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Exercise training is generally a healthful activity and an effective intervention for reducing
the risk of numerous chronic diseases including cardiovascular disease and diabetes. This
is likely both a result of prevention of weight gain over time and direct effects of exercise on
metabolism of lipids and the other macronutrient classes. Importantly, a single bout of exer-
cise can alter lipid metabolism and metabolic rate for hours and even into the day following
exercise, so individuals who regularly exercise, even if not performed every single day, over-
all could experience a substantial change in their resting metabolism that would reduce
risk for metabolic diseases. However, resting metabolism does not respond similarly in
all individuals to exercise participation, and indeed gender or sex is a major determinant
of the response of resting lipid metabolism to prior exercise. In order to fully appreciate
the metabolic effects and health benefits of exercise, the differences between men and
women must be considered. In this article, the differences in the effects of exercise on
resting metabolic rate, fuel selection after exercise, as well as the shuttling of triglyceride
and fatty acids between tissues are discussed. Furthermore, concepts related to sex dif-
ferences in the precision of homeostatic control and sex differences in the integration of
metabolism between various organs are considered.
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BACKGROUND
Chronic exercise training reduces all-cause mortality risk (1–4)
and specifically shows a major beneficial impact on the risk for
cardiovascular disease (CVD) (1–4) and diabetes (5–8). These
risk-reducing effects in people who regularly exercise are likely
a result of the prevention of future weight gain (9) as well as
changes in lipid metabolism (10–14) and in metabolism of other
nutrient classes such as carbohydrate (15–17). Many of the appar-
ent benefits of chronic exercise participation may be a result of
acute effects of the most recent exercise bout(s). For example,
chronic exercise training increases resting fat oxidation (18), but
even a single bout of exercise can lead to increased fat oxidation for
hours or even on the following day (12, 19). Chronic exercise can
also reduce hepatic triglyceride (TG) secretion or increase plasma
TG clearance (20–23), but again, these results can be achieved even
following a single exercise bout (14, 24, 25). It is critically impor-
tant to understand physiological differences between populations
in order to appreciate the complexity of physiology and responses
to environmental stresses, and particularly it is clear that there
are significant differences between men and women in response to
exercise. Sex differences in the exercise response are exemplified by
relatively greater reliance of women than men upon fat as an energy
substrate during exercise (12, 26–35), and thus women are bet-
ter able to spare carbohydrate and amino acids (36–38). Though
still less explored than the responses during the exercise sessions,
there are also numerous sex differences in metabolism during
resting periods after exercise. Recent findings have described sex-
ual dimorphism in substrate metabolism during the post-exercise
recovery period and the role of lipid kinetics to support resting

metabolism during this time period (Figure 1). Here, these aspects
of sexual dimorphism after exercise are reviewed.

EFFECTS OF EXERCISE ON THE SUBSEQUENT RESTING
METABOLIC RATE
A single bout of exercise can lead to a modest but potentially sig-
nificant elevation of the resting metabolic rate (RMR) for many
hours afterward (9, 19, 39). This increase in RMR after exercise has
been assessed through elevations in oxygen consumption (VO2).

Historically, the phenomenon of elevated VO2 after exercise had
been referred to as oxygen debt, but the term “excess post-exercise
oxygen consumption” (EPOC) was proposed as a more reason-
able description of the phenomenon (39) and EPOC has now
become a well-accepted term. Resting VO2 changes alone have
been used by many investigators in attempts to study this phe-
nomenon of altered RMR after exercise without consideration of
the corresponding carbon dioxide production (VCO2). However,
the caloric equivalence of VO2 depends upon relative fuel selec-
tion as indicated by the respiratory exchange ratio (RER) or as
also referred to as the respiratory quotient (RQ). Indeed, the RER
is altered after exercise (11, 12, 19), and thus the caloric equiva-
lence of VO2 is altered (40). If the RER were 0.7, then the caloric
equivalence of a liter of VO2 would be 4.7 kcal, while if the RER
were 1.0, a liter of VO2 would correspond to an energy expen-
diture of 5.05 kcal (40). Thus, assessments of the acceleration of
metabolism after exercise are flawed unless a true metabolic rate
is calculated (e.g., in kilocalories/minute rather than simply in
liters of oxygen). This variability in the metabolic energy equiv-
alence of VO2 of slightly <10% is indeed modest, but certainly
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Henderson Sex differences in lipid metabolism after exercise

FIGURE 1 | Summary of the effects of an acute endurance exercise
bout on subsequent metabolism of lipids in the support of the resting
metabolic rate is shown. M > F, response of males greater than that of
females to a recent exercise bout. M = F, responses similar between males
and females to a recent exercise bout. ?, Results for investigations of sex
differences not yet reported. 1, recent exercise increases subsequent RMR
(total substrate oxidation) in men but not significantly in women. 2,
Exercise increases subsequent post-absorptive whole-body lipolysis in men
but not in women. This higher lipolysis in men increases availability of FFA,
which causes greater accentuation of post-absorptive fat oxidation in men
than women. 3, Food intake generally inhibits subsequent fat oxidation,
such that postprandial lipid oxidation is lower than post-absorptive lipid
oxidation, but prior exercise blunts this inhibition of fat oxidation; thus,
postprandial fat oxidation is enhanced by a recent exercise bout (similarly in
men and women). 4, Food intake leads to transient elevation of plasma TG
concentration (postprandial lipemia), but recent exercise blunts postprandial
lipemia, likely to a greater extent in men than women. 5, Prior exercise
blunts hepatic VLDL-TG secretion, but the sex difference is not yet clearly
defined in the literature.

the EPOC phenomenon is very modest [e.g., an elevation of
RMR of 0.1 kcal/min would be reasonably common (19)], so pre-
cision in assessment is essential. An additional methodological
factor to consider is timing of assessments. In numerous studies
of the EPOC phenomenon, post-exercise RMR (or simply VO2)
was compared to pre-exercise values. However, RMR could drift
throughout the day as a result of circadian changes in metabolism
as well as reduced thermic effect of feeding (TEF) as time passes
since the most recent meal. Furthermore, as the RER would drift
downward across a day in the absence of multiple meals, then the
caloric equivalence of VO2 would also decline across the day. Thus,
it is important to conduct separate time-of-day matched sedentary
control trials when attempting to perform a rigorous study of the
effects of prior exercise on RMR.

Recently, we conducted a meta-analysis on post-exercise RMR
(19). We expected that there could be sex differences in the degree
to which RMR is accentuated by a recent exercise bout, so we were
unable to interpret studies where men and women were combined
into a single group in the analysis. For reasons explained above,
we also only included studies in the analysis in which investigators

performed time-of-day matched sedentary control trials. The
results of this meta-analysis indicated that men experience a more
robust increase in RMR than women after an endurance exercise
bout (19). Furthermore, it appeared that the smaller increase in fat
oxidation in women vs. men after exercise, discussed in the subse-
quent section of this article, is largely driven by this sex difference
in the RMR response. It is not yet known why women exhibit less
increase in RMR after exercise. However, this could be viewed as a
higher level of precision in metabolic control in women than men,
as discussed in greater detail later in this report. It appears that
women are better able to resume normal resting metabolic para-
meters after exercise, whereas in men metabolism remains more
significantly perturbed. It is possible that men experience a higher
degree of respiratory uncoupling or a higher metabolic burden
from processes such as lipolysis and gluconeogenesis after exer-
cise. Indeed, as discussed below in detail, it is known that women
reach resting rates of lipolysis (12) and hepatic glucose produc-
tion (41) after exercise much more rapidly than men, and these
observations correspond to the precise resumption of RMR after
exercise (19).

