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Dietary free fatty acids (FFAs), such as w-3 fatty acids, regulate metabolic and anti-
inflammatory processes, with many of these effects attributed to FFAs interacting with a
family of G protein-coupled receptors. Selective synthetic ligands for free fatty acid recep-
tors (FFA1-4) have consequently been developed as potential treatments for type 2 diabetes
(T2D). In particular, clinical studies show that Fasiglifam, an agonist of the long-chain FFA
receptor, FFA1, improved glycemic control and reduced HbA1c levels in T2D patients, with
a reduced risk of hypoglycemia. However, this ligand was removed from clinical trials due
to potential liver toxicity and determining if this is a target or a ligand-specific feature
is now of major importance. Pre-clinical studies also show that FFA4 agonism increases
insulin sensitivity, induces weight loss, and reduces inflammation and the metabolic and
anti-inflammatory effects of short chain fatty acids (SCFAs) are linked with FFA2 and FFA3
activation. In this review, we therefore show that FFA receptor agonism is a potential
clinical target for T2D treatment and discuss ongoing drug development programs within
industry and academia aimed at improving the safety and effectiveness of these potential

treatments.
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INTRODUCTION

In 2013, 382 million people worldwide were characterized as dia-
betic patients with around 90% of patients diagnosed with type
2 diabetes (T2D), a metabolic disorder intrinsically linked with
obesity (1). T2D is defined by insulin resistance in peripheral tis-
sues, such as the liver and muscle, and a loss of pancreatic beta-cell
function, resulting in insufficient insulin secretion (2), and consti-
tutes a risk factor for health issues including cardiovascular disease,
impaired wound healing, blindness, and renal failure (1). Although
T2D can sometimes be controlled through strict diet regulation, a
large number of patients require clinical therapies. Current treat-
ments, such as metformin, sulfonylureas, glucagon-like peptide-1
(GLP-1) receptor agonists, and dipeptidyl peptidase-4 (DPP-4)
inhibitors, are deployed primarily to either improve insulin secre-
tion, peripheral insulin sensitivity, or both (3). However, there
remains a demand for distinct, safe, and effective treatments for
T2D, with the current therapies often associated with side effects
including hypoglycemia and weight gain. Naturally occurring free
fatty acids (FFAs) found in the diet, including w-3 fatty acids,
have profound effects on metabolic and inflammatory processes

Abbreviations: oA, a-linolenic acid; DHA, docosahexaenoic acid; CNS, cen-
tral nervous system; DPP-4, dipeptidyl peptidase-4; FFA, free fatty acid; FFA1—4,
free fatty acid receptors 1-4; GIP, glucose-dependent insulinotropic polypeptide;
GLP-1, glucagon-like peptide-1; GPCR, G protein-coupled receptor; GSIS, glucose-
stimulated insulin secretion; HbAlc, hemoglobin Alc; HFD, high-fat diet; LCFA,
long-chain fatty acid; LPS, lipopolysaccharide; MCFA, medium chain fatty acid;
PYY, peptide YY; SCFA, short chain fatty acid; T2D, type 2 diabetes; TNF, tumor
necrosis factor.

associated with T2D, although the molecular basis for these effects
are complex and incompletely understood (4). FFAs are classi-
fied based upon their chain length, such that short chain fatty
acids (SCFAs) have 1-6 carbon atoms; medium chain fatty acids
(MCFAs) contains 7-12 carbon atoms; and long-chain fatty acids
(LCFAs) contain more than 12 carbon atoms (4). Many of the
biological effects of FFAs have now been attributed, at least in
part, to FFAs interacting with a group of G protein-coupled
receptors (GPCRs) designated the FFA receptors. The most well-
characterized FFA receptors are the two LCFA-specific receptors,
FFA1 and FFA4, and the SCFA-specific receptors FFA2 and FFA3.
FFA receptor agonism, particularly of the FFA1 receptor, has sub-
sequently been shown to have beneficial metabolic effects (4).
Consequently, a number of ongoing industrial and academic pro-
grams are focused upon developing potent and selective synthetic
agonists of FFA1. Although currently less developed, activation of
each of FFA2, FFA3, and FFA4 has also been suggested to have
potential benefits for metabolic function. In this review, we will
therefore discuss the potential of FFA receptor agonists as novel
clinical treatments for T2D.

FFA1

FFA1, activated by various saturated (e.g., palmitic acid, C16:0),
mono-unsaturated (e.g., oleic acid, C18:1), and polyunsatu-
rated long-chain FFAs (e.g., linoleic acid, C18:2) (Table 1), is
a Gg/11-coupled GPCR predominantly expressed in pancreatic
beta cells that is associated with increased glucose-stimulated
insulin secretion (GSIS) (4-6) (Figure 1). FFA1 is also expressed
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Table 1 | FFA receptor agonists for the treatment of T2D.

FFA receptor

Agonists

Metabolic effects

Clinical trial status

FFA1 Natural ligands: palmitic acid, Improved fasting hypoglycemia and
oleic acid, linoleic acid glucose tolerance in diabetic animal
Synthetic ligands: G\W9508, models
TAK-875/Fasiglifam, AMG-837, Increased GSIS
AM-1638, AM-5262, LY2881835, Increased incretin release (full
JTT-851, P11187 TUG-469, agonists: AM-1638, AM-5262,
TUG-424, TUG-770, AS2575959, 'Y2881835)
DS-1558 No associated hypoglycemia in

normoglycemic rats

FFA2 Natural ligands: acetate Improved glucose uptake
(preferred), propionate, butyrate Decreased colon motility/contractility
Synthetic ligands: AMG7703/ Increased GLP-1 secretion
4-CMTB, Euroscreen compounds, Inhibition of leukocyte activation
compounds 1 and 2

FFA3 Natural ligands: propionate Increased GLP-1 secretion
(preferred), butyrate, acetate
Synthetic ligands: Arena
Pharmaceuticals series

FFA4 Natural ligands: a-linolenic acid Protection against diet-induced obesity

(aLA), docosahexanoic acid (DHA)
Synthetic ligands: G\W9508,
NCG21, NCG46, TUG-891

Improved insulin sensitivity and
glycemic control

Increased GLP-1 release
Increased insulin secretion (largely

TAK-875/Fasiglifam (Takeda): phase I/Il trials showed
reduced blood glucose levels, increased insulin levels,
1.2-1.4% reduction in HbA1c levels with no associated
weight gain/hypoglycemia in T2D patients. Removed
from phase lll trials due to potential liver toxicity
AMG-837 (Amgen) and LY2881835 (Eli Lilly):
removed from phase | trials due to toxicity

JTT-851 (Japan Tobacco): currently in phase Il trials
P11187 (Piramal): currently in phase | trials

No agonists currently in clinical trials

No agonists currently in clinical trials

No compounds currently in clinical trials although a
number of companies have patented FFA4 agonists
for the treatment of T2D (Banyu Pharmaceutical,
Metabolex, Kindex Therapeutics, Pharma Frontier)

attributed to GLP-1 release)
Reduced inflammation

Table 1 illustrates the most commonly described natural and synthetic ligands for FFA1-4. The current clinical status of these synthetic agonists for the treatment of

T2D is also described.

by various enteroendocrine cells where it regulates the release
of incretin hormones such as glucagon-like peptide-1 (GLP-1),
an insulinotropic, anorectic peptide that reduces gastric emp-
tying and motility, as well as cholecystokinin (CCK), shown to
regulate pancreatic secretion, inhibit gastric motility, and reduce
energy intake (7-10) (Figure 1). FFA1 is also present within the
central nervous system (CNS) (11, 12) although whether neu-
ronal FFAI contributes to the regulation of glucose homeosta-
sis remains to be fully determined (Figure 1). FFA1 expression
has also been reported in glucagon-producing alpha cells within
the pancreas, although this remains controversial (13—17). FFA1
expression has also been well characterized in taste buds where
it mediates, in part, taste preference for fatty acids, although
the significance of this, and possible effects of pharmacological
activation or blockade, remains to be fully elucidated (18, 19)
(Figure 1).

