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Gonadotropin-inhibitory hormone (GnIH) was discovered as a novel hypothalamic peptide
that inhibits gonadotropin release in the quail.The presence of GnIH-homologous peptides
and its receptors (GnIHRs) have been demonstrated in various vertebrate species including
teleosts, suggesting that the GnIH-GnIHR family is evolutionarily conserved. In avian and
mammalian brain, GnIH neurons are localized in the hypothalamic nuclei and their neural
projections are widely distributed. GnIH acts on the pituitary and gonadotropin-releasing
hormone neurons to inhibit reproductive functions by decreasing gonadotropin release
and synthesis. In addition, GnIH-GnIHR signaling is regulated by various factors, such as
environmental cues and stress. However, the function of fish GnIH orthologs remains
inconclusive because the physiological properties of fish GnIH peptides are debatable.
This review summarizes the current research progress in GnIH-GnIHR signaling and their
physiological functions in vertebrates with special emphasis on non-mammalian vertebrate
species.
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INTRODUCTION: DISCOVERY OF GnIH
When the reproductive axis is triggered, gonadotropin-releasing
hormone (GnRH), a neuropeptide involved in regulating ver-
tebrate reproduction, is released from the hypothalamus. The
released GnRH then enters into the anterior pituitary gland
and triggers the release of gonadotropins: luteinizing hormone
(LH) and follicle-stimulating hormone (FSH) (1, 2). These
gonadotropins act on the gonads to stimulate the synthesis and
release of gonadal steroids (3). Kisspeptin, the peptide product
of KISS1/Kiss1 gene and its cognate receptor (GPR54= kisspeptin
receptor) has been well recognized as a potent regulator of GnRH
release in vertebrates (4, 5). In mammals, kisspeptin immunore-
active fibers are seen in close apposition with GnRH neurons (6,
7) and with GnRH axons in the median eminence (ME) in the
primates (8). Furthermore, GPR54 expression has been demon-
strated in GnRH neurons from a non-mammalian species, the
cichlid fish, tilapia (9), suggesting that kisspeptin plays stimula-
tory role via its action on GnRH neurons. In 2000, Tsutsui and his
colleagues discovered a novel hypothalamic neuropeptide, termed
gonadotropin-inhibitory hormone (GnIH) in the Japanese quail,
Coturnix japonica that directly acts on the pituitary gland, thus
impeding gonadotropin release (10). This was the first illustration
of a hypothalamic neuropeptide demonstrating inhibitory effects
on reproduction in any vertebrate (10).

STRUCTURE OF GnIH AND GnIH RECEPTOR ORTHOLOGS
IN VERTEBRATES
GnIH AND GnIH ORTHOLOGS
GnIH belongs to the RFamide family of peptides as it contains
RFamide motifs (Arg-Phe-NH2) at its C-terminus. The amino

acid sequence of GnIH and its orthologs in various vertebrates
and their phylogenetic relationship are demonstrated in Table 1
and Figure 1.

Jawless and jawed fish
In jawless fish species, GnIH orthologs have been identified and
characterized in the lamprey (11) and the hagfish (12).

In jawed fish, teleosts GnIH orthologs have been identified and
characterized in several species including the goldfish (13), sockeye
salmon (48), grass puffer (15), tilapia (16), stickleback, tetraodon,
medaka, Takifugu, and the zebrafish (14).

In this review article, all LPXRFa family of peptides (GnIH,
RFRP3, and LPXRFa) are designated as GnIH orthologs based
on their “GnIH peptide-like” structure. In most fish species, GnIH
gene sequence encodes three putative peptide sequences (LPXRFa-
1, -2, and -3), while only two putative sequences (LPXRFa-1 and
-2) are present in some teleosts such as the stickleback, tetraodon,
and takifugu (14). This suggests that the structures of GnIH family
of peptides are evolutionarily conserved in vertebrates.

Amphibians
In the bullfrog, frog GH-releasing peptide (fGRP) has been identi-
fied as the amphibian GnIH orthologous peptide (17). In addition,
using the molecular approach, another three fGRP-related pep-
tides (fGRP-RP-1, -RP-2, and -RP-3) have been identified (19). In
the European green frog, Rana RFamide (R-RFa) with LPXRFa
motif has been identified (20). In the newt, four LPXRFa peptides
(nLPXRFa-1, -2, -3, and -4) are predicted to be encoded in the newt
LPXRFa cDNA. HPLC analysis further confirmed the existence of
all four mature LPXRFa peptides in the newt brain (21).
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Ogawa and Parhar GnIH systems in vertebrates

Table 1 | Comparison of amino acid sequences of GnIH and its homologous peptides from jawless fish to mammals.

Animal Species Name Amino acid sequence Distribution

(mRNA or

peptides)a

Mode of

action

Reference

JAWLESS FISH

Sea lamprey Petromyzon

marinus

LPXRFa-1a SGVGQGRSSKTLFQPQRFa B, T, O (11)

LPXRFa-1b AALRSGVGQGRSSKTLFQPQRFa (11)

LPXRFa-2 SEPFWHRTRPQRFa (11)

Hagfish Myxine

glutinosa

LPXRFa ALPQRFa (12)

JAWED FISH

Goldfish Carassius

auratus

gfLPXRFa-1 PTHLHANLPLRFa B (13)

gfLPXRFa-2 AKSNINLPQRFa (13)

gfLPXRFa-3 SGTGLSATLPQRFa (13)

Zebrafish Danio rerio zfLPXRFa-1 PAHLHANLPLRFa B, E, T, O,

M, K, SP, G

(14)

zfLPXRFa-2 APKSTINLPQRFa (14)

zfLPXRFa-3 SGTGPSATLPQRFa (14)

Grass Puffer Takifugu

niphobles

LPXRFa-1 SLDMERINIQVSPTSGKVSLP B, P, E, K,

SP

(15)

TIVRLYPPTLQPHHQHVNMPMRFa

LPXRFa-2 DGVQGGDHVPNLNPNMPQRFa (15)

Nile tilapia Oreochromis

niloticus

LPXRFa-1 Ac-TLLSSNDGTYSVRKQPHQETKNEIHRSLDL B, P, T, O (14, 16)

ESFNIRVAPTTSKFSLPTIIRFYPPTVKPLHLHANMPLRFa

LPXRFa-2 p-QSDERTPNSSPNLPQRFa (14, 16)

LPXRFa-3 Ac-APNQLLSQRFE (14, 16)

AMPHIBIAN

Bullfrog Rana

catesbeiana

fGRP/R-Rfa SLKPAANLPLRFa B (17, 18)

fGRP-RP-1 SIPNLPQRFa (19)

fGRP-RP-2 YLSGKTKVQSMANLPQRFa (19)

fGRP-RP-3 AQYTNHFVHSLDTLPLRFa (19)

European

green frog

Rana

esculenta

R-RFa SLKPAANLPLRFa B (20)