EFFECTS OF EXERCISE ON THE SUBSEQUENT USE OF LIPID
AS A FUEL DURING REST
Compared with rest, during exercise, the relative contribution of
carbohydrate to fuel oxidation increases and the relative contribu-
tion of lipid decreases compared with rest (42–44). Thus, generally
carbohydrate is the predominant fuel during exercise, especially if
the intensity of exercise is vigorous (42–44), but after exercise there
can be a shift toward lipid oxidation predominating in the sup-
port of the RMR for many hours (11, 12, 32, 45) and even into the
next day (12, 14, 46, 47). As stores of glycogen are limited in the
body, it could reasonably be expected that lipid oxidation would
be elevated after exercise in proportion to the degree of glycogen
depletion that occurred during exercise. After glycogen-depleting
exercise, glycogen synthase activity is elevated in skeletal muscle
(15), and this activation is associated with an accentuated lipid
oxidation rate (48). This would likely be a result of the channeling
of glucose toward storage, so it competes less with fatty acids (FAs)
as a substrate for mitochondrial respiration.

During exercise, women rely more heavily upon lipid for fuel
than do men, and thus women are better-equipped to spare carbo-
hydrate (12, 26–35). Consistent with this finding of carbohydrate
sparing in women during exercise, initial observations were that
the increase in lipid oxidation after exercise was more pronounced
in men than women when studied in the post-absorptive state
(12, 32). Subsequently, a meta-analysis confirmed that in the post-
absorptive state, the increase in lipid oxidation after endurance
exercise was more robust in men than women (higher effect size in
men) (19). However, this meta-analysis also indicated that the sex
difference is abolished when men and women took a post-exercise
meal and thus were in the postprandial state during assessments
(19). Therefore, the sexual dimorphism is dependent upon nutri-
tional status. The sex difference during exercise (higher reliance
on carbohydrate in men) could theoretically explain the sex dif-
ferences in fuel selection after exercise in men and women through
effects of glycogen depletion on lipid oxidation. However, glycogen
depletion actually does not appear to sufficiently predict patterns
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Henderson Sex differences in lipid metabolism after exercise

in post-exercise fuel selection, so it appears that other undiscov-
ered cellular factors may be relevant. From a glycogen-centered
viewpoint, one might predict that the higher carbohydrate use
during exercise in men would lead to greater reduction in the
RER after exercise in men than women, but a quantitative liter-
ature review (meta-analysis) indicated no sexual dimorphism in
humans for the effect size of RER depression after exercise (19). Sex
differences in post-exercise lipid oxidation appeared to be more
closely related to the RMR than the RER. Further support for
a glycogen-independent determinant of post-exercise lipid oxi-
dation comes from the effects of nutritional state (postprandial
vs. post-absorptive) on the sex difference in post-exercise lipid
oxidation. The sex difference in post-exercise lipid oxidation is
only present in the post-absorptive state (not in the postprandial
state) (19). If the sex difference in lipid oxidation were the result
of a need for glycogen replenishment, then one would expect a
sizable difference in the postprandial state during net glycogen
deposition. Thus, when searching for potential mechanisms for
sex differences in post-exercise lipid oxidation, higher metabolic
efficiency in women than men after exercise should be consid-
ered (19). Additionally, accentuation of lipolysis in men but not
women after acute bouts of endurance exercise likely contributes
to sex differences in post-exercise substrate oxidation though sup-
ply of FAs to β-oxidation (12). In summary, carbohydrate use
during exercise might have some effect on post-exercise lipid oxi-
dation, but the regulation of post-exercise substrate oxidation is far
more complex, and the sexual dimorphism in post-exercise lipid
oxidation is a result of factors that go beyond that of glycogen
stores.

EFFECTS OF EXERCISE ON THE SUBSEQUENT SHUTTLING OF
TRIGLYCERIDE AND FATTY ACIDS BETWEEN TISSUES
LIPOLYSIS AND FREE FATTY ACID MOBILIZATION
In order to become available for inter-organ shuttling (e.g., from
adipose tissue to muscle), the FAs from TG must be liberated
by lipolysis. During complete lipolysis of a TG molecule, three
FAs and one glycerol are released. However, despite this theoret-
ical stoichiometry, the rate of appearance (Ra) of free fatty acid
(FFA) in plasma remains lower than three times the glycerol Ra
(12, 29, 30, 49–51). Therefore, FFA mobilization is less than the
lipolytic rate, and this is believed to be a result of intracellular
FA reesterification in adipose tissue, because this tissue can recy-
cle FAs but cannot utilize free glycerol for TG synthesis in vivo
(49). Glycerol Ra measures lipolysis but FFA Ra represents the
true mobilization rate of FFA for distribution between tissues.
These processes are measured by the use of stable isotope tracer
methodology (12, 52). Glycerol and FFA mobilization are gener-
ally expected to follow similar patterns of change in response to
stimuli, but FFA mobilization could also be effected by a change
in intracellular metabolism of FA following lipolytic stimulation.
In response to fasting for several days, lipolysis (53–55) and FFA
mobilization (53–57) are increased. Lipolysis increases even over
the duration of just a single day when meals are not consumed
(58) and increases during exercise (12, 59, 60). Thus, it appears
that lipolysis and related FFA mobilization are quite responsive
to the energetic needs and fuel availability in the body. In men
for hours after exercise, glycerol and FFA Ra remain substantially

elevated above those of a sedentary control condition (12) and it
was shown that men can exhibit this elevation even the day after
exercise (61). However, the elevations of glycerol and FFA mobi-
lization after exercise were substantially lower in women than men
even after performing similar exercise sessions (12). These results
for lipid mobilization, collected in the post-absorptive state, are
believed to provide a mechanism for the lesser accentuation of
lipid oxidation in women than men after exercise under these
nutritional conditions through substrate supply to β-oxidation
(12). The sex difference for resting lipolysis after exercise was
most striking, as men exhibited approximately a 50% elevation for
hours after endurance exercise, but women displayed absolutely no
apparent elevation in lipolysis and instead very rapidly regained
the resting lipolytic rate after exercise (12). This intensely homeo-
static control of metabolism after exercise in women is discussed
in more detail below under the section on homeostatic precision.
Norepinephrine levels after exercise and the greater growth hor-
mone response in men during exercise may have played a role
in post-exercise sexual dimorphism in whole-body lipolysis, but
these endocrine differences are not expected to be of an adequate
magnitude to fully explain the sex difference in post-exercise lipol-
ysis. Thus, while the predominant signal for post-exercise lipolytic
control is not entirely clear, enhanced lipolysis in men is a likely
explanation for sexual dimorphism in substrate oxidation in the
post-absorptive state after exercise (12).