FFA1 AND INSULIN SECRETION

Acute FFA-mediated insulin secretion from isolated human and
rodent islets involves amplification of the second phase of GSIS
(5,6, 15, 20). This is reduced by approximately 50% in FFA1-null
mice, with the remaining effect attributed to intracellular metabo-
lism of FFAs (5, 6, 15, 20). In contrast, transgenic overexpression of

FFA1 under the control of the mouse insulin IT promoter prevents
development of hyperglycemia and improves insulin secretion and
glucose tolerance in diabetic mouse models (21). As anticipated
from this, GW9508, a synthetic FFA1 agonist (Table 1) stimu-
lated GSIS in pancreatic MING cells (22). FFA1 gene expression is
also reduced under glucolipotoxic conditions in rats and in islets
from T2D patients while a rare mutation in the human FFA1
gene is associated with attenuated lipid-mediated enhancement
of GSIS (23-25). The effects of FFA1 on pancreatic beta cell via-
bility, however, has been controversial, with pancreatic-specific
FFA1 overexpression associated with disrupted islet morphology
and impaired beta cell function whereas FFA1 disruption is linked
with increased beta cell viability in mice fed on a high-fat diet
(HFD) (26). These observations promoted the concept that, at
least in the longer term, FFA1 antagonism could be beneficial in
the treatment of diabetes. However, most subsequent pre-clinical
studies contradict these findings, indicating that FFA1 agonism
has no detrimental effects on beta cell viability (16, 20, 21), or
even protects beta cells (27-29).

THE FFA1 AGONIST FASIGLIFAM AND INSULIN SECRETION
Although there are currently no FFAl agonists approved for
clinical use, considerable interest developed around Fasiglifam
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FIGURE 1 | The biological effects of FFA receptors. Dietary FFAs, such as
-3 fatty acids from fish oils and SCFAs derived from the fermentation of
dietary fiber, have profound effects on metabolic and inflammatory processes
associated with obesity and T2D. These effects have, at least in part, been
attributed to the activation of free fatty acid receptors (FFA1-4), leading to a
great deal of interest in the development of synthetic FFA receptor agonists
for the treatment of metabolic disease. Agonism of the long-chain FFA
receptor FFA1, the most fully characterized of these receptors, improves
glucose-stimulated insulin secretion from the pancreas. Additionally, full
agonists of this receptor increase incretin release from the gut, thereby
indirectly increasing pancreatic insulin secretion, as well as improving
systemic insulin sensitivity and promoting satiety. Agonism of another
long-chain FFA receptor, FFA4, is associated with incretin release from the
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gut, as well as an anti-inflammatory effect on macrophages that, in turn, may
improve systemic insulin sensitivity. In the pancreas, FFA4 is associated with
reduced cell apoptosis and FFA4 has recently been detected in alpha and
delta cells and regulates glucagon and somatostatin release, respectively.
Both FFA1 and FFA4 have been detected in taste buds although the full
implications of this in relation to obesity remain to be determined. The SCFA
receptors, FFA2/FFA3, have recently been linked with the beneficial metabolic
effects associated probiotics within the gut. Both receptors have been linked
with incretin release from enteroendocrine cells, as well as both systemic
anti- and pro-inflammatory effects. However, due to conflicting results using
receptor-specific knockout models and a limited selection of pharmacological
tools, more work is required to elucidate the physiological effects of FFA2 and
FFA3 agonism.

(designated TAK-875 in pre-clinical studies, Figure 2), an orally
available FFA1 agonist developed by Takeda (30-32) (Table 1).
Completed Phase II clinical trials demonstrated that T2D patients
treated with Fasiglifam had reduced blood glucose levels, increased
insulin levels, and resulted in a 1.2-1.4% reduction in hemoglo-
bin Alc (HbAlc) levels (32-36) (Table 1). Crucially, although
these effects were comparable to current sulfonylurea treat-
ments, Fasiglifam was associated with markedly less side effects,
with no significant increases in body weight and a reduced
concomitant incidence of hypoglycemia (32-36). This is con-
sistent with pre-clinical data demonstrating that Fasiglifam
improved fasting hyperglycemia and glucose tolerance and aug-
mented GSIS in diabetic rat models, with no hypoglycemia
observed in normoglycemic rats (31). No changes in insulin
resistance have been reported in response to Fasiglifam treat-
ment (37, 38) and Fasiglifam had no effect on glucagon secre-
tion in isolated human islets and did not alter glucagon lev-
els in T2D patients (39). Importantly, prolonged Fasiglifam
exposure was also not associated with beta cell dysfunction or
apoptosis (31).

THE EFFECT OF PARTIAL VS. FULL FFA1 AGONISTS ON

INCRETIN RELEASE FROM ENTEROENDOCRINE CELLS

The ability of synthetic FFA1 agonists to induce significant incretin
release was recently shown to depend upon whether the com-
pound was a partial or full agonist (8, 10, 40) (Figure 1). In this
regard, TAK-875/Fasiglifam had no effect on incretin release from
enteroendocrine cells with similar results reported for AMG-837
(Amgen, Table 1; Figure 2) (39). In contrast, Amgen described
AM-1638 and AM-5262 (Table 1; Figure 2) as full FFAI ago-
nists that directly stimulate insulin secretion and promote incretin
release from enteroendocrine cells (39, 41, 42) (Figure 1). This
incretin-stimulating effect was abolished in FFA1 knockout mice
and the effect of AM-1638 on glucose homeostasis was attenuated
by the GLP-1R antagonist, Ex(9-39)NH2, indicating a particularly
key role for GLP-1 (39). Similarly, LY2881835, a full FFA1 agonist
from Eli Lilly (Table 1), increased GSIS, lowered blood glucose lev-
els, and increased GLP-1 secretion in animal models (43). Amgen
demonstrated that multiple ligand binding pockets exist on FFA1,
comprising of up to two allosteric sites as well as the FFA binding
orthosteric site (40). One allosteric site is targeted by compounds
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such as AM-837 and TAK-875 while the second allosteric site is a
target for receptor agonists such as AM-1638 that act as full ago-
nists. Consequently, positive co-operativity was shown between
either AMG-837 or AM-1638 in conjunction with natural FFA lig-
ands in cell based assays measuring second-messenger generation,
as well as primary cell based assays, with positive co-operativity
also reported between AMG-837 and AM-1638 during an oral
glucose tolerance test in a diabetic rodent model (40).

FFA1 AGONISTS: ONGOING FFA1 DRUG PROGRAMS AND
FUTURE CHALLENGES

Although no issues were raised regarding safety and tolerability
during Phase I and II trials, Fasiglifam was recently withdrawn
from phase III trials due to potential liver toxicity (43) (Table 1).

Similarly, Amgen and Eli Lilly removed AMG-837 and LY2881835
(Table 1; Figure 2), respectively from Phase I clinical trials due to
concerns over toxicity (43). However, the pre-clinical and clinical
data generated using Fasiglifam provides a strong rationale and
validation for further studies into the potential use of FFA1 ago-
nism as a novel treatment for T2D. Currently, Japan Tobacco are
conducting Phase II clinical trials with their FFA1 agonist candi-
date, JTT-851 and Piramal have begun Phase I clinical trials on
their FFA1 agonist, P11187 (43) (Table 1). Daiichi Sanyko also
recently described 3-aryl-3-ethoxypropanoic acids as orally active
FFA1 agonists that improve insulin secretion and glucose home-
ostasis in rats (44). Additionally, FFA1 agonists developed by Astel-
las are reported to have beneficial effects on glucose homeostasis in
diabetic mouse models (45, 46). Sanofi and Boehringer-Ingelheim
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are also reported to have FFA1 agonist programs under develop-
ment (43). In an academic context, the University of Southern
Denmark have developed 4-(benzylamine)hydrocinnamic acid
FFAL1 agonists such as TUG-469 (47, 48) and 4-alkyne hydrocin-
namic acid FFA1 agonists, including TUG-424 and TUG-770
(49-51) (Table 1). Within these programs, several strategies have
been followed to reduce compound lipophilicity (48,52, 53). Con-
sequently, TUG-770 (Figure 2) has recently been described as a
highly potent FFA1 agonist with favorable physicochemical and
pharmacokinetic properties, improving glucose tolerance in diet-
induced obese mice. This effect did not desensitize, being fully
maintained after 29 days of chronic dosing (49).