Japanese

red-bellied

newt

Cynops

pyrrhogaster

nLPXRFa-1 SVPNLPQRFa B (21)

nLPXRFa-2 MPHASANLPLRFa (21)

nLPXRFa-3 SIQPLANLPQRFa (21)

nLPXRFa-4 APSAGQFIQTLANLPQRFa (21)

BIRD

Japanese

Quail

Coturnix

japonica

GnIH SIKPSAYLPLRFa B, T, O GnRH1 (10, 22, 23)

GnIH-RP-1 SLNFEEMKDWGSKNFMKVNTPTVNKVPNSVANLPLRFa (24)

GnIH-RP-2 SSIQSLLNLPQRFa (24)

Chicken Gallus gallus GnIH SIRPSAYLPLRFa B (25)

GnIH-RP-1 SLNFEEMKDWGSKNFLKVNTPTVNKVPNSVANLPLRFa (25)

GnIH-RP-2 SSIQSLLNLPQRFa (25)

Gambel’s

white-crowned

sparrow

Zonotrichia

leucophrys

gambelii

GnIH SIKPFSNLPLRFa B GnRH2 (26, 27)

GnIH-RP-1 SLNFEEMEDWGSKDIIKMNPFTASKMPNSVANLPLRFa (26)

GnIH-RP-2 SPLVKGSSQSLLNLPQRFa (26)

European

starling

Sturnus

vulgaris

GnIH SIKPFANLPLRFa B, T, O GnRH1,

GnRH2

(28)

GnIH-RP-1 SLNFDEMEDWGSKDIIKMNPFTVSKMPNSVANLPLRFa (28)

GnIH-RP-2 GSSQSLLNLPQRFa (28)

(Continued)
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Table 1 | Continued

Animal Species Name Amino acid sequence Distribution

(mRNA or

peptides)a

Mode of

action

Reference

Zebra finch Taeniopygia

guttata

GnIH SIKPFSNLPLRFa B GnRH1 (29)

GnIH-RP-1 SLNFEEMEDWRSKDIIKMNPFAASKMPNSVANLPLRFa (29)

GnIH-RP-2 SPLVKGSSQSLLNLPQRFa (29)

MAMMAL

Human being Homo sapiens RFRP-1 MPHSFANLPLRFa B (30)

RFRP-3 VPNLPQRFa B GnRH1 (30)

Rhesus

macaque

Macaca

mulatta

RFRP-1 MPHSVTNLPLRFa B (31)

RFRP-3 SGRNMEVSLVRQVLNLPQRFa B GnRH1,

GnRH2,

dopamine,

β-endorphin

(31–33)

Mouse Mus musculus RFRP-1 SVSFQELKDWGAKKVIKMSPAPANKVPHSAANLPLRFa B (34)

RFRP-3 ANMEAGTRSHFPSLPQRFa B GnRH1,

kisspeptin

(34, 35)

Rat Rattus

norvegicus

RFRP-1 SVTFQELKDWGAKKDIKMSPAPANKVPHSAANLPLRFa B, E (36)

RFRP-3 ANMEAGTMSHFPSLPQRFa B GnRH1,

kisspeptin

(34, 37–39)

Syrian golden

hamster

Mesocricetus

auratus

RFRP-1 SPAPANKVPHSAANLPLRFa B (34)

RFRP-3 TLSRVPSLPQRFa B GnRH1 (34, 40)

Cow Bos taurus RFRP-1 SLTFEEVKDWAPKIKMNKPVVNKMPPSAANLPLRFa B (41)

RFRP-3 AMAHLPLRLGKNREDSLSRWVPNLPQRFa B, P (42)

Sheep Ovis aries RFRP-1 SLTFEEVKDWGPKIKMNTPAVNKMPPSAANLPLRFa B (43, 44)

RFRP-3 VMAHLPLRLGKNREDSLSRRVPNLPQRFa B, P GnRH1,

NPY, POMC,

orexin, MCH

(43–46)

Pig Sus scrofa LPXRF-1 SLNFEELKDWGPKNVIKMSTPVVNKMPPLAANLPLRFa B, M, O, E,

K, A, U, Pg

(47)

LPXRF-3 AIASLPLRFGRNTEDSMSRPVPMLPQRFa

aB, brain; P, pituitary; E, eye; T, testis; O, ovary; M, muscle; K, kidney; SP, spleen; Gl, gill; A, adrenal gland; U, uterus; Pg, parotid gland.

The identical C-terminal LPXRFamide (X=Leu or Gln) motif sequences are in bold font.

Birds
GnIH peptides have been identified in various avian species
such as chicken, zebra finches, starlings, and sparrows (10, 24,
28, 29).

Mammals
Orthologs of GnIH have also been determined in the mammalian
species (43, 49, 50). In mammals, three different RFamide-related
peptides (RFRP), including RFRP-1, -2, and -3, were initially iden-
tified from the bovine and human brain cDNA, whereas only two
RFRPs (RFRP-1 and/or RFRP-3) were discovered in rodents (51,
52). The mammalian GnIH orthologs, RFRP-1 and -3, possess
the LPXRFamide (X= Leu or Gln) peptide, which is absent in
the RFRP-2 ortholog (53). Therefore, it has been concluded that
RFRP-1 and RFRP-3 serve as the functional mammalian GnIH
orthologs.

GnIH RECEPTOR
The receptor for GnIH family of peptides belongs to the seven
transmembrane G protein-coupled receptor (GPCR or GPR) fam-
ily. Two potential GnIH receptors (GPR147 and GPR74) have been
identified in vertebrates and GPR147 has been accepted as a potent
receptor for GnIH. The summary of GnIH-homologous peptides
and its receptor (GnIHR=GPR147) and its orthologs in various
vertebrates and their phylogenetic relationship are demonstrated
in Table 2 and Figure 2.

Jawless and jawed fish
In jawless fish, there is no report on identification of GnIH receptor
to date. In jawed fishes, GnIH receptors have been identified in sev-
eral species; where GPR147 has been identified in the grass puffer
(15), goldfish (66), zebrafish (14), and tilapia (16), and GPR74
has been identified in several teleosts species (14, 16). In most
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Ogawa and Parhar GnIH systems in vertebrates

FIGURE 1 | Phylogenetic tree of GnIH and its homologous peptides sequences in vertebrates. The phylogenetic tree was constructed by MEGA 3.1 using
the neighbor-joining method. The amino acid sequences analyzed for the phylogenetic tree construction are listed inTable 1.

teleosts, only one GnIH receptor gene has been identified, while
in the zebrafish, three different GnIH receptor gene types (gnihr1,
gnihr2, and gnihr3) have been isolated (14). However, the binding
affinities of teleost GPR147 and GPR74 to GnIH peptides have
not been characterized. Our recent study has shown that tilapia
GPR147 (tiLPXRFa-R) has strong affinity to tilapia LPXRFa-2
peptides through both cAMP/PKA and Ca+2/PKC pathways (16).