POSTPRANDIAL LIPEMIA
Though plasma FFA are a major contributor to total fat oxidation
in the post-absorptive state, in the fed state, the concentration of
FFA in plasma drops while the availability of plasma TG increases,
indicating a relative shift in the availability of different shuttling
forms of FA (11). During the postprandial period, after taking a
high-fat or even a mixed meal, this rise in the concentration of
TG in circulation for hours is referred to as postprandial lipemia.
During this period, plasma TG in the very low-density lipopro-
tein (VLDL) pool rises (hepatic TG secretion) in addition to
that in the chylomicron pool (intestinal TG secretion) (46, 62),
and FAs from the recent meal are rapidly recycled from initial
appearance in chylomicrons into VLDL particles (63–65). In this
process of postprandial TG shuttling, mild fluctuations in plasma
TG concentration may be metabolically appropriate, but exces-
sive postprandial lipemia increases risk of CVD (66–70); thus,
regulation of the postprandial plasma TG excursion is impor-
tant for health. A single bout of exercise, immediately before
or even a day before a meal can profoundly blunt the response
of postprandial lipemia (11, 13, 14, 46, 71–84). However, the
excursion of postprandial plasma TG concentration (i.e., post-
prandial lipemia) is drastically lower in premenopausal women
than men (64, 85–87), so the need to manage this aspect of
metabolism is far lesser in young, lean women than men. This
is a fundamental sexual dirmorphism in the need for physical
activity to manage a metabolic parameter. However, because of
the effect of obesity in exaggerating postprandial lipemia (88,
89), despite the very low plasma TG excursion in lean women,
in obese women postprandial lipemia can be sizable (11), and
in that case exercise can be quite efficacious in blunting the
response to that which would be typically observed in a lean
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Henderson Sex differences in lipid metabolism after exercise

woman (11). Post-menopausal women also exhibit elevated post-
prandial lipemia (90), so ovarian hormones may be involved in the
control of postprandial lipemia. In summary, exercise can blunt
postprandial lipemia appreciably, but lean, premenopausal women
are unique from men and unique from obese or post-menopausal
women, in that they have very little room for improvement in
postprandial lipemia. Young women would likely exhibit minimal
capacity to benefit from a recent exercise bout for postprandial
lipemia.

HEPATIC TG SECRETION
An additional aspect of TG shuttling through plasma is that of
hepatic TG secretion, which contributes to postprandial lipemia
(46, 62) but that is the sole source of plasma TG during the fasted
state. Generally, this VLDL-TG secretion is studied in the post-
absorptive state such that a steady state is present and such that
chylomicrons do not contribute to plasma TG. It has been shown
that VLDL-TG secretion rates are higher in women than men (91,
92), though it is not yet firmly established whether or not there is
sexual dimorphism in the response to exercise. Chronic running
wheel exercise vastly reduces the VLDL-TG secretion rate in rats
(20, 21), so the rate of TG shuttling from the liver to other tissues
appears to be modifiable by exercise. In men, VLDL-TG secretion
rate was not reduced by a single recent bout of endurance exercise
(14, 61), but in women, in a different study, a single session of a
high volume of endurance exercise did indeed reduce subsequent
resting VLDL-TG secretion (25). It is possible that there is sex-
ual dimorphism in the response of resting VLDL-TG secretion to
recent exercise, but this idea will need to be tested in a carefully
controlled study in which the sexes are compared directly within
a single study. Additionally, an animal model of this aspect of sex-
ual dimorphism is needed in order to identify mechanisms, and
this work is underway in our laboratory. In addition to the secre-
tion rate of VLDL-TG from the liver, clearance of plasma TG can
also be altered during the post-exercise recovery period (14, 25,
93–95); however, sexual dimorphism in the response of plasma
TG clearance to exercise is not apparent. When exercise reduces
hepatic TG secretion, the potential consequences of this reduction
in TG export from the liver ought to be considered. Though this
would reduce the supply of FAs to adipose tissue, which could be
beneficial for managing the size of adipose depots, in the absence
of any other changes, such as compensatory changes in FA uptake
from plasma or changes in FA oxidation rates, then the reduced
hepatic TG secretion would theoretically lead to an accumulation
of hepatic TG. Thus, it is the balance of each of these processes that
must be regulated, and likely appropriate compensation occurs
eventually in response to reductions in hepatic TG secretion in
healthy individuals. For example, increased hepatic mitochondr-
ial density and capacity for FA oxidation in the liver were reported
to be a response to chronic exercise training in rats (96–99), and
this could provide compensatory FA disposal in response to the
reduced VLDL secretion that has been observed under certain
chronic exercise conditions (20–22).

PRECISION OF HOMEOSTATIC CONTROL
In considering the variety of changes in resting metabolism to
the stress of a recent exercise session, a pattern from the variety of

sexual dimorphisms begins to emerge. Generally, women appear to
be more precisely homeostatic than men. As discussed above, after
exercise women rapidly regain euglycemia whereas men remain
in a state of reduced blood glucose concentration for hours (41).
Perhaps as part of a counter-regulatory response to the challenge
to glycemia, men display a substantial elevation in lipolysis after
exercise, while on the contrary, women quickly resume their nor-
mal resting rate of whole-body lipolysis (12). Furthermore, RMR
is elevated significantly after exercise in men but to a negligible
extent in women (19). The ability to spare energy expenditure and
to retain rather than mobilize body fat stores would likely be a
desirable trait for mammals, including humans, during the course
of our evolutionary past. It is unclear why this trait of homeo-
static precision has been of greater selective advantage in females
than males, but one could speculate that metabolic precision is
paramount in women because of the expected stresses on the
body’s energy stores that are imposed by pregnancy and lactation.
Furthermore, when considering other sex differences in homeo-
static control, particularly those related to regulation of energy
balance, it becomes apparent that female sex hormones play a role
in the precision of homeostatic control of metabolic processes. For
example, when challenged with a high-fat diet, female mice gain
less body weight than male mice, but when the ovaries are surgi-
cally removed (ovariectomy), then this tight homeostatic control
over energy balance is lost (100). It also appears that female rats
(101–105) and possibly female humans (106, 107) are less prone to
negative energy balance (weight loss or fat loss) when challenged
with chronic exercise training, and indeed estrogen is known to
generally act on neural control of behavior and metabolism for
precise regulation of energy balance (108). Analogously, female
rats also appear to demonstrate a better ability to cope with the
metabolic stress of starvation compared with their male counter-
parts (109). Furthermore, in humans, even when controlling for
the effect of age per se, there is an accelerated gain of weight and
body fat after menopause (110–112), further implicating ovar-
ian hormones in the control of energy metabolism. This concept
of a sex difference in the precision of homeostatic control could
provide an important context for past as well as future discover-
ies in the sexually dimorphic responses to single exercise bouts,
chronic exercise training, and even sex differences in the tolerance
of other physiological stressors. It appears that the tight regula-
tion of lipid metabolism after exercise in women (Figure 1) fits
into a general pattern in biology for sexual dimorphism in energy
metabolism.

SUMMARY AND FUTURE DIRECTIONS
The vast majority of the work on metabolic responses to exer-
cise has addressed the changes in physiology and metabolism
during the actual exercise bouts, but the majority of even an
avid exerciser’s life is not spent exercising and rather is spent at
rest. Thus, because of importance for developing a view of the
overall impact of exercise on metabolism, the discoveries on rest-
ing metabolism in the post-exercise recovery period have been
reviewed here. Indeed, continued work on this important aspect
of exercise-related metabolism is needed to fully understand how
exercise participation can change the integration of metabolism
during the many hours of rest in the day. The majority of work
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Henderson Sex differences in lipid metabolism after exercise

on exercise has been conducted on males, so additional work on
women and female laboratory animals is needed to further extend
our understanding of sexual dimorphism in the future. Finally,
in order to understand hormonal mechanisms, and relevance to
post-menopausal women, additional work is needed on the post-
menopausal human population and on ovariectomized (OVX)
laboratory animals.