FFA4

FFA4, a Gg-coupled GPCR activated by LCFAs, including a-
linolenic acid (a-LA) and docosahexaenoic acid (DHA) (Table 1),
is expressed in enteroendocrine cells, lung, brain, white adipose
tissues, heart, and liver (4). Within adipose tissue, FFA4 gene
expression is upregulated following a HFD and FFA4 activation
in adipocytes is associated with increased adipogenesis and glu-
cose uptake (54—56), suggesting that FFA4 activation may promote
adiposity and obesity (Figure 1). However, mutation of FFA4
(p-R270H variant) is associated with an increased risk of obe-
sity in European populations (although this variant is almost
absent in a Japanese population), and young FFA4 null mice fed
a HFD gained significantly more fat mass than their wild-type
littermates, suggesting that FFA4 protects against diet-induced
obesity (57). FFA4 agonism is also commonly associated with
improved insulin sensitivity, with FFA4 null mice reported to
have increased fasting glucose and impaired responses to insulin
and glucose tolerance testing (56, 57) (Figure 1). A number of
these metabolic effects, such as increased insulin secretion, sati-
ety, and improved glycemic control, have been attributed, at least
in part, to FFA4-dependent incretin release from enteroendocrine
cells, particularly GLP-1 (4, 54, 55, 58) (Figure 1). GLP-1 secre-
tion was demonstrated both in vitro and in vivo using aLA as
an agonist (58). Similarly, TUG-891 (Figure 2), a potent FFA4
agonist (see below), also increased GLP-1 secretion from STC-1
and GLUTag enteroendocrine cells (55). However, a recent study
has questioned the significance of FFA4-mediated GLP-1 release
(59). FFA4 also co-localizes with the orexigenic peptide, ghrelin,
in duodenal cells in vivo, with recent studies showing that FFA4
activation inhibits ghrelin secretion (60, 61). An emerging role for
FFA4 within pancreatic islets has also recently developed, with the
pancreatic islets of diabetic and hyperglycemic individuals shown
to have decreased levels of FFA4 mRNA and knockdown of FFA4
mRNA levels within islets demonstrated to attenuate the protec-
tive effects of the w-3 fatty acid, eicosapentaenoic acid against
palmitate-induced cell apoptosis (62) (Figure 1). FFA4 expres-
sion has also recently been detected in delta cells and alpha cells
within the pancreas and was consequently linked with the inhibi-
tion of glucose-dependent somatostatin release and the regulation
of glucagon secretion, respectively (63, 64) (Figure 1). Similar to
FFAL1, FFA4 is also expressed in taste buds and is linked with the
regulation of taste preference although, again, the significance of
this in relation to obesity and T2D remains to be clarified (65)
(Figure 1).

THE ANTI-INFLAMMATORY EFFECTS OF FFA4

A recent study indicated that, in addition to the previously
described insulin-sensitizing effects associated with GLP-1 release,
improved systemic insulin sensitivity may also be associated with
FFA4-mediated anti-inflammatory effects on macrophages (56)
(Figure 1). In this study, FFA4 expression in macrophages was
elevated in response to obesity and FFA4 activation decreased
pro-inflammatory gene expression in M1 macrophages and
increased expression of M2 anti-inflammatory genes with reduced
macrophage infiltration of adipose tissues also observed in
FFA4 null mice due to decreased chemotaxis (56). These anti-
inflammatory effects are largely associated with FFA4-mediated
recruitment of B-arrestin 2, a scaffold protein typically associ-
ated with receptor desensitization and internalization that is also
implicated in the regulation of distinct signaling pathways (56, 66,
67). In the case of FFA4, B-arrestin 2 interacts with TABI that, in
turn, inhibits lipopolysaccharide (LPS)- and tumor necrosis factor
(TNF)-alpha-induced TAKI stimulation, thereby blocking toll-
like receptor 4 (TLR4) and the TNF-alpha inflammatory pathways
(56, 66, 67). Interestingly, recent studies have also reported FFA4-
mediated anti-inflammatory effects within the brain. In particular,
FFA4 has been associated with the anti-inflammatory effects of
-3 and w-9 fatty acids in the hypothalamus, thereby reducing
diet-induced inflammation and reducing body adiposity (68, 69)
(Figure 1).

SYNTHETIC FFA4 AGONISTS

Initial synthetic FFA4 agonists, including GW9508, NCG21
(Figure 2), and NCG46 (Table 1), showed significant dual ago-
nism at FFA1 (70). However, our groups have recently reported on
TUG-891, a potent and selective FFA4 agonist (55, 71) (Table 1,
Figure 2), although TUG-891 is significantly less selective for
murine FFA4 compared to murine FFA1, potentially limiting its
use in pre-clinical in vivo studies in mice (71). Recent modeling
and mutational efforts have, however, clearly defined how TUG-
891 interacts with FFA4 (72), information that will be invaluable
in developing novel ligands with improved pharmacological prop-
erties for this receptor. To date, no FFA4 agonists have entered
clinical trials although a number of FFA4 agonist programs are
ongoing. For example, Banyu Pharmaceutical Co. Ltd, IRM LLC
USA, Metabolex, Inc., Kindex Therapeutics, and Pharma Fron-
tier Co., Ltd have all patented FFA4 agonists for the treatment
of metabolic and inflammatory disease (66) (Table 1). Similarly,
GSK has recently described a series of diarylsulfonamides as FFA4
agonists (73) and Metabolex has reported that their series of
dihydrobenzofuran-based FFA4 agonists improved glucose home-
ostasis in mice, with moderate glucose-lowering effects in mice
shown with a separate series of FFA4 agonists (66). Additionally,
Kindex Therapeutics described beneficial effects in the treatment
of obesity, inflammation, and metabolic disorders with alpha acids
that were reported to act both as FFA4 agonists and also as partial
PPARYy agonists (66).

METABOLIC REGULATION BY FFA2 AND FFA3

High fiber intake protects against obesity and T2D via SCFA
production, particularly butyrate, acetate, and propionate, from
bacterial fermentation of dietary fiber in the large intestine (74).
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Moreover, modulation of gut microbiota using pre- and probiotics
in both mice and humans regulates body weight, appetite, and glu-
cose homeostasis (74). These SCFA-mediated beneficial effects on
body weight and glucose homeostasis in HFD-fed mice are due,
at least in part, to FFA2/FFA3-dependent mechanisms, includ-
ing for example increased secretion of incretins, such as GLP-1,
glucose-dependent insulinotropic polypeptide (GIP), and peptide
YY (PYY) (74, 75). These receptors are activated by the SCFAs
produced by fiber fermentation in the gut, with the human FFA2
ortholog preferentially activated by shorter SCFAs, such as acetate,
whereas human FFA3 is activated preferentially by the longer
SCFAs, with propionate being the most potent SCFA for both
receptors, at least in human (4, 74-80) (Table 1; Figure 1). How-
ever, the relative potency and preference for various SCFAs appears
to vary significantly across species (81, 82). SCFA-triggered secre-
tion of GLP-1 was almost completely abolished in primary colonic
cultures from FFA2 null mice and reduced, to a lesser extent, in
mice lacking FFA3 (76). FFA2 is expressed in adipose tissue, intes-
tine, islet cells, enteroendocrine cells, and immune cells while FFA3
is highly expressed in the small intestine, colon, and pancreas (4).
FFA2 expression levels are also elevated in the skeletal muscle,
liver, and adipose tissue of HFD-fed rodents, with FFA2 shown
to regulate adipogenesis and adipocyte differentiation and inhibit
lipolysis (83) (Figure 1).