Birds
In the avian species, two receptors (GPR74 and GPR147) have
been identified and further characterization has revealed GPR147
as the potent receptor for the avian GnIH based on their binding
affinity to GnIH and RFRP-3 peptides (25, 59).

Mammals
In mammals, two receptors (GPR74 and GPR147) have been iden-
tified (36, 44, 67, 68). GPR147 couples to Gαi protein, which
is involved in inhibiting the production of cAMP (36). There-
fore, GPR147 is generally accepted as the candidate receptor for
GnIH and RFRP-3 in birds and mammals because of its stronger
inhibitory effect on Gαi mRNA expression in COS-7 cells, as
compared to that of GPR74 (25, 52, 69). However, other stud-
ies have shown that GPR147 receptor also tends to bind to Gαi3

and Gαs proteins, while GPR74 binds to Gαi2, Gαi3, Gαo, and Gαs

proteins (70).

DISTRIBUTION OF GnIH AND GnIHR
DISTRIBUTION OF GnIH NEURONS IN THE BRAIN
Compared to mammals and birds, in other non-mammalian ver-
tebrate species, studies describing the distribution of GnIH expres-
sion are very few due to limited GnIH gene sequences and the lack
of specific antibodies to non-mammalian GnIH orthologous pep-
tides. The distribution pattern of GnIH neurons in the brain of
various vertebrate species are illustrated in Figure 3 (71).

Jawless and jawed fish
In the brain of sea lamprey, the expression of lamprey LPXRFa
mRNA as well as lamprey LPXRFa-immunoreactive cells has been
detected in the bed nucleus of the tract of the postoptic com-
missure (nTPOC) in the hypothalamus (11). Lamprey LPXRFa-
immunoreactive fibers are widely seen in the brain and a few fibers
are seen in the neurohypophysis (11).

In jawed fish species, such as the goldfish, in situ hybridization
study has shown the expression of GnIH mRNA in the nucleus
posterioris periventricularis (NPPv) in the hypothalamus (13).
Using antibodies to avian GnIH and fGRP, the distribution of
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Ogawa and Parhar GnIH systems in vertebrates

Table 2 | List of GnIH receptor (GPR147) and its homologous sequences found or predicted from jawless fish to mammals.

Animal Species Name GenBank

accession

number

Distributiona Expression in

GnRH or other

neurons

Reference

JAWED FISH

Coelacanth Latimeria chalumnae Neuropeptide FF receptor 1 XP_005991458 Predicted

Spotted gar Lepisosteus oculatus Neuropeptide FF receptor 1 like XP_006630407 Predicted

Goldfish Carassius auratus G-protein couple receptor

IHR1/GnIHR1

AFY63167 B, P, T, O (54, 55)

G-protein couple receptor

IHR2/GnIHR2

AFY63168 B, P, T, O (54, 55)

G-protein couple receptor

IHR3/GnIHR3

AFY63169 B, P (54)

AER11372

Zebrafish Danio rerio GnIHR1 (neuropeptide FF

receptor 1 like 1)

ADB43133 B, P, T, M, K,

SP, H, Gl, E

(14)

NP_001165167

GnIHR2 (neuropeptide FF

receptor 1 like 2)

ADB43134 B, T, K, SP, H,

L, Gl, E

(14)

NP_001165168

GnIHR3 (neuropeptide FF

receptor 1)

ADB43135 B, T, O, M, K,

SP, IN, H, Gl, E

(14)

NP_001082858

Takifugu Takifugu rubripes RFamide-related peptide

receptor

BAF34887 B, P, E, K (25)

Mexican tetra Astyanax mexicanus Neuropeptide FF receptor 1 like XP_007255089 Predicted

Rainbow trout Oncorhynchus mykiss Unnamed protein product CDQ96641 (56)

Bicolor

damselfish

Stegastes partitus Neuropeptide FF receptor 1 like XP_008295983 Predicted

AMPHIBIAN

Xenopus Xenopus laevis Neuropeptide FF receptor 1 NP_001084551 (57)

REPTILE

Green anole Anolis carolinensis Neuropeptide FF receptor 1 XP_008104865 Predicted

King cobra Ophiophagus hannah Neuropeptide FF receptor 1 ETE63534 (58)

Chinese

alligator

Alligator sinensis Neuropeptide FF receptor 1 XP_006027961 Predicted

American

alligator

Alligator

mississippiensis

Neuropeptide FF receptor 1 XP_006265135 Predicted

Western

painted turtle

Chrysemys picta bellii Neuropeptide FF receptor 1 like XP_005286579 Predicted

Green sea

turtle

Chelonia mydas Neuropeptide FF receptor 1 like XP_007053537 Predicted

BIRD

Japanese quail Coturnix japonica GnIH receptor BAD86818 B, T, O (23, 59)

European

starling

Sturnus vulgaris GnIH receptor EF212891 B, P, T, O GnRH1,

GnRH2

(23, 28)

Budgerigar Melopsittacus

undulatus

Neuropeptide FF receptor 1 XP_005154065 Predicted

Chicken Gallus gallus Neuropeptide FF receptor 1 NP_989693 B, P, T, O (25, 60, 61)

BAE17050

(Continued)
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Table 2 | Continued

Animal Species Name GenBank

accession

number

Distributiona Expression in

GnRH or other

neurons

Reference

MAMMAL

Human being Homo sapiens Neuropeptide FF receptor 1 NP_071429 B, P (30, 36)

Mouse Mus musculus Neuropeptide FF receptor 1 NP_001170982 GnRH,

kisspeptin

(35, 62, 63)

Rat Rattus norvegicus Neuropeptide FF receptor 1 NP_071627 B, E GnRH,

kisspeptin,

dopamine

(36, 39)

Syrian golden

hamster

Mesocricetus auratus GPR147 ACY39880 B, P, T (64, 65)

Sheep Ovis aries Neuropeptide FF receptor 1 ABW08098 B (44)

Pig Sus scrofa Neuropeptide FF receptor 1 HQ681286 B, P, O, K, E, U,

A, IN, S

(47)

aB, brain; P, pituitary; E, eye; T, testis; O, ovary; M, muscle; K, kidney; SP, spleen; Gl, gills; H, heart; L, liver; IN, intestine; A, adrenal gland; U, uterus.