In summary, there are numerous changes in resting metabo-
lism for hours or even a day after exercise (Figure 1). However,
many of these changes in lipid metabolism and the metabolic
energy demand are different between men and women after exer-
cise. In isolation, each example of sexual dimorphism lacks a
context. However, when viewed within the general pattern that
emerges from the list of sex differences that have been reported,
one can understand that females display a more precise defense
of homeostasis during the post-exercise recovery period, includ-
ing the control of the RMR, fasting lipolytic rate, postprandial
TG concentration, blood glucose concentration, and fuel selec-
tion. The supply of lipid-based fuels to support mitochondrial
respiration and to spare carbohydrate is depicted by a complex
orchestration of flux of multiple metabolites between multiple
tissues. This integration of lipolysis, FFA mobilization, lipopro-
tein kinetics, and fat oxidation with the RMR is clearly impacted
by recent participation in an exercise bout, but generally to a
lesser extent in women because of superior homeostatic con-
trol of metabolism and thus less perturbation of metabolism
after exercise. In the future, it may be of benefit to discover
ways to alter the response of resting metabolism to prior exer-
cise, including the changes, which currently appear to be sex-
dependent, in order to manipulate lipid metabolism in ways
that will be ideal for the prevention of chronic disease as well
as for the recovery from the energetic demands of exercise
participation.

ACKNOWLEDGMENTS
Supported by funding from the Charles and Johanna Busch Bio-
medical Foundation, the Division of Life Sciences at Rutgers
University, and by American Diabetes Association grant # 7-13-
JF-27-BR. The author thanks Marc Tuazon of Rutgers University
for comments on the manuscript and for assistance with prepar-
ing the figure. The author also thanks Dylan Klein of Rutgers
University for comments on the manuscript.

REFERENCES
1. Blair SN, Kohl HW III, Barlow CE, Paffenbarger RS Jr, Gibbons LW, Macera

CA. Changes in physical fitness and all-cause mortality. A prospective study
of healthy and unhealthy men. JAMA (1995) 273:1093–8. doi:10.1001/jama.
1995.03520380029031

2. Blair SN, Kohl HW III, Paffenbarger RS Jr, Clark DG, Cooper KH, Gib-
bons LW. Physical fitness and all-cause mortality. A prospective study of
healthy men and women. JAMA (1989) 262:2395–401. doi:10.1001/jama.1989.
03430170057028

3. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, et al. The
preventable causes of death in the United States: comparative risk assessment
of dietary, lifestyle, and metabolic risk factors. PLoS Med (2009) 6:e1000058.
doi:10.1371/journal.pmed.1000058

4. Paffenbarger RS Jr, Wing AL, Hyde RT. Physical activity as an index of heart
attack risk in college alumni. Am J Epidemiol (1978) 108:161–75.

5. Colberg SR, Grieco CR. Exercise in the treatment and prevention of diabetes.
Curr Sports Med Rep (2009) 8:169–75. doi:10.1249/JSR.0b013e3181ae0654

6. Henriksen EJ, Louters LL, Stump CS, Tipton CM. Effects of prior exercise on
the action of insulin-like growth factor I in skeletal muscle. Am J Physiol (1992)
263:E340–4.

7. Helmrich SP, Ragland DR, Leung RW, Paffenbarger RS Jr. Physical activity and
reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med
(1991) 325:147–52. doi:10.1056/NEJM199107183250302

8. Ostergard T, Andersen JL, Nyholm B, Lund S, Nair KS, Saltin B, et al. Impact
of exercise training on insulin sensitivity, physical fitness, and muscle oxida-
tive capacity in first-degree relatives of type 2 diabetic patients. Am J Physiol
Endocrinol Metab (2006) 290:E998–1005. doi:10.1152/ajpendo.00012.2005

9. IOM. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids,
Cholesterol, Protein, and Amino Acids. Washington, DC: National Academies
Press (2002).

10. Schenk S, Horowitz JF. Acute exercise increases triglyceride synthesis in skeletal
muscle and prevents fatty acid-induced insulin resistance. J Clin Invest (2007)
117:1690–8. doi:10.1172/JCI30566

11. Davitt PM, Arent SM, Tuazon MA, Golem DL, Henderson GC. Postpran-
dial triglyceride and free fatty acid metabolism in obese women after either
endurance or resistance exercise. J Appl Physiol (2013) 114:1743–54. doi:10.
1152/japplphysiol.00095.2013

12. Henderson GC, Fattor JA, Horning MA, Faghihnia N, Johnson ML, Mau TL,
et al. Lipolysis and fatty acid metabolism in men and women during the pos-
texercise recovery period. J Physiol (2007) 584:963–81. doi:10.1113/jphysiol.
2007.137331

13. Katsanos CS, Grandjean PW, Moffatt RJ. Effects of low and moderate exer-
cise intensity on postprandial lipemia and postheparin plasma lipoprotein
lipase activity in physically active men. J Appl Physiol (1985) (2004) 96:181–8.
doi:10.1152/japplphysiol.00243.2003

14. Magkos F, Wright DC, Patterson BW, Mohammed BS, Mittendorfer B. Lipid
metabolism response to a single, prolonged bout of endurance exercise in
healthy young men. Am J Physiol Endocrinol Metab (2006) 290:E355–62.
doi:10.1152/ajpendo.00259.2005

15. Bogardus C, Thuillez P, Ravussin E, Vasquez B, Narimiga M, Azhar S. Effect
of muscle glycogen depletion on in vivo insulin action in man. J Clin Invest
(1983) 72:1605–10. doi:10.1172/JCI111119

16. Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, et al.
Endurance exercise as a countermeasure for aging. Diabetes (2008) 57:2933–42.
doi:10.2337/db08-0349

17. Ivy JL, Kuo CH. Regulation of GLUT4 protein and glycogen synthase dur-
ing muscle glycogen synthesis after exercise. Acta Physiol Scand (1998)
162:295–304. doi:10.1046/j.1365-201X.1998.0302e.x

18. Romijn JA, Klein S, Coyle EF, Sidossis LS,Wolfe RR. Strenuous endurance train-
ing increases lipolysis and triglyceride-fatty acid cycling at rest. J Appl Physiol
(1993) 75:108–13.

19. Henderson GC, Alderman BL. Determinants of resting lipid oxidation in
response to a prior bout of endurance exercise. J Appl Physiol (1985)
116(2014):95–103. doi:10.1152/japplphysiol.00956.2013

20. Simonelli C, Eaton RP. Reduced triglyceride secretion: a metabolic consequence
of chronic exercise. Am J Physiol (1978) 234:E221–7.

21. Mondon CE, Dolkas CB, Tobey T, Reaven GM. Causes of the triglyceride-
lowering effect of exercise training in rats. J Appl Physiol (1984) 57:1466–71.

22. Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras SA, Sidossis LS.
High-intensity interval aerobic training reduces hepatic very low-density
lipoprotein-triglyceride secretion rate in men. Am J Physiol Endocrinol Metab
(2008) 295:E851–8. doi:10.1152/ajpendo.90545.2008

23. Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose
KD. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis.
Sports Med (2001) 31:1033–62. doi:10.2165/00007256-200131150-00002

24. Henderson GC, Krauss RM, Fattor JA, Faghihnia N, Luke-Zeitoun M, Brooks
GA. Plasma triglyceride concentrations are rapidly reduced following indi-
vidual bouts of endurance exercise in women. Eur J Appl Physiol (2010)
109:721–30. doi:10.1007/s00421-010-1409-7

25. Bellou E, Siopi A, Galani M, Maraki M, Tsekouras YE, Panagiotakos DB,
et al. Acute effects of exercise and calorie restriction on triglyceride metab-
olism in women. Med Sci Sports Exerc (2013) 45:455–61. doi:10.1249/MSS.
0b013e318278183e

26. Carter SL, Rennie C, Tarnopolsky MA. Substrate utilization during endurance
exercise in men and women after endurance training. Am J Physiol Endocrinol
Metab (2001) 280:E898–907.

www.frontiersin.org October 2014 | Volume 5 | Article 162 | 5

http://dx.doi.org/10.1001/jama.1995.03520380029031
http://dx.doi.org/10.1001/jama.1995.03520380029031
http://dx.doi.org/10.1001/jama.1989.03430170057028
http://dx.doi.org/10.1001/jama.1989.03430170057028
http://dx.doi.org/10.1371/journal.pmed.1000058
http://dx.doi.org/10.1249/JSR.0b013e3181ae0654
http://dx.doi.org/10.1056/NEJM199107183250302
http://dx.doi.org/10.1152/ajpendo.00012.2005
http://dx.doi.org/10.1172/JCI30566
http://dx.doi.org/10.1152/japplphysiol.00095.2013
http://dx.doi.org/10.1152/japplphysiol.00095.2013
http://dx.doi.org/10.1113/jphysiol.2007.137331
http://dx.doi.org/10.1113/jphysiol.2007.137331
http://dx.doi.org/10.1152/japplphysiol.00243.2003
http://dx.doi.org/10.1152/ajpendo.00259.2005
http://dx.doi.org/10.1172/JCI111119
http://dx.doi.org/10.2337/db08-0349
http://dx.doi.org/10.1046/j.1365-201X.1998.0302e.x
http://dx.doi.org/10.1152/japplphysiol.00956.2013
http://dx.doi.org/10.1152/ajpendo.90545.2008
http://dx.doi.org/10.2165/00007256-200131150-00002
http://dx.doi.org/10.1007/s00421-010-1409-7
http://dx.doi.org/10.1249/MSS.0b013e318278183e
http://dx.doi.org/10.1249/MSS.0b013e318278183e
http://www.frontiersin.org
http://www.frontiersin.org/Diabetes/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Henderson Sex differences in lipid metabolism after exercise

27. Devries MC, Hamadeh MJ, Phillips SM, Tarnopolsky MA. Menstrual cycle
phase and sex influence muscle glycogen utilization and glucose turnover dur-
ing moderate-intensity endurance exercise. Am J Physiol Regul Integr Comp
Physiol (2006) 291:R1120–8. doi:10.1152/ajpregu.00700.2005

28. Devries MC, Lowther SA, Glover AW, Hamadeh MJ, Tarnopolsky MA. IMCL
area density, but not IMCL utilization, is higher in women during moderate-
intensity endurance exercise, compared with men. Am J Physiol Regul Integr
Comp Physiol (2007) 293:R2336–42. doi:10.1152/ajpregu.00510.2007

29. Friedlander AL, Casazza GA, Horning MA, Buddinger TF, Brooks GA. Effects
of exercise intensity and training on lipid metabolism in young women. Am
J Physiol (1998) 275:E853–63.

30. Friedlander AL, Casazza GA, Horning MA, Usaj A, Brooks GA. Endurance
training increases fatty acid turnover, but not fat oxidation, in young men.
J Appl Physiol (1999) 86:2097–105.

31. Henderson GC, Fattor JA, Horning MA, Faghihnia N, Luke-Zeitoun M,
Brooks GA. Retention of intravenously infused [13C]bicarbonate is tran-
siently increased during recovery from hard exercise. J Appl Physiol (2007)
103:1604–12. doi:10.1152/japplphysiol.00309.2007

32. Horton TJ, Pagliassotti MJ, Hobbs K, Hill JO. Fuel metabolism in men
and women during and after long-duration exercise. J Appl Physiol (1998)
85:1823–32.

33. Phillips SM, Atkinson SA, Tarnopolsky MA, MacDougall JD. Gender differ-
ences in leucine kinetics and nitrogen balance in endurance athletes. J Appl
Physiol (1993) 75:2134–41.

34. Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR.
Gender differences in substrate for endurance exercise. J Appl Physiol (1990)
68:302–8.

35. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries
MC, Hamadeh MJ. Influence of endurance exercise training and sex on
intramyocellular lipid and mitochondrial ultrastructure, substrate use, and
mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol (2007)
292:R1271–8. doi:10.1152/ajpregu.00472.2006

36. Lamont LS, McCullough AJ, Kalhan SC. Gender differences in leucine, but not
lysine, kinetics. J Appl Physiol (1985) 91(2001):357–62.

37. Lamont LS, McCullough AJ, Kalhan SC. Gender differences in the regulation
of amino acid metabolism. J Appl Physiol (1985) 95(2003):1259–65.

38. McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA.
Endurance exercise training attenuates leucine oxidation and BCOAD acti-
vation during exercise in humans. Am J Physiol Endocrinol Metab (2000)
278:E580–7.

39. Gaesser GA, Brooks GA. Metabolic bases of excess post-exercise oxygen
consumption: a review. Med Sci Sports Exerc (1984) 16:29–43. doi:10.1249/
00005768-198401000-00008

40. Brooks GA, Fahey TD, Baldwin KM. Exercise Physiology: Human Bioenergetics
and its Applications. Boston, MA: McGraw-Hill (2005).

41. Henderson GC, Fattor JA, Horning MA, Faghihnia N, Johnson ML, Luke-
Zeitoun M, et al. Glucoregulation is more precise in women than in men during
postexercise recovery. Am J Clin Nutr (2008) 87:1686–94.

42. Brooks GA. Importance of the “crossover” concept in exercise metabolism.
Clin Exp Pharmacol Physiol (1997) 24:889–95. doi:10.1111/j.1440-1681.1997.
tb02712.x

43. Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during
exercise: the “crossover” concept. J Appl Physiol (1994) 76:2253–61.

44. Brooks GA, Trimmer JK. Glucose kinetics during high-intensity exercise and
the crossover concept. J Appl Physiol (1996) 80:1073–5.

45. Bahr R, Sejersted OM. Effect of feeding and fasting on excess postexercise
oxygen consumption. J Appl Physiol (1991) 71:2088–93.

46. Gill JM,Frayn KN,Wootton SA,Miller GJ,Hardman AE. Effects of prior moder-
ate exercise on exogenous and endogenous lipid metabolism and plasma factor
VII activity. Clin Sci (Lond) (2001) 100:517–27. doi:10.1042/CS20000258

47. Thomas TR, Londeree BR, Lawson DA. Prolonged recovery from eccentric
versus concentric exercise. Can J Appl Physiol (1994) 19:441–50. doi:10.1139/
h94-036

48. Mott DM, Pratley RE, Bogardus C. Postabsorptive respiratory quotient and
insulin-stimulated glucose storage rate in nondiabetic pima Indians are related
to glycogen synthase fractional activity in cultured myoblasts. J Clin Invest
(1998) 101:2251–6. doi:10.1172/JCI1778

49. Coppack SW, Persson M, Judd RL, Miles JM. Glycerol and nonesterified fatty
acid metabolism in human muscle and adipose tissue in vivo. Am J Physiol
(1999) 276:E233–40.