Complete elucidation of the metabolic effects of FFA2 and FFA3
has, however, been complicated by conflicting results using FFA2
and FFA3 null mice. For example, in one study, HFD-fed FFA2 null
mice display lower body fat mass and improved glucose control
compared to wild-type mice, indicating a role for FFA2 antagonists
in the treatment of T2D (84). Contrastingly, FFA2 null mice were
also shown to be obese on a normal diet, with reduced insulin sen-
sitivity and marked insulin resistance whereas adipocyte-specific
overexpression of FFA2 resulted in lower body weight in a HFD
study (85). Similarly, the loss of FFA3 either resulted in weight
loss, obesity, or had no effect in different studies (86—88). Hence,
the development of more potent and selective FFA2 and FFA3
agonists will hopefully facilitate the elucidation of the metabolic
effects of FFA2 and FFA3 and ultimately provide future treatments
for T2D. Several selective compound series are already known,
especially for FFA2 (89) (Table 1). Small carboxylic acids derived
from the natural SCFA ligands have shown appreciable and pre-
dictable selectivity but have low potency (80). Selective allosteric
agonists of FFA2 were reported by Amgen to regulate lipolysis (e.g.,
AMG7703/4-CMTB, Table 1; Figure 2). However, the clinical use
of these drugs was deemed to be limited due to low solubility
and poor pharmacokinetics (90). Orthosteric FFA2 agonists and
antagonists have also now been reported (82, 91) and used to
demonstrate a role for this receptor in improved glucose uptake,
decreased colon motility and contractility, increased GLP-1 secre-
tion, and inhibiting leukocyte activation (81, 82, 89, 92). FFA3
agonists are even less developed although Arena Pharmaceuticals
has reported a series of FFA3-selective compounds (89) (Table 1).
Pharmacological characterization of compounds from this series
demonstrated that individual members have diverse pharmaco-
logical properties, acting as intrinsic agonists and/or allosterically
modulating the potency or efficacy of the response to SCFA pro-
pionate (93). Hence, although recent microbiota studies highlight

quite elegantly the role that gut-derived SCFAs can play in the
regulation of metabolism, there still remains a great demand for
improved FFA2 and FFA3 agonists to fully unravel and define the
consequences of activation of these receptors for metabolic health.

FUTURE PERSPECTIVES

The withdrawal of FFA1 agonists from clinical trials, particu-
larly Fasiglifam, highlights the critical importance of establishing
whether the adverse effects reported during these clinical trials are
due to FFA1 agonism or the chemical structures of the particu-
lar FFA1 agonists. Additionally, as FFA2, FFA3, and FFA4 agonists
further develop and hopefully enter clinical trials, it will be inter-
esting to see if the same issues highlighted during FFA1 trials will
also arise. Future research should also fully address the relative
effects of partial and full FFA1 agonists, particularly in relation
to allosterism in conjunction with natural FFA ligands. Addition-
ally, dual agonists of FFA1 and FFA4 may have enhanced effects
on insulin secretion and insulin sensitivity compared to selective
FFAL1 or FFA4 agonists alone. Similarly, co-therapeutic approaches
involving FFA receptor agonists and current T2D therapies should
be examined. For example, the FFA1 agonist, AS2575959 (Table 1),
acts synergistically with a DPP-IV inhibitor to improve glucose
homeostasis (45) and combination therapy with Fasiglifam and
metformin displayed enhanced anti-diabetic effects in a diabetic
rat model (94). Similarly, the FFA1 agonist, DS-1558 (Table 1),
acts synergistically with exendin-4, a GLP-1 receptor agonist, to
improve glucose homeostasis in diabetic mice (95). Clearly, there
are a number of significant challenges ahead in the development
of clinical treatments based on FFA receptor agonism. However,
should these challenges be met, FFA receptor agonism may provide
a novel and effective way to treat T2D.

ACKNOWLEDGMENTS

This work is supported in part by grants from the Biotechnology
and Biosciences Research Council [BB/K019864/1] (to Graeme
Milligan), a Canadian Institutes of Health Research (fellowship to
Brian D. Hudson), and the Danish Council for Strategic Research
grant [11-116196] (to Trond Ulven and Graeme Milligan).

REFERENCES
1. Alberti KG, Zimmet PZ. Diabetes: a look to the future. Lancet Diabetes Endocrinol
(2014) 2:e1-2. doi:10.1016/52213-8587(13)70187-6
2. McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl ] Med (2010)
363:2339-50. doi:10.1056/NEJMra0906948
3. Majumdar SK, Inzucchi SE. Investigational anti-hyperglycemic agents: the
future of type 2 diabetes therapy? Endocrine (2013) 44:47-58. doi:10.1007/
$12020-013-9884-3
4. Offermanns S. Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) recep-
tors. Annu Rev Pharmacol Toxicol (2014) 54:407-34. doi:10.1146/annurev-
pharmtox-011613-135945
. Ferdaoussi M, Bergeron V, Zarrouki B, Kolic J, Cantley J, Fielitz J, etal. G
protein-coupled receptor (GPR)40-dependent potentiation of insulin secre-
tion in mouse islets is mediated by protein kinase D1. Diabetologia (2012)
55:2682-92. d0i:10.1007/s00125-012-2650-x
6. Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL, Luo J, et al. GPR40 is
necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo.
Diabetes (2007) 56:1087-94. doi:10.2337/db06- 1532
. Houze JB, Zhu L, Sun Y, Akerman M, Qiu W, Zhang AJ, et al. Amg 837: a potent,
orally bioavailable GPR40 agonist. Bioorg Med Chem Lett (2012) 22:1267-70.
do0i:10.1016/j.bmcl.2011.10.118

wl

~

Frontiers in Endocrinology | Diabetes

August 2014 | Volume 5 | Article 137 | 6


http://dx.doi.org/10.1016/S2213-8587(13)70187-6
http://dx.doi.org/10.1056/NEJMra0906948
http://dx.doi.org/10.1007/s12020-013-9884-3
http://dx.doi.org/10.1007/s12020-013-9884-3
http://dx.doi.org/10.1146/annurev-pharmtox-011613-135945
http://dx.doi.org/10.1146/annurev-pharmtox-011613-135945
http://dx.doi.org/10.1007/s00125-012-2650-x
http://dx.doi.org/10.2337/db06-1532
http://dx.doi.org/10.1016/j.bmcl.2011.10.118
http://www.frontiersin.org/Diabetes
http://www.frontiersin.org/Diabetes/archive

Wiatterson et al.

FFA receptor agonists and diabetes

o

e

10.

1

—

12.

13.

14.

15.

16.

17.

18.

19.

20.

2

—_

22.

23.

24.

25.

26.

. Luo J, Swaminath G, Brown SP, Zhang J, Guo Q, Chen M, et al. A potent class of

GPRA40 full agonists engages the enteroinsular axis to promote glucose control
in rodents. PLoS One (2012) 7:¢46300. doi:10.1371/journal.pone.0046300
Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ, et al. The G-protein-
coupled receptor GPR40 directly mediates long-chain fatty acid-induced secre-
tion of cholecystokinin. Gastroenterology (2011) 140:903-12. doi:10.1053/j.
gastro.2010.10.012

Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells
and mediates free fatty acid stimulation of incretin secretion. Diabetes (2008)
57:2280-7. doi:10.2337/db08-0307

. Nakamoto K, Nishinaka T, Sato N, Mankura M, Koyama Y, Kasuya F, et al.