FIGURE 2 | Phylogenetic tree of GnIH receptor (GPR147) and its homologous sequences in vertebrates. The phylogenetic tree was constructed by MEGA
3.1 using the neighbor-joining method. GenBank accession numbers for the sequences are listed inTable 2.
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Ogawa and Parhar GnIH systems in vertebrates

FIGURE 3 | Comparison of localization of GnIH cells and their
associations with other neural systems in the brain from jawless fish,
jawed fish, amphibians, birds, and mammals. In jawless fish (sea lamprey),
LPXRFa-cells are localized in the bed nucleus of the tract of the postoptic
commissure (nTPOC) in the hypothalamus (11). In jawed fish (goldfish,
salmon, and carp), LPXRFa-immunoreactive cells are seen in the nucleus
posterioris periventricularis (NPPv) (13, 48, 72). In amphibians (bullfrog and
newt), LPXRFa-neurons are seen in the anterior preoptic area (POA) and/or
the suprachiasmatic nucleus (SCN) (17, 18, 20, 21). In birds, the GnIH neurons
are present in the PVN. In mammals and birds, GnIH neurons project to the
median eminence (ME). In mammals, GnIH neurons are localized in the
dorsomedial nucleus of the hypothalamus (DMH) and in the paraventricular
nucleus (PVN). In jawless fish (sea lamprey), LPXRFa-immunoreactive fibers
are seen in the neurohypophysis (NE), suggesting action of GnIH on the

pituitary (pit) cells. In jawed fish, LPXRFa-immunoreactive fibers are present
in the pituitary. In amphibians, birds, and mammals, LPXRFa/GnIH fibers are
terminated in the ME. In birds and mammals, GnIH cells (black circle)
associated with several other neurons such as GnRH neuron types: GnRH1
(red circle), GnRH2 (green circle), and GnRH3 (blue circle) neurons. The open
circle with green indicates the presence of GnRH2 neurons only in certain
mammalian species such as primates but not in rodents (73). In some
mammals, GnIH fibers are also closely associated with kisspeptin neurons
(yellow circle). GnIH neural functions are regulated by melatonin (Mel) derived
from the pineal gland (dark blue) or eyes. In jawed and jawless fish, the effect
of melatonin on GnIH neurons is still unknown, but there might be direct
projection from the pineal gland to GnIH neurons in the hypothalamus (74–76).
Confirmed association is indicated by the line, and unconfirmed hypothetical
association is indicated by the dotted line.

GnIH orthologs-like immunoreactivity has been examined in the
brain of several teleosts including the goldfish (13), sockeye salmon
(48), and the Indian major carp (72). In the sockeye salmon and
the Indian major carp, the distribution pattern of fGRP/GnIH-
immunoreactive cells is similar to GnIH mRNA expression in the
NPPv of the goldfish (13, 48, 72), suggesting that the presence of
GnIH neurons in the NPPv is a common pattern in teleosts.

The presence of fGPR/GnIH-immunoreactive fibers have been
reported in several brain regions including in the olfactory bulb,

telencephalon, optic tectum, mesencephalon, diencephalon, and
the spinal cord (13, 48, 72). In the goldfish and sockeye salmon,
the presence of fGPR-immunoreactive fibers has also been noted
in the pituitary (13, 48). In the pituitary of the Indian major carp,
GnIH-immunoreactive cells and fibers have been detected in the
proximal pars distalis region only during the early developmen-
tal stage, but not in adults (72). However, in the Indian major
carp, GnIH-immunoreactive cells are also seen in several mes-
encephalic regions, such as the nucleus of medial longitudinal
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Ogawa and Parhar GnIH systems in vertebrates

fascicle and the occulomotor nucleus (72), which needs further
verification by in situ hybridization with specific GnIH gene
sequence in the Indian major carp. Similarly, in the goldfish, fGRP-
immunoreactive cells have been reported in the terminal nerve of
the olfactory bulb, where no GnIH mRNA is expressed (13), which
indicates the fGRP antibody has cross reactivity to other unknown
RFamide peptides. Therefore, to identify the targets of GnIH neu-
rons in the brain and in the pituitary more precisely, a specific
antibody to fish GnIH orthologs peptide needs to be generated.

Amphibians
In the brain of the European green frog, R-RFa-containing neu-
rons are localized in the hypothalamus, which includes the anterior
preoptic area (POA), the suprachiasmatic nucleus (SCN), and the
dorsal and ventral hypothalamic nuclei (20). R-RFa-containing
fibers are widely distributed throughout the brain from the olfac-
tory bulb to the brainstem, and are particularly abundant in the
external layer of the ME (20). In the bullfrog, fGRP neurons are
mainly seen in the telencephalon and the diencephalon including
the medial septum, nucleus of the diagonal band of Broca, ante-
rior POA and the SCN (17, 18). fGRP-immunoreactive fibers are
widely distributed throughout the brain including mesencephalic
and rhombencephalic regions, and are terminate in the ME (17).
In the newt brain, nLPXRFa mRNA and the peptide (with anti-
fGRP serum) are expressed only in the SCN in the hypothalamus
(21). Similar to frogs, fGRP-immunoreactive fibers are seen in the
mesencephalic and rhombencephalic regions and terminate in the
ME (21).

Reptiles
In the Japanese grass lizard, GnIH-immunoreactive neurons are
seen in the nucleus accumbens, paraventricular nucleus (PVN),
and upper medulla, and GnIH fibers are distributed in the third
ventricle, the paraventricular organ, and the ME (77).

Birds
In the avian species, majority of the hypothalamic GnIH neuronal
cell bodies are present in the PVN, with the main projections
extending to the ME (10, 26, 78, 79). However, in the ME of
Rufous-winged sparrows, there are no GnIH fibers (80), although
expression of GnIH receptors has been shown in the pituitary
(69). Additionally, the diencephalic and mesencephalic regions of
the avian brain have extensive distribution of GnIH fibers.

Mammals
In rodents, GnIH neurons are concentrated within the dorsome-
dial nucleus of the hypothalamus (DMH), where abundant fibers
project to the hypothalamic and limbic structures (34). In the
ovine species, GnIH neurons are widespread in the brain, where
they are present throughout the DMH, PVN, and the mediobasal
hypothalamus (43). Recently, using transgenic rats carrying an
enhanced green fluorescent protein (EGFP) tagged to the GnIH
promoter, another population of smaller EGFP-positive neurons
were seen in the ventromedial hypothalamus (VMH), which was
not detected previously by GnIH immunohistochemistry (81).
The mammalian GnIH fiber terminals project to the external layer
of the ME (30, 31, 43, 64), suggesting the action of GnIH on the

pituitary via the blood vasculature, which is supported by the mea-
surement of GnRH peptide concentration in hypophyseal portal
blood in ewes (82). However, GnIH-immunoreactive fibers are
absent in the ME of hamsters (34, 40) and Wistar rats (83).

DISTRIBUTION OF GnIH RECEPTORS IN THE BRAIN AND PITUITARY
In most vertebrates, GnIH receptors (GPR147) are mainly
expressed in the pituitary and in several brain regions including
the hypothalamus and the spinal cord (14, 25, 30, 59, 84), most
of which have been examined mainly by RT-PCR or Southern-
blot analysis. However, to date, detail neuroanatomical informa-
tion of GnIH receptor localization in the vertebrate brain is very
limited (28).