50. Jensen MD. Regional glycerol and free fatty acid metabolism before and after
meal ingestion. Am J Physiol (1999) 276:E863–9.

51. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, et al. Reg-
ulation of endogenous fat and carbohydrate metabolism in relation to exercise
intensity and duration. Am J Physiol (1993) 265:E380–91.

52. Henderson GC. Kinetic measurement techniques in the evaluation of lipid
metabolism. Curr Drug Discov Technol (2013) 10:209–23. doi:10.2174/
1570163811310030004

53. Wolfe RR, Peters EJ, Klein S, Holland OB, Rosenblatt J, Gary H Jr. Effect of
short-term fasting on lipolytic responsiveness in normal and obese human
subjects. Am J Physiol (1987) 252:E189–96.

54. Carlson MG, Snead WL, Campbell PJ. Fuel and energy metabolism in fasting
humans. Am J Clin Nutr (1994) 60:29–36.

55. Klein S, Peters EJ, Holland OB, Wolfe RR. Effect of short- and long-term
B-adrenergic blockade on lipolysis during fasting in humans. Am J Physiol
Endocrinol Metab (1989) 257:E65–73.

56. Webber J, Taylor J, Greathead H, Dawson J, Buttery PJ, Macdonald IA. Effects
of fasting on fatty acid kinetics and on the cardiovascular, thermogenic and
metabolic responses to the glucose clamp. Clin Sci (1994) 87:697–706.

57. Romijn JA, Endert E, Saurwein HP. Glucose and fat metabolism during short-
term starvation in cirrhosis. Gastroenterology (1991) 100:731–7.

58. Mittendorfer B, Horowitz JF, Klein S. Gender differences in lipid and glu-
cose kinetics during short-term fasting. Am J Physiol Endocrinol Metab (2001)
281:E1333–9.

59. Friedlander AL, Casazza GA, Horning MA, Budinger TF, Brooks GA. Effects
of exercise intensity and training on lipid metabolism in young women. Am
J Physiol (1998) 275:E853–63.

60. Jacobs KA, Casazza GA, Suh S-H, Horning MA, Brooks GA. Fatty acid reester-
ification but not oxidation is increased by oral contraceptive use in women.
J Appl Physiol (2005) 98:1720–32. doi:10.1152/japplphysiol.00685.2004

61. Magkos F, Patterson BW, Mohammed BS, Mittendorfer B. A single 1-h bout of
evening exercise increases basal FFA flux without affecting VLDL-triglyceride
and VLDL-apolipoprotein B-100 kinetics in untrained lean men. Am J Physiol
Endocrinol Metab (2007) 292:E1568–74. doi:10.1152/ajpendo.00636.2006

62. Gill JM, Al-Mamari A, Ferrell WR, Cleland SJ, Perry CG, Sattar N, et al.
Effect of prior moderate exercise on postprandial metabolism in men with
type 2 diabetes: heterogeneity of responses. Atherosclerosis (2007) 194:134–43.
doi:10.1016/j.atherosclerosis.2006.10.007

63. Heath RB, Karpe F, Milne RW, Burdge GC, Wootton SA, Frayn KN. Dietary
fatty acids make a rapid and substantial contribution to VLDL-triacylglycerol
in the fed state. Am J Physiol Endocrinol Metab (2007) 292:E732–9. doi:10.1152/
ajpendo.00409.2006

64. Knuth ND, Horowitz JF. The elevation of ingested lipids within plasma
chylomicrons is prolonged in men compared with women. J Nutr (2006)
136:1498–503.

65. Puga GM, Meyer C, Mandarino LJ, Katsanos CS. Postprandial spillover of
dietary lipid into plasma is increased with moderate amounts of ingested
fat and is inversely related to adiposity in healthy older men. J Nutr (2012)
142:1806–11. doi:10.3945/jn.112.162008

66. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared
with nonfasting triglycerides and risk of cardiovascular events in women. JAMA
(2007) 298:309–16. doi:10.1001/jama.298.3.309

67. Freiberg JJ,Tybjaerg-Hansen A, Jensen JS,Nordestgaard BG. Nonfasting triglyc-
erides and risk of ischemic stroke in the general population. JAMA (2008)
300:2142–52. doi:10.1001/jama.2008.621

68. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid lev-
els: influence of normal food intake on lipids, lipoproteins, apolipopro-
teins, and cardiovascular risk prediction. Circulation (2008) 118:2047–56.
doi:10.1161/CIRCULATIONAHA.108.804146

69. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglyc-
erides and risk of myocardial infarction, ischemic heart disease, and death in
men and women. JAMA (2007) 298:299–308. doi:10.1001/jama.298.3.299

70. Stampfer MJ, Krauss RM, Ma J, Blanche PJ, Holl LG, Sacks FM, et al. A prospec-
tive study of triglyceride level, low-density lipoprotein particle diameter, and

Frontiers in Endocrinology | Diabetes October 2014 | Volume 5 | Article 162 | 6

http://dx.doi.org/10.1152/ajpregu.00700.2005
http://dx.doi.org/10.1152/ajpregu.00510.2007
http://dx.doi.org/10.1152/japplphysiol.00309.2007
http://dx.doi.org/10.1152/ajpregu.00472.2006
http://dx.doi.org/10.1249/00005768-198401000-00008
http://dx.doi.org/10.1249/00005768-198401000-00008
http://dx.doi.org/10.1111/j.1440-1681.1997.tb02712.x
http://dx.doi.org/10.1111/j.1440-1681.1997.tb02712.x
http://dx.doi.org/10.1042/CS20000258
http://dx.doi.org/10.1139/h94-036
http://dx.doi.org/10.1139/h94-036
http://dx.doi.org/10.1172/JCI1778
http://dx.doi.org/10.2174/1570163811310030004
http://dx.doi.org/10.2174/1570163811310030004
http://dx.doi.org/10.1152/japplphysiol.00685.2004
http://dx.doi.org/10.1152/ajpendo.00636.2006
http://dx.doi.org/10.1016/j.atherosclerosis.2006.10.007
http://dx.doi.org/10.1152/ajpendo.00409.2006
http://dx.doi.org/10.1152/ajpendo.00409.2006
http://dx.doi.org/10.3945/jn.112.162008
http://dx.doi.org/10.1001/jama.298.3.309
http://dx.doi.org/10.1001/jama.2008.621
http://dx.doi.org/10.1161/CIRCULATIONAHA.108.804146
http://dx.doi.org/10.1001/jama.298.3.299
http://www.frontiersin.org/Diabetes
http://www.frontiersin.org/Diabetes/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Henderson Sex differences in lipid metabolism after exercise

risk of myocardial infarction. JAMA (1996) 276:882–8. doi:10.1001/jama.1996.
03540110036029

71. Tsetsonis NV, Hardman AE, Mastana SS. Acute effects of exercise on post-
prandial lipemia: a comparative study in trained and untrained middle-aged
women. Am J Clin Nutr (1997) 65:525–33.