Hypothalamic GPR40 signaling activated by free long chain fatty acids sup-
presses CFA-induced inflammatory chronic pain. PLoS One (2013) 8:e81563.
doi:10.1371/journal.pone.0081563

Ma D, Tao B, Warashina S, Kotani S, Lu L, Kaplamadzhiev DB, et al. Expression
of free fatty acid receptor GPR40 in the central nervous system of adult monkeys.
Neurosci Res (2007) 58:394—401. doi:10.1016/j.neures.2007.05.001

Flodgren E, Olde B, Meidute-Abaraviciene S, Winzell MS, Ahren B, Salehi
A. GPR40 is expressed in glucagon producing cells and affects glucagon
secretion. Biochem Biophys Res Commun (2007) 354:240-5. doi:10.1016/j.bbrc.
2006.12.193

Wang L, Zhao Y, Gui B, Fu R, Ma E, Yu J, et al. Acute stimulation of glucagon
secretion by linoleic acid results from GPR40 activation and [Ca2+]i increase in
pancreatic islet {alpha}-cells. ] Endocrinol (2011) 210:173-9. doi:10.1530/JOE-
11-0132

Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, et al. Free
fatty acids regulate insulin secretion from pancreatic beta cells through GPR40.
Nature (2003) 422:173-6. doi:10.1038/nature01478

Lan H, Hoos LM, Liu L, Tetzloff G, Hu W, Abbondanzo SJ, etal. Lack of
FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic dis-
ease. Diabetes (2008) 57:2999-3006. doi:10.2337/db08-0596

Hirasawa A, Itsubo C, Sadakane K, Hara T, Shinagawa S, Koga H, et al. Produc-
tion and characterization of a monoclonal antibody against GPR40 (FFARI;
free fatty acid receptor 1). Biochem Biophys Res Commun (2008) 365:22-8.
doi:10.1016/j.bbrc.2007.10.142

Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, et al.
Taste preference for fatty acids is mediated by GPR40 and GPR120. ] Neurosci
(2010) 30:8376-82. doi:10.1523/INEUROSCI.0496-10.2010

Gilbertson TA, Khan NA. Cell signaling mechanisms of oro-gustatory detec-
tion of dietary fat: advances and challenges. Prog Lipid Res (2014) 53:82-92.
doi:10.1016/j.plipres.2013.11.001

Kebede M, Ferdaoussi M, Mancini A, Alquier T, Kulkarni RN, Walker
MD, etal. Glucose activates free fatty acid receptor 1 gene transcription
via phosphatidylinositol-3-kinase-dependent O-GlcNAcylation of pancreas-
duodenum homeobox-1. Proc Natl Acad Sci U S A (2012) 109:2376-81.
d0i:10.1073/pnas.1114350109

. Nagasumi K, Esaki R, Iwachidow K, Yasuhara Y, Ogi K, Tanaka H, et al. Overex-

pression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin
secretion and improves glucose tolerance in normal and diabetic mice. Diabetes
(2009) 58:1067-76. doi:10.2337/db08-1233

Briscoe CP, Peat AJ, Mckeown SC, Corbett DF, Goetz AS, Littleton TR, et al.
Pharmacological regulation of insulin secretion in MING cells through the fatty
acid receptor GPR40: identification of agonist and antagonist small molecules.
Br ] Pharmacol (2006) 148:619-28. doi:10.1038/sj.bjp.0706770

Del Guerra S, Bugliani M, D’Aleo V, del Prato S, Boggi U, Mosca F, et al. G-
protein-coupled receptor 40 (GPR40) expression and its regulation in human
pancreatic islets: the role of type 2 diabetes and fatty acids. Nutr Metab Cardio-
vasc Dis (2010) 20:22-5. doi:10.1016/j.numecd.2009.02.008

Fontes G, Zarrouki B, Hagman DK, Latour MG, Semache M, Roskens V,
etal. Glucolipotoxicity age-dependently impairs beta cell function in rats
despite a marked increase in beta cell mass. Diabetologia (2010) 53:2369-79.
doi:10.1007/s00125-010-1850-5

Walker CG, Goff L, Bluck LJ, Griffin BA, Jebb SA, Lovegrove JA, et al. Varia-
tion in the FFAR1 gene modifies Bmi, body composition and beta-cell func-
tion in overweight subjects: an exploratory analysis. PLoS One (2011) 6:¢19146.
doi:10.1371/journal.pone.0019146

Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H. The
Ffa receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired

27.

28.

29.

30.

3

—

32.

33.

35.

36.

3

N

38.

39.

40.

4

—

42,

43.

44,

45.

46.

glucose homeostasis in mouse. Cell Metab (2005) 1:245-58. doi:10.1016/j.cmet.
2005.03.007

ZhangY, Xu M, Zhang S, Yan L, Yang C, Lu W, et al. The role of G protein-coupled
receptor 40 in lipoapoptosis in mouse beta-cell line Nit-1. | Mol Endocrinol
(2007) 38:651-61. doi:10.1677/JME-06-0048

Wau P, Yang L, Shen X. The relationship between GPR40 and lipotoxicity of the
pancreatic beta-cells as well as the effect of pioglitazone. Biochem Biophys Res
Commun (2010) 403:36-9. doi:10.1016/j.bbrc.2010.10.105

Wagner R, Kaiser G, Gerst F, Christiansen E, Due-Hansen ME, Grundmann M,
et al. Reevaluation of fatty acid receptor 1 as a drug target for the stimulation
of insulin secretion in humans. Diabetes (2013) 62:2106—11. d0i:10.2337/db12-
1249

Yashiro H, Tsujihata Y, Takeuchi K, Hazama M, Johnson PR, Rorsman P. The
effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid
1 agonist, on insulin and glucagon secretion in isolated rat and human islets.
J Pharmacol Exp Ther (2012) 340:483-9. doi:10.1124/jpet.111.187708

. Tsujihata Y, Ito R, Suzuki M, Harada A, Negoro N, Yasuma T, et al. TAK-875, an

orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist,
enhances glucose-dependent insulin secretion and improves both postprandial
and fasting hyperglycemia in type 2 diabetic rats. ] Pharmacol Exp Ther (2011)
339:228-37. doi:10.1124/jpet.111.183772

Araki T, Hirayama M, Hiroi S, Kaku K. GPR40-induced insulin secretion by the
novel agonist TAK-875: first clinical findings in patients with type 2 diabetes.
Diabetes Obes Metab (2012) 14:271-8. doi:10.1111/j.1463-1326.2011.01525.x
Mancini AD, Poitout V. The fatty acid receptor FFA1/GPR40 a decade later: how
much do we know? Trends Endocrinol Metab (2013) 24:398-407. doi:10.1016/j.
tem.2013.03.003

. Burant CF, Viswanathan P, Marcinak J, Cao C, Vakilynejad M, Xie B, et al. Tak-

875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, ran-
domised, double-blind, placebo-controlled trial. Lancet (2012) 379:1403-11.
doi:10.1016/S0140-6736(11)61879-5

Naik H, Vakilynejad M, Wu J, Viswanathan P, Dote N, Higuchi T, et al. Safety,
tolerability, pharmacokinetics, and pharmacodynamic properties of the GPR40
agonist TAK-875: results from a double-blind, placebo-controlled single oral
dose rising study in healthy volunteers. J Clin Pharmacol (2012) 52:1007-16.
doi:10.1177/0091270011409230

Leifke E, Naik H, Wu J, Viswanathan P, Demanno D, Kipnes M, et al. A multiple-
ascending-dose study to evaluate safety, pharmacokinetics, and pharmacody-
namics of a novel GPR40 agonist, Tak-875, in subjects with type 2 diabetes. Clin
Pharmacol Ther (2012) 92:29-39. doi:10.1038/clpt.2012.43

. Burant CE Activation of GPR40 as a therapeutic target for the treatment of type