Jawless and jawed fish
There is no report demonstrating the distribution of GnIH recep-
tor in jawless species. However, in jawed fish species, the zebrafish,
the expression of three GnIH receptors have been detected in the
brain by RT-PCR (14). In the zebrafish, two GnIH receptors genes
(gnihr1 and gnihr3) are expressed in the pituitary (14). In the
grass puffer and the tilapia, both GnIH and GnIH receptor genes
are expressed in the brain and pituitary (15, 16). Furthermore,
our recent study in the tilapia has shown the co-expression of
GnIH receptor gene (lpxrf-r) in LH and FSH cells by double in situ
hybridization (16).

Birds and mammals
In the quail, RT-PCR has shown GnIH receptor mRNA expression
in the cerebrum, diencephalon, mesencephalon, and the spinal
cord (59). In human beings, the expression of GnIH receptor
gene has been shown in the hypothalamus and in the pituitary
by RT-PCR (30). In the human pituitary, gene expression of GnIH
receptors in LH cells has been shown by in situ hybridization (30).

DISTRIBUTION OF GnIH AND GnIH RECEPTORS IN THE GONADS
In several vertebrate species, the expression of GnIH and GnIH
receptors has been reported in some peripheral tissues includ-
ing the gonadal tissues (69) (Tables 1 and 2), indicating the
role of GnIH in ovarian or testicular maturations (65, 85).
Expression of GnIH and/or GnRH receptor has been shown
in the gonadal tissues by RT-PCR, in situ hybridization, and
immunohistochemistry (32, 86).

Jawless and jawed fish
In the sea lamprey, LPXRFa mRNA is expressed in the testis and
ovary (11).

In the zebrafish, GnIH and three GnIH receptor genes (gnihr1,
gnihr2, and gnihr3) are expressed in the testis, and GnIH and GnIH
receptor gene (gnihr3) are expressed in the ovary (14). Similarly,
in the goldfish, two out of three GnIH receptor types (gnrh1 and
gnrh2) are expressed in the testis and ovary (55). In the tilapia,
LPXRFa and LPXRFa-R (GPR147) mRNAs are expressed in the
gonads (16). However, in the grass puffer, there is no expression
of LPXRFa and LPXRFa-R mRNAs in the gonads (15). In situ
hybridization study in the goldfish has shown expression of gnrh1
and gnrh2 genes in the oocytes only before the cortical alveo-
lus stage, but not at the vitellogenic stage (55). In the testis of

Frontiers in Endocrinology | Neuroendocrine Science October 2014 | Volume 5 | Article 177 | 8

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ogawa and Parhar GnIH systems in vertebrates

goldfish, expression of two GnIH receptor gene types have been
reported in the interstitial tissue (55). In vitro treatment of gold-
fish gonadal cell culture with GnIH peptides (gfLPXRFa-2 and
gfLPXRFa-3) has no effect on the mRNA expression of genes
involved in steroidogenesis in ovarian cells, while in testicular cell
culture, GnIH peptides significantly upregulate the expression of
genes involved in testosterone biosynthesis, but suppress the CYP9
gene, which is responsible for aromatization of testosterone (55).

Amphibians and reptiles
There is no report demonstrating the presence of either GnIH or
GnIH receptors in gonadal tissues of amphibian species.

In reptiles, the garden lizard, Calotes versicolor, has GnIH-
immunoreactivity in the granulosa cells of previtellogenic follicles
and stroma cells, which is relatively higher during inactive phase,
but lower during the active preovulatory phase suggesting inverse
correlation with circulating estradiol level (87).

Birds
In birds, GnIH and GnIH receptor gene expression has been shown
in the testis and ovary by RT-PCR (23, 60, 88). Furthermore,
in situ hybridization and immunohistochemical approaches have
revealed the presence of GnIH mRNA and peptides in the ovar-
ian thecal and granulosa cells, testicular interstitial and germ cells,
and pseudostratified columnar epithelial cells in the epididymis
(23, 88). GnIH receptor is also localized in the ovarian thecal
and granulosa cell layers, and testicular interstitial, germ cells,
and spermatocytes (23, 60, 88). In the European starlings, mela-
tonin upregulates the expression of GnIH mRNA in the gonads.
Furthermore, GnIH and melatonin significantly decrease testos-
terone secretion from LH/FSH-stimulated testes (89), suggesting
that GnIH is involved in the seasonal regulation of testicular
maturation.

Mammals
In the mammalian species, the expression of GnIH and GnIH
receptors and the role of GnIH in gonadal maturation have been
well demonstrated (32, 85). In the Syrian hamster, the presence
of GnIH and GnIH receptor has been shown in spermatocytes
and in spermatids, but not in the Leydig cells of the testis (65).
In the rhesus macaque, GnIH and GnIH receptors are expressed
in the Leydig cells, spermatogonia, and spermatocytes, and in the
ovarian preantral follicles and granulosa cells (88). In the ovary
of mice, GnIH is expressed in the granulosa cells, antral folli-
cles, and the luteal cells (90). Similarly, in the pig, GnIH and
GnIH receptor immunoreactivity has been shown in the luteal
cells and in the granulosa and theca cells of the antral follicles
during proestrus and estrus (47). In human beings, the expression
of GnIH and GnIH receptor has been shown in the granulosa cell
layer of large preovulatory follicles and the corpus luteum as well
as in the primary cultures of human granulosa-lutein cells (91). A
very recent study in mice has reported that GnIH (RFRP-3) treat-
ment reduces germ cell proliferation and survival but increases
apoptosis with a reduction of testosterone synthesis in the testis
in a dose-dependent manner (92). Similarly, mice treated in vivo
with GnIH for 8 days show dose-dependent changes in ovarian
follicular morphology, reduction in the number of healthy antral

follicles, an increase in the number of atretic follicles with low
dose of GnIH (100 ng/day), and appearance of abnormal follicles
at high doses (2 µg/day) (93). In vitro treatment of mice ovary with
GnIH suppresses the production of ovarian progesterone synthe-
sis and reduces steroidogenic enzymes such as 3β-hydroxysteroid
dehydrogenase (93).

ASSOCIATION OF GnIH SYSTEM WITH OTHER NEURAL SYSTEMS
Based on the morphological distribution of GnIH and GnIH
receptors in the brain and pituitary, their potential role as well
as their mechanism of action have been well demonstrated in the
avian and the mammalian species. In birds and mammals, GnIH
fibers are seen in close proximity to the GnRH neurons in the
POA (22, 28, 30, 45, 78–81) (Figure 3). Furthermore, the expres-
sion of GnIH receptor has been shown in GnRH1 neurons (28,
40, 94–96). In monkeys and birds, GnIH neurons send projections
to midbrain GnRH2 neurons that express GPR147 (28, 30, 78).
However, in ray-fin fishes, neural associations between GnIH with
other hypothalamic neurons are very limited due to the lack of
specific antibody.

Jawless and jawed fish
In the sea lamprey, lamprey GnIH (LPXRFa-2) immunoreac-
tive fibers have been observed in close apposition to GnRH-III
neurons (11).

