stressors. More impor-
tantly, they may also represent a potential
therapeutic avenue for acute pharmacolog-
ical intervention given that these are pro-
duced peripherally, and also influence the
central nervous system. Nevertheless, rela-
tively speaking, little is known about how
these peptides are regulated in the face of
stress, particularly chronic stressors. This
knowledge is critically needed to determine
if these peptides and their receptors will be
useful for the treatment of stress-induced
pathological conditions including obesity
and metabolic syndrome.
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