72. Aldred HE, Perry IC, Hardman AE. The effect of a single bout of brisk walking
on postprandial lipemia in normolipidemic young adults. Metabolism (1994)
43:836–41. doi:10.1016/0026-0495(94)90263-1

73. Ferreira AP, Ferreira CB, Souza VC, Cordova CO, Silva GC, Nobrega Ode
T, et al. The influence of intense intermittent versus moderate continu-
ous exercise on postprandial lipemia. Clinics (Sao Paulo) (2011) 66:535–41.
doi:10.1590/S1807-59322011000400003

74. Gill JM, Al-Mamari A, Ferrell WR, Cleland SJ, Packard CJ, Sattar N, et al. Effects
of prior moderate exercise on postprandial metabolism and vascular func-
tion in lean and centrally obese men. J Am Coll Cardiol (2004) 44:2375–82.
doi:10.1016/j.jacc.2004.09.035

75. Gill JM, Herd SL, Hardman AE. Moderate exercise and post-prandial metab-
olism: issues of dose-response. J Sports Sci (2002) 20:961–7. doi:10.1080/
026404102321011715

76. Herd SL, Kiens B, Boobis LH, Hardman AE. Moderate exercise, postpran-
dial lipemia, and skeletal muscle lipoprotein lipase activity. Metabolism (2001)
50:756–62. doi:10.1053/meta.2001.24199

77. Maraki M, Magkos F, Christodoulou N,Aggelopoulou N, Skenderi KP, Panagio-
takos D, et al. One day of moderate energy deficit reduces fasting and postpran-
dial triacylglycerolemia in women: the role of calorie restriction and exercise.
Clin Nutr (2010) 29:459–63. doi:10.1016/j.clnu.2009.10.007

78. Singhal A, Trilk JL, Jenkins NT, Bigelman KA, Cureton KJ. Effect of intensity of
resistance exercise on postprandial lipemia. J Appl Physiol (2009) 106:823–9.
doi:10.1152/japplphysiol.90726.2008

79. Tsetsonis NV, Hardman AE. Reduction in postprandial lipemia after walk-
ing: influence of exercise intensity. Med Sci Sports Exerc (1996) 28:1235–42.
doi:10.1097/00005768-199610000-00005

80. Zafeiridis A, Goloi E, Petridou A, Dipla K, Mougios V, Kellis S. Effects of low-
and high-volume resistance exercise on postprandial lipaemia. Br J Nutr (2007)
97:471–7. doi:10.1017/S0007114507336787

81. Zhang JQ, Ji LL, Fogt DL, Fretwell VS. Effect of exercise duration on post-
prandial hypertriglyceridemia in men with metabolic syndrome. J Appl Physiol
(2007) 103:1339–45. doi:10.1152/japplphysiol.00181.2007

82. Zhang JQ, Ji LL, Nunez G, Feathers S, Hart CL, Yao WX. Effect of exercise tim-
ing on postprandial lipemia in hypertriglyceridemic men. Can J Appl Physiol
(2004) 29:590–603. doi:10.1139/h04-038

83. Zotou E, Magkos F, Koutsari C, Fragopoulou E, Nomikos T, Sidossis LS, et al.
Acute resistance exercise attenuates fasting and postprandial triglyceridemia
in women by reducing triglyceride concentrations in triglyceride-rich lipopro-
teins. Eur J Appl Physiol (2010) 110:869–74. doi:10.1007/s00421-010-1561-0

84. Katsanos CS, Moffatt RJ. Acute effects of premeal versus postmeal exer-
cise on postprandial hypertriglyceridemia. Clin J Sport Med (2004) 14:33–9.
doi:10.1097/00042752-200401000-00006

85. Uranga AP, Levine J, Jensen M. Isotope tracer measures of meal fatty acid
metabolism: reproducibility and effects of the menstrual cycle. Am J Physiol
Endocrinol Metab (2005) 288:E547–55. doi:10.1152/ajpendo.00340.2004

86. Matthan NR, Jalbert SM, Barrett PH, Dolnikowski GG, Schaefer EJ, Lichten-
stein AH. Gender-specific differences in the kinetics of nonfasting TRL, IDL,
and LDL apolipoprotein B-100 in men and premenopausal women. Arterioscler
Thromb Vasc Biol (2008) 28:1838–43. doi:10.1161/ATVBAHA.108.163931

87. Nguyen TT, Hernandez Mijares A, Johnson CM, Jensen MD. Postprandial leg
and splanchnic fatty acid metabolism in nonobese men and women. Am J Phys-
iol (1996) 271:E965–72.

88. Dallongeville J, Gruson E, Dallinga-Thie G, Pigeyre M, Gomila S, Romon
M. Effect of weight loss on the postprandial response to high-fat and high-
carbohydrate meals in obese women. Eur J Clin Nutr (2007) 61:711–8.
doi:10.1038/sj.ejcn.1602603

89. Lewis GF, O’Meara NM, Soltys PA, Blackman JD, Iverius PH, Druetzler AF,
et al. Postprandial lipoprotein metabolism in normal and obese subjects: com-
parison after the vitamin A fat-loading test. J Clin Endocrinol Metab (1990)
71:1041–50. doi:10.1210/jcem-71-4-1041

90. van Beek AP, de Ruijter-Heijstek FC, Erkelens DW, de Bruin TW. Menopause
is associated with reduced protection from postprandial lipemia. Arterioscler
Thromb Vasc Biol (1999) 19:2737–41. doi:10.1161/01.ATV.19.11.2737

91. Mittendorfer B, Patterson BW, Klein S. Effect of sex and obesity on basal VLDL-
triacylglycerol kinetics. Am J Clin Nutr (2003) 77:573–9.

92. Magkos F, Patterson BW, Mohammed BS, Klein S, Mittendorfer B.
Women produce fewer but triglyceride-richer very low-density lipopro-
teins than men. J Clin Endocrinol Metab (2007) 92:1311–8. doi:10.1210/jc.
2006-2215

93. Tsekouras YE,Yanni AE, Bougatsas D, Kavouras SA, Sidossis LS. A single bout of
brisk walking increases basal very low-density lipoprotein triacylglycerol clear-
ance in young men. Metabolism (2007) 56:1037–43. doi:10.1016/j.metabol.
2007.03.012

94. Bellou E, Magkos F, Kouka T, Bouchalaki E, Sklaveniti D, Maraki M, et al.
Effect of high-intensity interval exercise on basal triglyceride metabolism in
non-obese men. Appl Physiol Nutr Metab (2013) 38:823–9. doi:10.1139/apnm-
2012-0468

95. Tsekouras YE, Magkos F, Prentzas KI, Basioukas KN, Matsama SG, Yanni AE,
et al. A single bout of whole-body resistance exercise augments basal VLDL-
triacylglycerol removal from plasma in healthy untrained men. Clin Sci (Lond)
(2009) 116:147–56. doi:10.1042/CS20080078

96. Linden MA, Fletcher JA, Morris EM, Meers GM, Kearney ML, Crissey JM, et al.
Combining metformin and aerobic exercise training in the treatment of type
2 diabetes and NAFLD in OLETF rats. Am J Physiol Endocrinol Metab (2014)
306:E300–10. doi:10.1152/ajpendo.00427.2013

97. Linden MA, Meers GM, Ruebel ML, Jenkins NT, Booth FW, Laughlin MH,
et al. Hepatic steatosis development with four weeks of physical inactivity in
previously active, hyperphagic OLETF rats. Am J Physiol Regul Integr Comp
Physiol (2013) 304:R763–71. doi:10.1152/ajpregu.00537.2012

98. Rector RS, Uptergrove GM, Morris EM, Borengasser SJ, Laughlin MH, Booth
FW, et al. Daily exercise vs. caloric restriction for prevention of nonalcoholic
fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver
Physiol (2011) 300:G874–83. doi:10.1152/ajpgi.00510.2010