A recent study in the dwarf gourami demonstrated that medaka
GnIH (RFRP2= LPXRFa-2) inhibits the pacemaker activity of
GnRH3 neurons in the terminal nerve (97), suggesting the func-
tional association of GnIH fibers with non-hypothalamic GnRH3
neurons. This suggests the action of GnIH on GnRH neurons
could be evolutionarily conserved in vertebrates, which remains
to be further confirmed in other fish species with fish-specific
GnIH antibodies.

Birds
Interactions of GnIH with GnRH1 (c-GnRH-I) neurons are seen
in several avian species including the Japanese quail, European
starling, song sparrow, house sparrow, and the zebra finch (22, 28,
29, 34, 78). In Gambel’s white-crowned sparrow and European
starling, GnIH fibers are also closely associated with GnRH2 (c-
GnRH-II) neurons (27, 28). Furthermore, expression of GnIH
receptor mRNA has been identified in GnRH1 and GnRH2
neurons in the brain of the European starling (28).

Mammals
In the rhesus macaque, GnIH fibers are observed in close prox-
imity to GnRH1 and GnRH2 neurons (31). A morphologi-
cal study in the sheep using a retrograde tracer has shown
fiber projection of GnIH neurons to several other hypothala-
mic neuropeptides-containing neurons, such as to neuropeptide
Y, pro-opiomelanocortin (POMC), orexin, melanin-concentrating
hormone, corticotrophin-releasing hormone, and oxytocin neu-
rons (46). Similarly, GnIH fibers are seen in close association with
POMC neurons in mice (98). In rats, GnIH fibers are closely asso-
ciated with kisspeptin neurons in the rostral periventricular region
of the third ventricle region (39),and in the arcuate nucleus of mice
(35), which is supported by the expression of GPR147 mRNA in

www.frontiersin.org October 2014 | Volume 5 | Article 177 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ogawa and Parhar GnIH systems in vertebrates

kisspeptin neurons (35, 95). On the other hand, very few GnIH
cells (3–7%) receive kisspeptin fibers in mice (35). Interestingly,
in mice, GnIH neurons also co-express neurokinin B (Tac2) and
its receptor (Tacr3) mRNAs (35).

In addition to neuropeptides, GnIH neurons are also associ-
ated with neurotransmitters. In the rhesus macaque, GnIH fibers
are closely associated with dopamine and β-endorphin neurons
(31). In mice, morphological and electrophysiological studies have
revealed functional interactions between GnIH with glutamater-
gic neurons but not with cholinergic or GABAergic neurons (99).
In rats, GPR147 is expressed in dopamine neurons (36). In addi-
tion, a recent report in rats has shown no co-expression of GnIH
neurons with GABA (39). In rats, GnIH neural population in the
DMH express 11 types of serotonin receptors (63). Similar obser-
vation has been reported in the Japanese grass lizard (77). These
results indicate multiple functions of the GnIH system, in addition
to its inhibitory action on reproduction.

FUNCTION OF GnIH-GnIHR SIGNALING IN VERTEBRATE
REPRODUCTION
ROLE OF GnIH IN GONADOTROPIN SYNTHESIS AND RELEASE
As the name of the peptide indicates, GnIH peptides act as
inhibitory factor in the control of reproduction mainly in birds
and mammals (10, 34). Similar findings have been reported in
various vertebrate species (52) (Table 3). On the contrary, in ray-
fin fishes, the role of GnIH peptides in the control of gonadotropin
release has been debatable.

Jawless and jawed fish
In female lampreys, treatment of lamprey GnIH (LPXRFa-
2) stimulates the expression of lamprey GnRH-III protein in
the hypothalamus and GTHβ mRNA expression in the pitu-
itary (11).

The first physiological study demonstrating the role of teleost
GnIH peptides (goldfish LPXRFa-1, -2, and -3 peptides) was
reported in the sockeye salmon, in which goldfish LPXRFa peptides
increase the release of LH, FSH, and growth hormone (GH) from
cultured pituitary cells (48). Similarly, an in vivo study in the gold-
fish has shown that GnIH significantly increases pituitary levels
of mRNAs for LHβ and FSHβ in a reproductive stage-dependent
manner (100). Goldfish GnIH (gfLPXRFa-1) peptide treatment
to the grass puffer significantly stimulates FSHβ and LHβ gene
expression (15). Our recent study in the female tilapia has shown
that tilapia LPXRFa-2 peptides positively increase LH and FSH
release in vitro and in vivo (16).

In contrast, intraperitoneal administration of zebrafish GnIH
(LPXRFa-3) to goldfish decreases the plasma LH levels (14). Sim-
ilarly, inhibitory effects of GnIH on circulating serum LH levels
have been demonstrated during the early to later stages of recrude-
scence in the goldfish (66, 100). These differences in gonadotropin
responses to GnIH seen in different and in the same fish species
(summarized in Table 3) can be explained by a recent physiologi-
cal study conducted in the goldfish (54). Intraperitoneal injections
of goldfish GnIH-II peptide and GnIH-III peptide significantly
decreases FSHβ mRNA levels, whereas in vitro application of GnIH
has no effect on gonadotropin synthesis. However, an inhibition

of GnRH-stimulated LHβ and FSHβ synthesis has been observed
when GnIH-III was applied to primary pituitary cell cultures (54).
Collectively, these reports in ray-fin fish species suggest that the
inhibitory action of GnIH on gonadotropin synthesis/release is
closely associated with the reproductive stages in fish, which can
be modulated by GnRH-dependent mechanism of action as in
birds and mammals (26, 95).

Birds and mammals
In birds and mammals, GnIH reduces gonadotropin release
from the anterior pituitary (10, 34), which has been extensively
reviewed previously. RFRP-3 inhibits the synthesis and/or release
of gonadotropins across various mammalian species, and recently,
it has also been found that RFRP-1 is capable of inhibiting the
release of gonadotropins in hamsters (40). Indeed, in sheep, GnIH
(GnIH-3) peptide levels in the portal blood are around 2–3 pg/ml
during the breeding season but increase to 4–8 pg/ml during the
non-breeding season (82). In rats, the central administration of
GnIH (RFRP3–8) peptides has shown to suppress the circulat-
ing LH levels at the dose of 1 nmol/injection in vivo, and GnIH
suppresses gonadotropin secretion from pituitary culture at the
concentration of 10-8 M in vitro (108). However, in rufous-winged
sparrows (Aimophila carpalis), there is no effect of peripheral injec-
tions of GnIH on basal plasma LH levels and on GnRH-elicited
LH secretion (104). This could be due to the shorter half-life of
GnIH peptides in vivo compared with in vitro. In ewes, the half-life
of peripherally injected GnIH in portal blood is 6.03± 0.30 min
in vivo (82). While under in vitro condition, the half-life of GnIH
(RFRP3–8) peptides is 14.3 min in rat serum (108).

ROLE OF GnIH IN SOCIO-SEXUAL BEHAVIORS
Gonadotropin-inhibitory hormone is also involved in the regula-
tion of reproductive and social behaviors (Table 3) (109).