2 diabetes. Diabetes Care (2013) 36(Suppl 2):5175-9. doi:10.2337/dcS13-2037
Bailey CJ. Could FFARI assist insulin secretion in type 2 diabetes? Lancet (2012)
379:1370-1. doi:10.1016/S0140-6736(12)60165-2

PoitoutV, Lin DC. Modulating GPR40: therapeutic promise and potential in dia-
betes. Drug Discov Today (2013) 18:1301-8. doi:10.1016/j.drudis.2013.09.003
Lin DC, Guo Q, Luo J, Zhang J, Nguyen K, Chen M, et al. Identification and
pharmacological characterization of multiple allosteric binding sites on the free
fatty acid 1 receptor. Mol Pharmacol (2012) 82:843-59. doi:10.1124/mol.112.
079640

. Brown SP, Dransfield PJ, Vimolratana M, Jiao X, Zhu L, Pattaropong V, et al. Dis-

covery of AM-1638: a potent and orally bioavailable GPR40/FFA1 full agonist.
Acs Med Chem Lett (2012) 3:726-30. doi:10.1021/ml300133f

Wang Y, Liu J, Dransfield PJ, Zhu L, Wang Z, Du X, et al. Discovery and opti-
mization of potent GPR40 full agonists containing tricyclic spirocycles. Acs Med
Chem Lett (2013) 4:551-5. doi:10.1021/ml300427u

Defossa E, Wagner M. Recent developments in the discovery of FFAI receptor
agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem
Lett (2014) 24:2991-3000. doi:10.1016/j.bmcl.2014.05.019

Takano R, Yoshida M, Inoue M, Honda T, Nakashima R, Matsumoto K, et al.
Discovery of 3-aryl-3-ethoxypropanoic acids as orally active GPR40 agonists.
Bioorg Med Chem Lett (2014) 24:2949-53. doi:10.1016/j.bmcl.2014.04.065
Tanaka H, Yoshida S, Minoura H, Negoro K, Shimaya A, Shimokawa T, et al.
Novel GPR40 agonist AS2575959 exhibits glucose metabolism improvement
and synergistic effect with sitagliptin on insulin and incretin secretion. Life Sci
(2014) 94:115-21. doi:10.1016/j.1fs.2013.11.010

Tanaka H, Yoshida S, Oshima H, Minoura H, Negoro K, Yamazaki T, etal.
Chronic treatment with novel GPR40 agonists improve whole-body glucose

www.frontiersin.org

August 2014 | Volume 5 | Article 137 | 7


http://dx.doi.org/10.1371/journal.pone.0046300
http://dx.doi.org/10.1053/j.gastro.2010.10.012
http://dx.doi.org/10.1053/j.gastro.2010.10.012
http://dx.doi.org/10.2337/db08-0307
http://dx.doi.org/10.1371/journal.pone.0081563
http://dx.doi.org/10.1016/j.neures.2007.05.001
http://dx.doi.org/10.1016/j.bbrc.2006.12.193
http://dx.doi.org/10.1016/j.bbrc.2006.12.193
http://dx.doi.org/10.1530/JOE-11-0132
http://dx.doi.org/10.1530/JOE-11-0132
http://dx.doi.org/10.1038/nature01478
http://dx.doi.org/10.2337/db08-0596
http://dx.doi.org/10.1016/j.bbrc.2007.10.142
http://dx.doi.org/10.1523/JNEUROSCI.0496-10.2010
http://dx.doi.org/10.1016/j.plipres.2013.11.001
http://dx.doi.org/10.1073/pnas.1114350109
http://dx.doi.org/10.2337/db08-1233
http://dx.doi.org/10.1038/sj.bjp.0706770
http://dx.doi.org/10.1016/j.numecd.2009.02.008
http://dx.doi.org/10.1007/s00125-010-1850-5
http://dx.doi.org/10.1371/journal.pone.0019146
http://dx.doi.org/10.1016/j.cmet.2005.03.007
http://dx.doi.org/10.1016/j.cmet.2005.03.007
http://dx.doi.org/10.1677/JME-06-0048
http://dx.doi.org/10.1016/j.bbrc.2010.10.105
http://dx.doi.org/10.2337/db12-1249
http://dx.doi.org/10.2337/db12-1249
http://dx.doi.org/10.1124/jpet.111.187708
http://dx.doi.org/10.1124/jpet.111.183772
http://dx.doi.org/10.1111/j.1463-1326.2011.01525.x
http://dx.doi.org/10.1016/j.tem.2013.03.003
http://dx.doi.org/10.1016/j.tem.2013.03.003
http://dx.doi.org/10.1016/S0140-6736(11)61879-5
http://dx.doi.org/10.1177/0091270011409230
http://dx.doi.org/10.1038/clpt.2012.43
http://dx.doi.org/10.2337/dcS13-2037
http://dx.doi.org/10.1016/S0140-6736(12)60165-2
http://dx.doi.org/10.1016/j.drudis.2013.09.003
http://dx.doi.org/10.1124/mol.112.079640
http://dx.doi.org/10.1124/mol.112.079640
http://dx.doi.org/10.1021/ml300133f
http://dx.doi.org/10.1021/ml300427u
http://dx.doi.org/10.1016/j.bmcl.2014.05.019
http://dx.doi.org/10.1016/j.bmcl.2014.04.065
http://dx.doi.org/10.1016/j.lfs.2013.11.010
http://www.frontiersin.org
http://www.frontiersin.org/Diabetes/archive

Watterson et al.

FFA receptor agonists and diabetes

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

metabolism based on the glucose-dependent insulin secretion. ] Pharmacol Exp
Ther (2013) 346:443-52. doi:10.1124/jpet.113.206466

Christiansen E, Due-Hansen ME, Urban C, Merten N, Pfleiderer M, Karlsen
KK, et al. Structure-activity study of dihydrocinnamic acids and discovery of
the potent FFA1 (GPR40) agonist Tug-469. Acs Med Chem Lett (2010) 1:345-9.
do0i:10.1021/ml100106¢

Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schroder R, Hud-
son BD, et al. Free fatty acid receptor 1 (FFA1/GPR40) agonists: mesylpropoxy
appendage lowers lipophilicity and improves Adme properties. ] Med Chem
(2012) 55:6624-8. doi:10.1021/jm3002026

Christiansen E, Hansen SV, Urban C, Hudson BD, Wargent ET, Grundmann
M, etal. Discovery of Tug-770: a highly potent free fatty acid receptor 1
(FFA1/GPR40) agonist for treatment of type 2 diabetes. Acs Med Chem Lett
(2013) 4:441-5. doi:10.1021/m14000673

Christiansen E, Urban C, Merten N, Liebscher K, Karlsen KK, Hamacher A,
et al. Discovery of potent and selective agonists for the free fatty acid receptor 1
(FFA(1)/GPR40), a potential target for the treatment of type Ii diabetes. ] Med
Chem (2008) 51:7061-4. doi:10.1021/jm8010178

Urban C, Hamacher A, Partke HJ, Roden M, Schinner S, Christiansen E, et al.
Invitro and mouse in vivo characterization of the potent free fatty acid 1 receptor
agonist TUG-469. Naunyn Schmiedebergs Arch Pharmacol (2013) 386:1021-30.
doi:10.1007/s00210-013-0899-3

Christiansen E, Urban C, Grundmann M, Due-Hansen ME, Hagesaether E,
Schmidt J, et al. Identification of a potent and selective free fatty acid recep-
tor 1 (FFA1/GPR40) agonist with favorable physicochemical and in vitro Adme
properties. ] Med Chem (2011) 54:6691-703. doi:10.1021/jm2005699
Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schmidt J, Hansen
SV, et al. Discovery of a potent and selective free fatty acid receptor 1 agonist with
low lipophilicity and high oral bioavailability. ] Med Chem (2013) 56:982-92.
doi:10.1021/jm301470a