99. Thyfault JP, Rector RS, Uptergrove GM, Borengasser SJ, Morris EM,
Wei Y, et al. Rats selectively bred for low aerobic capacity have reduced
hepatic mitochondrial oxidative capacity and susceptibility to hepatic
steatosis and injury. J Physiol (2009) 587:1805–16. doi:10.1113/jphysiol.2009.
169060

100. Grove KL, Fried SK, Greenberg AS, Xiao XQ, Clegg DJ. A microarray analysis
of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice.
Int J Obes (Lond) (2010) 34:989–1000. doi:10.1038/ijo.2010.12

101. Garthwaite SM, Cheng H, Bryan JE, Craig BW, Holloszy JO. Ageing, exercise
and food restriction: effects on body composition. Mech Ageing Dev (1986)
36:187–96. doi:10.1016/0047-6374(86)90019-9

102. Holloszy JO. Exercise increases average longevity of female rats despite
increased food intake and no growth retardation. J Gerontol (1993) 48:B97–100.
doi:10.1093/geronj/48.3.B97

103. Holloszy JO, Smith EK, Vining M, Adams S. Effect of voluntary exercise on
longevity of rats. J Appl Physiol (1985) 59(1985):826–31.

104. Oscai LB, Mole PA, Krusack LM, Holloszy JO. Detailed body composition
analysis on female rats subjected to a program of swimming. J Nutr (1973)
103:412–8.

105. Slentz CA, Holloszy JO. Body composition of physically inactive and active 25-
month-old female rats. Mech Ageing Dev (1993) 69:161–6. doi:10.1016/0047-
6374(93)90020-R

106. Ballor DL, Keesey RE. A meta-analysis of the factors affecting exercise-induced
changes in body mass, fat mass, and fat-free mass in males and females. Int
J Obes (1991) 15:717–26.

107. Donnelly JE, Smith BK. Is exercise effective for weight loss with ad libitum
diet? Energy balance, compensation, and gender differences. Exerc Sport Sci
Rev (2005) 33:169–74. doi:10.1097/00003677-200510000-00004

108. Brown LM, Clegg DJ. Central effects of estradiol in the regulation of
food intake, body weight, and adiposity. J Steroid Biochem Mol Biol (2010)
122:65–73. doi:10.1016/j.jsbmb.2009.12.005

109. Hill JO, Talano CM, Nickel M, DiGirolamo M. Energy utilization in food-
restricted female rats. J Nutr (1986) 116:2000–12.

110. Gambacciani M, Ciaponi M, Cappagli B, Benussi C, De Simone L, Genazzani
AR. Climacteric modifications in body weight and fat tissue distribution. Cli-
macteric (1999) 2:37–44. doi:10.3109/13697139909025561

111. Ho SC, Wu S, Chan SG, Sham A. Menopausal transition and changes of body
composition: a prospective study in Chinese perimenopausal women. Int J Obes
(Lond) (2010) 34:1265–74. doi:10.1038/ijo.2010.33

www.frontiersin.org October 2014 | Volume 5 | Article 162 | 7

http://dx.doi.org/10.1001/jama.1996.03540110036029
http://dx.doi.org/10.1001/jama.1996.03540110036029
http://dx.doi.org/10.1016/0026-0495(94)90263-1
http://dx.doi.org/10.1590/S1807-59322011000400003
http://dx.doi.org/10.1016/j.jacc.2004.09.035
http://dx.doi.org/10.1080/026404102321011715
http://dx.doi.org/10.1080/026404102321011715
http://dx.doi.org/10.1053/meta.2001.24199
http://dx.doi.org/10.1016/j.clnu.2009.10.007
http://dx.doi.org/10.1152/japplphysiol.90726.2008
http://dx.doi.org/10.1097/00005768-199610000-00005
http://dx.doi.org/10.1017/S0007114507336787
http://dx.doi.org/10.1152/japplphysiol.00181.2007
http://dx.doi.org/10.1139/h04-038
http://dx.doi.org/10.1007/s00421-010-1561-0
http://dx.doi.org/10.1097/00042752-200401000-00006
http://dx.doi.org/10.1152/ajpendo.00340.2004
http://dx.doi.org/10.1161/ATVBAHA.108.163931
http://dx.doi.org/10.1038/sj.ejcn.1602603
http://dx.doi.org/10.1210/jcem-71-4-1041
http://dx.doi.org/10.1161/01.ATV.19.11.2737
http://dx.doi.org/10.1210/jc.2006-2215
http://dx.doi.org/10.1210/jc.2006-2215
http://dx.doi.org/10.1016/j.metabol.2007.03.012
http://dx.doi.org/10.1016/j.metabol.2007.03.012
http://dx.doi.org/10.1139/apnm-2012-0468
http://dx.doi.org/10.1139/apnm-2012-0468
http://dx.doi.org/10.1042/CS20080078
http://dx.doi.org/10.1152/ajpendo.00427.2013
http://dx.doi.org/10.1152/ajpregu.00537.2012
http://dx.doi.org/10.1152/ajpgi.00510.2010
http://dx.doi.org/10.1113/jphysiol.2009.169060
http://dx.doi.org/10.1113/jphysiol.2009.169060
http://dx.doi.org/10.1038/ijo.2010.12
http://dx.doi.org/10.1016/0047-6374(86)90019-9
http://dx.doi.org/10.1093/geronj/48.3.B97
http://dx.doi.org/10.1016/0047-6374(93)90020-R
http://dx.doi.org/10.1016/0047-6374(93)90020-R
http://dx.doi.org/10.1097/00003677-200510000-00004
http://dx.doi.org/10.1016/j.jsbmb.2009.12.005
http://dx.doi.org/10.3109/13697139909025561
http://dx.doi.org/10.1038/ijo.2010.33
http://www.frontiersin.org
http://www.frontiersin.org/Diabetes/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Henderson Sex differences in lipid metabolism after exercise

112. Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR. Increased visceral
fat and decreased energy expenditure during the menopausal transition. Int
J Obes (Lond) (2008) 32:949–58. doi:10.1038/ijo.2008.25

Conflict of Interest Statement: The author declares that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 05 June 2014; accepted: 22 September 2014; published online: 07 October
2014.

Citation: Henderson GC (2014) Sexual dimorphism in the effects of exercise on
metabolism of lipids to support resting metabolism. Front. Endocrinol. 5:162. doi:
10.3389/fendo.2014.00162
This article was submitted to Diabetes, a section of the journal Frontiers in
Endocrinology.
Copyright © 2014 Henderson. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Endocrinology | Diabetes October 2014 | Volume 5 | Article 162 | 8

http://dx.doi.org/10.1038/ijo.2008.25
http://dx.doi.org/10.3389/fendo.2014.00162
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Diabetes
http://www.frontiersin.org/Diabetes/archive

	Sexual dimorphism in the effects of exercise on metabolism of lipids to support resting metabolism
	Background
	Effects of exercise on the subsequent resting metabolic rate
	Effects of exercise on the subsequent use of lipid as a fuel during rest
	Effects of exercise on the subsequent shuttling of triglyceride and fatty acids between tissues
	Lipolysis and free fatty acid mobilization
	Postprandial lipemia
	Hepatic TG secretion

	Precision of homeostatic control
	Summary and future directions
	Acknowledgments
	References