Jawless and jawed fish
The role of GnIH orthologs in socio-sexual behaviors has not
been demonstrated in jawless and jawed fish species. Nevertheless,
a recent study has suggested GnIH as a regulator of neuroestrogen
synthesis (110) and the potential involvement of neuroestrogen in
socio-sexual behaviors has been demonstrated in several jawed fish
species. In a sex-changing fish (Lythrypnus dalli), socially induced
decrease in brain aromatase levels correspond with increased
aggression (111). Male Endler guppy (Poecilia reticulata) treated
with the aromatase inhibitor show reduce of courtship activities
(112). In the African cichlid fish (Astatotilapia burtoni), males
treated with aromatase inhibitor show decrease aggressive, but not
reproductive behaviors (113).

Birds
Female white-crowned sparrows injected with GnIH show inhi-
bition of copulation-solicitation with the reduction of circulating
LH levels (27). In the European starlings, there is close association
between social and breeding status and GnIH levels in the brain
(114). Indeed, bird pairs (male and female) with nest (winner)
have significantly different numbers of GnIH peptide-producing
cells than those without nest (losers), suggesting that GnIH may
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Ogawa and Parhar GnIH systems in vertebrates

Table 3 | Functions of GnIH and its homologous peptides from jawless fish to mammals.

Animal Species GnIH types Functions Reference

JAWLESS FISH

Sea lamprey Petromyzon

marinus

LPXRFa-2 Stimulation of GnRH-III synthesis and GTHβ mRNA expression (11)

JAWED FISH

Goldfish Carassius

auratus

gfLPXRFa-1 Stimulation of GTH and GH release (48)

gfLPXRFa-2 Stimulation of GTH and GH release (48)

Inhibition of LH and FSH synthesis (54)

gfLPXRFa-3 Stimulation of GTH and GH release (48)

Inhibition of LH synthesis (54)

Inhibition of GnRH-elicited FSH synthesis (54)

Stimulation of GTH synthesis and release in prespawning fish (66, 100)

Inhibition of GTH synthesis in early to later stages of gonadal recrudescence (100)

Inhibition of GnRH-elicited GTH synthesis in early and mid gonadal recrudescence (66)

Zebrafish Danio rerio gfLPXRFa-3 Inhibition of GTH release (14)

Grass puffer Takifugu

niphobles

gfLPXRFa-1 Stimulation of GTH synthesis (15)

Nile tilapia Oreochromis

niloticus

LPXRFa-2 Stimulation of LH and FSH release (in vivo and in vitro) (16)

AMPHIBIAN

Bullfrog Rana

catesbeiana

fGRP Stimulation of GH release (17)

fGRP-RP-2 Stimulation of GH/PRL release (19)

BIRD

Japanese quail Coturnix

japonica

GnIH Inhibition of GTH synthesis and release (10, 101)

Chicken Gallus gallus GnIH Inhibition of GTH synthesis and release (102)

Inhibition of LH release in immature but not mature chickens (60)

Stimulation of feeding behavior (103)

GnIH-RP-1 Stimulation of feeding behavior (103)

GnIH-RP-2 Stimulation of feeding behavior (103)

Gambel’s

white-crowned

sparrow

Zonotrichia

leucophrys

gambelii

GnIH Inhibition of GnRH-elicited GTH release (26, 27)

Inhibition of reproductive behavior

Song sparrows Melospiza

melodia

GnIH Inhibiting GnRH-induced LH release (26)

Rufous-winged

sparrow

Aimophila

carpalis

GnIH No effect on LH release and GnRH-elicited LH secretion (104)

MAMMALS

Human being Homo sapiens RFRP-1 Stimulation of PRL release (36)

Mouse Mus musculus RFRP-3 Suppressive action on the excitability of GnRH neurons (105)

Rat Rattus

norvegicus

RFRP-1 Stimulation of ACTH and oxytocin release (106)

RFRP-3 Stimulation of ACTH and oxytocin release (106)

Stimulation of GH secretion (38)

Inhibition of GTH release (38, 49)

Inhibition of GnRH-elicited GTH release (49)

Inhibition of reproductive behavior (38)

Stimulation of feeding behavior (38, 49)

No effect on basal LH secretion, but inhibition of GnRH-elicited LH release (83)

(Continued)

www.frontiersin.org October 2014 | Volume 5 | Article 177 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ogawa and Parhar GnIH systems in vertebrates

Table 3 | Continued

Animal Species GnIH types Functions Reference

Syrian golden

hamster

Mesocricetus

auratus

RFRP-1 Inhibition of GTH release (34)

RFRP-3 Inhibition of GTH release (34, 40, 64)

Bovine Bos taurus RFRP-3 Inhibition of GnRH-elicited GTH release (50)

Ovine Ovis aries RFRP-3 Inhibition of GnRH-elicited GTH synthesis and release (43, 107)

Reduction of the amplitude of LH pulses

play a key role in the switch from mating and aggressive behaviors
to those of parental care (114). Similarly, in the male quail, the role
of GnIH in aggressive and sexual behaviors has been demonstrated
(115), which has been suggested to be regulated by increasing
neuroestrogen synthesis (110).

Mammals
In rats, GnIH injections suppress male sex behaviors (38). On the
contrary, in a study in non-human primates, ewes, and rats, there
is no effect of GnIH on sexual behavior (116), which could be
due to different injection conditions (109). In the female Syrian
hamsters, GnIH treatment inhibits sexual motivation and precop-
ulatory behavior, but has no effect on copulatory behavior (117).
GnIH is critical for the regulation of socio-sexual arousal, motiva-
tion, and performance in vertebrates (110). Therefore, changes in
socio-sexual behaviors that are influenced by neuroestrogen levels
can be modulated by GnIH in fish as in birds.

REGULATORS OF GnIH SYSTEM
In addition to the role of GnIH, its regulatory mechanism has
also been well examined (52, 85, 118). For example, GnIH neu-
rons express steroid receptors (ERα and AR), which are respon-
sible for steroid response in GnIH neurons (34, 119). There
are numerous factors that suppress reproduction and these have
been demonstrated as regulators of the GnIH system. GnIH sys-
tem is known to be regulated by environmental cues particularly
seasonal- and diurnal-rhythmicity (120–122). Furthermore, sea-
sonal or photoperiod-dependent alterations of GnIH neurons
indicate the modulatory role of melatonin in GnIH expression
and synthesis (123).

Seasonal regulation
Jawless and jawed fish. Seasonal effect on GnIH orthologs has
not been demonstrated in jawless fish species. In the goldfish, the
effect of GnIH injections on the reduction of circulating LH levels
is closely associated with seasonal dependent gonadal maturation
stages (100). Interestingly, in the grass puffer, GnIH and GnIH
receptor gene expression patterns are synchronized with diur-
nal and circadian rhythmicity, which indicates the involvement
of GnIH system in the regulation of lunar-synchronized spawning
(15). Furthermore, the potential neuronal mechanism of seasonal-
dependent change in GnIH system has been demonstrated (15).
However, there is no direct evidence that demonstrates mela-
tonin action on GnIH in fish, although the role of melatonin
in the regulation of fish reproduction has been well recognized
(124, 125). Nevertheless, in some teleosts species, there is direct

projection from the pineal organ to the NPPv in the hypothala-
mus (74, 75), where GnIH neurons exist in teleost species. These
results indicate that the GnIH system plays an important role to
transmit photoperiodic cues via melatonin signaling in vertebrate
reproduction.