Cornall LM, Mathai ML, Hryciw DH, Mcainch AJ. GPR120 agonism as a coun-
termeasure against metabolic diseases. Drug Discov Today (2014) 19:670-9.
doi:10.1016/j.drudis.2013.11.021

Hudson BD, Shimpukade B, Mackenzie AE, Butcher AJ, Pediani JD, Christiansen
E, et al. The pharmacology of TUG-891, a potent and selective agonist of the
free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential oppor-
tunity and possible challenges to therapeutic agonism. Mol Pharmacol (2013)
84:710-25. doi:10.1124/mol.113.087783

Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, et al. GPR120 is an
omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-
sensitizing effects. Cell (2010) 142:687-98. d0i:10.1016/j.cell.2010.07.041
Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L,
et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and
human. Nature (2012) 483:350—4. doi:10.1038/nature10798

Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, et al. Free fatty
acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120.
Nat Med (2005) 11:90—4. doi:10.1038/nm1168

Paulsen SJ, Larsen LK, Hansen G, Chelur S, Larsen PJ, Vrang N. Expression of
the fatty acid receptor GPR120 in the gut of diet-induced-obese rats and its
role in Glp-1 secretion. PLoS One (2014) 9:e88227. doi:10.1371/journal.pone.
0088227

Engelstoft MS, Park WM, Sakata I, Kristensen LV, Husted AS, Osborne-
Lawrence S, et al. Seven transmembrane G protein-coupled receptor repertoire
of gastric ghrelin cells. Mol Metab (2013) 2:376-92. doi:10.1016/j.molmet.2013.
08.006

Gong Z, Yoshimura M, Aizawa S, Kurotani R, Zigman JM, Sakai T, etal. G
protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and
invitro. Am J Physiol Endocrinol Metab (2014) 306:E28-35. doi:10.1152/ajpendo.
00306.2013

Taneera J, Lang S, Sharma A, Fadista J, Zhou Y, Ahlqvist E, et al. A systems genet-
ics approach identifies genes and pathways for type 2 diabetes in human islets.
Cell Metab (2012) 16:122—-34. doi:10.1016/j.cmet.2012.06.006

Stone VM, Dhayal S, Brocklehurst KJ, Lenaghan C, Sorhede Winzell M, Hammar
M, et al. GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and
regulates somatostatin secretion from murine islets of Langerhans. Diabetologia
(2014) 57:1182-91. doi:10.1007/s00125-014-3213-0

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Suckow AT, Polidori D, Yan W, Chon S, Ma JY, Leonard J, et al. Alteration of the
glucagon axis in GPR120 (FFAR4) knockout mice: a role for GPR120 in glucagon
secretion. J Biol Chem (2014) 289:15751-63. doi:10.1074/jbc.M114.568683
Abdoul-Azize S, Selvakumar S, Sadou H, Besnard P, Khan NA. Ca2+ signaling
in taste bud cells and spontaneous preference for fat: unresolved roles of CD36
and GPR120. Biochimie (2014) 96:8—13. doi:10.1016/j.biochi.2013.06.005
Halder S, Kumar S, Sharma R. The therapeutic potential of GPR120: a patent
review. Expert Opin Ther Pat (2013) 23:1581-90. doi:10.1517/13543776.2013.
842977

Li X, YuY, Funk CD. Cyclooxygenase-2 induction in macrophages is modulated
by docosahexaenoic acid via interactions with free fatty acid receptor 4 (FFA4).
FASEB ] (2013) 27:4987-97. d0i:10.1096/j.13-235333

Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT, et al. Unsat-
urated fatty acids revert diet-induced hypothalamic inflammation in obesity.
PLoS One (2012) 7:€30571. doi:10.1371/journal.pone.0030571

Wellhauser L, Belsham DD. Activation of the omega-3 fatty acid receptor
GPR120 mediates anti-inflammatory actions in immortalized hypothalamic
neurons. ] Neuroinflamm (2014) 11:60. doi:10.1186/1742-2094-11-60
Holliday ND, Watson SJ, Brown AJ. Drug discovery opportunities and challenges
at g protein coupled receptors for long chain free Fatty acids. Front Endocrinol
(Lausanne) (2011) 2:112. doi:10.3389/fend0.2011.00112

Shimpukade B, Hudson BD, Hovgaard CK, Milligan G, Ulven T. Discovery
of a potent and selective GPR120 agonist. ] Med Chem (2012) 55:4511-5.
doi:10.1021/jm300215x

Hudson BD, Shimpukade B, Milligan G, Ulven T. The molecular basis of ligand
interaction at free fatty acid receptor 4 (FFA4/GPR120). J Biol Chem (2014)
289:20345-58. doi:10.1074/jbc.M114.561449

Sparks SM, Chen G, Collins JL, Danger D, Dock ST, Jayawickreme C, et al.
Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4
(FFA4/GPR120). Bioorg Med Chem Lett (2014) 24:3100-3. doi:10.1016/j.bmcl.
2014.05.012

Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and
metabolism. Curr Opin Pharmacol (2013) 13:935-40. doi:10.1016/j.coph.2013.
09.008

Nohr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, Husted AS, et al.
GPR41/FFAR3 and GPR43/FFAR?2 as cosensors for short-chain fatty acids in
enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leuko-
cytes. Endocrinology (2013) 154:3552—64. doi:10.1210/en.2013-1142

Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al.
Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-
protein-coupled receptor FFAR2. Diabetes (2012) 61:364—71. doi:10.2337/db11-
1019

Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D,
etal. The orphan G protein-coupled receptors GPR41 and GPR43 are acti-
vated by propionate and other short chain carboxylic acids. ] Biol Chem (2003)
278:11312-9. doi:10.1074/jbc.M211609200

Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. Func-
tional characterization of human receptors for short chain fatty acids and their
role in polymorphonuclear cell activation. J Biol Chem (2003) 278:25481-9.
doi:10.1074/jbc.M301403200

Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid
receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty
acids. Biochem Biophys Res Commun (2003) 303:1047-52. doi:10.1016/S0006-
291X(03)00488- 1

Schmidt J, Smith NJ, Christiansen E, Tikhonova IG, Grundmann M, Hudson BD,
et al. Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: identifica-
tion of the structural and chemical requirements for selective activation of FFA2
versus FFA3. ] Biol Chem (2011) 286:10628-40. doi:10.1074/jbc.M110.210872
Hudson BD, Christiansen E, Tikhonova IG, Grundmann M, Kostenis E, Adams
DR, et al. Chemically engineering ligand selectivity at the free fatty acid recep-
tor 2 based on pharmacological variation between species orthologs. FASEB |
(2012) 26:4951-65. doi:10.1096/1j.12-213314

Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G. Extracellular ionic
locks determine variation in constitutive activity and ligand potency between
species orthologs of the free fatty acid receptors FFA2 and FFA3. ] Biol Chem
(2012) 287:41195-209. doi:10.1074/jbc.M112.396259

Frontiers in Endocrinology | Diabetes

August 2014 | Volume 5 | Article 137 | 8


http://dx.doi.org/10.1124/jpet.113.206466
http://dx.doi.org/10.1021/ml100106c
http://dx.doi.org/10.1021/jm3002026
http://dx.doi.org/10.1021/ml4000673
http://dx.doi.org/10.1021/jm8010178
http://dx.doi.org/10.1007/s00210-013-0899-3
http://dx.doi.org/10.1021/jm2005699
http://dx.doi.org/10.1021/jm301470a
http://dx.doi.org/10.1016/j.drudis.2013.11.021
http://dx.doi.org/10.1124/mol.113.087783
http://dx.doi.org/10.1016/j.cell.2010.07.041
http://dx.doi.org/10.1038/nature10798
http://dx.doi.org/10.1038/nm1168
http://dx.doi.org/10.1371/journal.pone.0088227
http://dx.doi.org/10.1371/journal.pone.0088227
http://dx.doi.org/10.1016/j.molmet.2013.08.006
http://dx.doi.org/10.1016/j.molmet.2013.08.006
http://dx.doi.org/10.1152/ajpendo.00306.2013
http://dx.doi.org/10.1152/ajpendo.00306.2013
http://dx.doi.org/10.1016/j.cmet.2012.06.006
http://dx.doi.org/10.1007/s00125-014-3213-0
http://dx.doi.org/10.1074/jbc.M114.568683
http://dx.doi.org/10.1016/j.biochi.2013.06.005
http://dx.doi.org/10.1517/13543776.2013.842977
http://dx.doi.org/10.1517/13543776.2013.842977
http://dx.doi.org/10.1096/fj.13-235333
http://dx.doi.org/10.1371/journal.pone.0030571
http://dx.doi.org/10.1186/1742-2094-11-60
http://dx.doi.org/10.3389/fendo.2011.00112
http://dx.doi.org/10.1021/jm300215x
http://dx.doi.org/10.1074/jbc.M114.561449
http://dx.doi.org/10.1016/j.bmcl.2014.05.012
http://dx.doi.org/10.1016/j.bmcl.2014.05.012
http://dx.doi.org/10.1016/j.coph.2013.09.008
http://dx.doi.org/10.1016/j.coph.2013.09.008
http://dx.doi.org/10.1210/en.2013-1142
http://dx.doi.org/10.2337/db11-1019
http://dx.doi.org/10.2337/db11-1019
http://dx.doi.org/10.1074/jbc.M211609200
http://dx.doi.org/10.1074/jbc.M301403200
http://dx.doi.org/10.1016/S0006-291X(03)00488-1
http://dx.doi.org/10.1016/S0006-291X(03)00488-1
http://dx.doi.org/10.1074/jbc.M110.210872
http://dx.doi.org/10.1096/fj.12-213314
http://dx.doi.org/10.1074/jbc.M112.396259
http://www.frontiersin.org/Diabetes
http://www.frontiersin.org/Diabetes/archive

Wiatterson et al.

FFA receptor agonists and diabetes

83.

84.

85.

86.

87.

88.

89.

90.

9

—_

Bindels LB, Dewulf EM, Delzenne NM. GPR43/FFA2: physiopathological rel-
evance and therapeutic prospects. Trends Pharmacol Sci (2013) 34:226-32.
doi:10.1016/j.tips.2013.02.002

Bjursell M, Admyre T, Goransson M, Marley AE, Smith DM, Oscarsson J, et al.
Improved glucose control and reduced body fat mass in free fatty acid receptor
2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab (2011)
300:E211-20. doi:10.1152/ajpendo.00229.2010

Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, etal. The
gut microbiota suppresses insulin-mediated fat accumulation via the short-
chain fatty acid receptor GPR43. Nat Commun (2013) 4:1829. doi:10.1038/
ncomms2852

Zaibi MS, Stocker CJ, O’ Dowd J, Davies A, Bellahcene M, Cawthorne MA, et al.
Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes
to short chain fatty acids. FEBS Lett (2010) 584:2381—6. doi:10.1016/j.febslet.
2010.04.027

Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, et al. Effects
of the gut microbiota on host adiposity are modulated by the short-chain fatty-
acid binding G protein-coupled receptor, GPR41. Proc Natl Acad Sci U S A (2008)
105:16767-72. doi:10.1073/pnas.0808567105

Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, et al.
Butyrate and propionate protect against diet-induced obesity and regulate gut
hormones via free fatty acid receptor 3-independent mechanisms. PLoS One
(2012) 7:€35240. doi:10.1371/journal.pone.0035240

Ulven T. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41
as new potential therapeutic targets. Front Endocrinol (Lausanne) (2012) 3:111.
doi:10.3389/fendo.2012.00111

Wang Y, Jiao X, Kayser F, Liu J, Wang Z, Wanska M, et al. The first synthetic ago-
nists of FFA2: discovery and Sar of phenylacetamides as allosteric modulators.
Bioorg Med Chem Lett (2010) 20:493-8. doi:10.1016/j.bmcl.2009.11.112

. Hudson BD, Due-Hansen ME, Christiansen E, Hansen AM, Mackenzie AE, Mur-

doch H, et al. Defining the molecular basis for the first potent and selective
orthosteric agonists of the FFA2 free fatty acid receptor. J Biol Chem (2013)
288:17296-312. doi:10.1074/jbc.M113.455337

92. Cornall LM, Mathai ML, Hryciw DH, Mcainch AJ. The therapeutic potential of
GPR43: a novel role in modulating metabolic health. Cell Mol Life Sci (2013)
70:4759-70. doi:10.1007/s00018-013-1419-9

93. Hudson BD, Christiansen E, Murdoch H, Jenkins L, Hansen AH, Madsen O, et al.
Complex pharmacology of novel allosteric free fatty acid 3 receptor ligands. Mol
Pharmacol (2014) 86:200-10. doi:10.1124/mol.114.093294

94. Tto R, Tsujihata Y, Matsuda-Nagasumi K, Mori I, Negoro N, Takeuchi K. Tak-875,
a GPR40/FFAR1 agonist, in combination with metformin prevents progression
of diabetes and beta-cell dysfunction in Zucker diabetic fatty rats. Br ] Pharmacol
(2013) 170:568-80. doi:10.1111/bph.12297

95. Nakashima R, Yano T, Ogawa J, Tanaka N, Toda N, Yoshida M, et al. Potentia-
tion of insulin secretion and improvement of glucose intolerance by combin-
ing a novel G protein-coupled receptor 40 agonist DS-1558 with glucagon-like
peptide-1receptor agonists. Eur ] Pharmacol (2014) 737C:194-201. doi:10.1016/
j.ejphar.2014.05.014

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 27 June 2014; paper pending published: 19 July 2014; accepted: 07 August
2014; published online: 28 August 2014.

Citation: Watterson KR, Hudson BD, Ulven T and Milligan G (2014) Treatment
of type 2 diabetes by free fatty acid receptor agonists. Front. Endocrinol. 5:137. doi:
10.3389/fendo.2014.00137

This article was submitted to Diabetes, a section of the journal Frontiers in
Endocrinology.

Copyright © 2014 Watterson, Hudson, Ulven and Milligan. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org

August 2014 | Volume 5 | Article 137 |9


http://dx.doi.org/10.1016/j.tips.2013.02.002
http://dx.doi.org/10.1152/ajpendo.00229.2010
http://dx.doi.org/10.1038/ncomms2852
http://dx.doi.org/10.1038/ncomms2852
http://dx.doi.org/10.1016/j.febslet.2010.04.027
http://dx.doi.org/10.1016/j.febslet.2010.04.027
http://dx.doi.org/10.1073/pnas.0808567105
http://dx.doi.org/10.1371/journal.pone.0035240
http://dx.doi.org/10.3389/fendo.2012.00111
http://dx.doi.org/10.1016/j.bmcl.2009.11.112
http://dx.doi.org/10.1074/jbc.M113.455337
http://dx.doi.org/10.1007/s00018-013-1419-9
http://dx.doi.org/10.1124/mol.114.093294
http://dx.doi.org/10.1111/bph.12297
http://dx.doi.org/10.1016/j.ejphar.2014.05.014
http://dx.doi.org/10.1016/j.ejphar.2014.05.014
http://dx.doi.org/10.3389/fendo.2014.00137
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Diabetes/archive

	Treatment of type 2 diabetes by free fatty acid receptor agonists
	Introduction
	FFA1
	FFA1 and insulin secretion
	The FFA1 agonist fasiglifam and insulin secretion
	The effect of partial vs. Full FFA1 agonists on incretin release from enteroendocrine cells
	FFA1 Agonists: Ongoing FFA1 drug programs and future challenges
	FFA4
	The anti-inflammatory effects of FFA4
	Synthetic FFA4 agonists
	Metabolic regulation by FFA2 and FFA3
	Future perspectives
	Acknowledgments
	References