Amphibians. In newts, peripheral treatment (intraperitoneal
injection) of melatonin (at 1 h post-injection) or treatment in
water containing melatonin (for 2 weeks) induces LPXRFa gene
expression in the brain (21). Similarly, in bullfrogs, fGRP neu-
rons in the SCN express Mel1b, a melatonin receptor subtype
(18). Furthermore, the expression of fGRP precursor mRNA is
photoperiodically controlled, which increases under short-day
photoperiods, when the nocturnal duration of melatonin secre-
tion increases (18), suggesting stimulatory action of melatonin on
fGRP secretion.

Birds. In the song sparrows, GnIH peptide levels are highest at
the end of the breeding season (78). Similarly, in the Rufous-
winged sparrow (A. carpalis), male birds during the breeding
season have fewer, less densely labeled GnIH cell bodies than birds
before the breeding season (80). While in the Australian zebra
finches (Taeniopygia guttata), GnIH cell number and size, as well
as GnIH mRNA levels are similar in the breeding and the non-
breeding conditions (126). In the Japanese quail, GnIH mRNA
levels decrease significantly in the pinealectomized birds (127).
Furthermore, melatonin administration causes a dose-dependent
increase in the expression of GnIH precursor mRNA as well as the
production and release of mature peptide, which is modulated via
Mel1c receptor subtype (127, 128). Interestingly, in the song birds,
the pineal gland conveys photoperiodic information to the vocal
control system to regulate song behavior (129). Furthermore, a
recent study in female great tits (Parus major) has shown that
melatonin treatment delays clutch initiation (130). Interestingly,
one of the song-control nucleus in the telencephalic area, called
area X is sensitive to melatonin (131) and GnIH neurons may have
association with the area X (79). Therefore, it would be interesting
to look into the possible association between GnIH system and
song behavior.

Mammals. Similar to other vertebrates, mammalian GnIH is
also influenced by seasonal change. In the sheep, lower expres-
sion of RFRP levels in the brain is concurrent with the breeding
season (45). In Syrian and Siberian hamsters, RFRP mRNA and
the number of RFRP-immunoreactive cell bodies decrease under
short-day photoperiod (132). Furthermore, in the Syrian hamsters
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Ogawa and Parhar GnIH systems in vertebrates

FIGURE 4 | Effect of environmental actions on GnIH system and its
potential functions. Environmental cues such as social stress or
seasonal/diurnal change influence on GnIH neurons via hormonal mediators
such as corticosterone or melatonin. GnIH neurons negatively act on
GnRH-I and GnRH-II neurons, which influence on gonadotropin (LH and
FSH) secretion in the pituitary and reproductive and/or food intake
behaviors, respectively. In jawless and jawed fish, GnIH neurons send
projection to GnRH-III neurons, which may regulate social behaviors. In
mammals, GnIH neurons are also closely associated with kisspeptin
neurons. However, the role of GnIH in kisspeptin neurons remains
unknown.

treated with melatonin (60 days), RFRP mRNA levels significantly
decrease in the brain (132).

Stress regulation
GnIH has also been demonstrated as a modulator linking stress
and reproduction in several vertebrate species. In addition, in birds
and mammals,GnIH neurons are sensitive to stress hormones such
as glucocorticoid or corticotropin-releasing hormone (CRH) (96,
133, 134).

Jawless and jawed fish. There is no report demonstrating the
involvement of GnIH in stress response in jawless and jawed
fish. However, our promoter prediction search with the ALGGEN
PROMO with TRANSFAC database v. 8.3 (135, 136) reveals the
presence of a putative glucocorticoids response elements (GRE) at
−983 bp upstream of the zebrafish GnIH gene promoter sequence.
In addition, there are several putative GRE sites within−2,000 bp
upstream of zebrafish GnIHR genes (GnIHR1: at −1,755 and
−1,976 bp; GnIHR2: at −30, −260, −265, −344, −1,642, and
−1,942 bp; GnRHR3: at −909 and −1,294 bp). These results
indicate that the role of GnIH signaling could be evolutionarily
conserved in the vertebrates.

Birds. In the house sparrows (Passer domesticus), there is a sig-
nificant increase in GnIH positive neurons in stressed birds (137).
In the European starlings, plasma corticosterone concentration is

positively correlated with GnIH mRNA abundance at the middle
of the breeding season (114). In the Japanese quail, corticosterone
treatment increases GnIH mRNA expression in the diencephalon
(134). Furthermore, glucocorticoid receptor (GR) is expressed in
quail GnIH neurons (134).

Mammals. In male rats, acute and chronic immobilization
stress leads to an upregulation of GnIH gene expression (133).
Furthermore, corticosterone treatment increased GnIH mRNA
expression in a GnIH-expressing cell line, rHypoE-23, derived
from the rat hypothalamus (138), which can be blocked by GR
antagonist (134, 139). In male rats, 53% of GnIH neurons co-
express GR, and 11.8% of GnIH neurons co-express CRH recep-
tor1 (133). Furthermore, one functional GRE has recently been
identified in the promoter region of rat GnIH gene (134), sug-
gesting that corticosterone directly induces GnIH transcription
via GR.

SUMMARY
GnIH is an inhibitory hypothalamic RFamide neuropeptide that
has been characterized in various vertebrates including in the fish
species (10, 14, 34, 52, 54). GnIH fibers and GnIH receptors are
widely distributed in the brain as well as in the pituitary to reg-
ulate gonadotropin release (10, 34, 59, 81). GnIH fibers are also
seen in close association with cells expressing other reproductive
neuropeptides such as GnRH and kisspeptin neurons. GnIH and
GnIH receptor signaling is also involved in several reproductive
and non-reproductive functions, such as socio-sexual behaviors,
appetite regulation, and stress response. Although the structure
and function of the GnIH system is highly conserved in birds,
mammals, and non-mammalian vertebrate species (Figure 4),
there are still several questions that remain to be addressed in
the case of fish GnIH because fish utilize a variety of reproduc-
tive strategies (140). For example, since the fish pituitary lacks the
portal system of the ME and it is directly innervated by neurose-
cretory fibers (141), it would be interesting to know how GnIH
acts on gonadotropes, whether directly or indirectly via other
hypophysiotropic neurons such as GnRH neurons or the pineal
gland. To understand the functional and physiological signifi-
cance of vertebrate GnIH, further studies of GnIH system in a
variety of vertebrates in particular in fish species would be very
important.
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