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Diseases affecting the glomerulus are the
most common cause of end-stage kidney
disease in developed countries (1). These
disorders are characterized by significant
proteinuria, and the level of proteinuria
is an independent risk factor for disease
progression (2). Podocytes are thought to
play a key role in the pathogenesis of
glomerular diseases (3, 4). The impor-
tance of podocytes in glomerular diseases
is highlighted by genetic studies, which
have identified mutant podocyte proteins
that cause familial forms of nephrosis (5).
Because podocytes are terminally differen-
tiated cells with little capacity for repli-
cation, their ability to compensate for
podocyte loss is limited (3). A component
of current therapy is, therefore, focused
on reducing podocyte injury by decreasing
systemic blood pressure (BP) and inhibi-
tion of the renin–angiotensin system (2, 6).

Historically, the immune system was
thought to play a significant role in
non-genetic forms of nephrosis includ-
ing acquired diseases such as minimal-
change disease (MCD) and focal segmental
glomerulosclerosis (FSGS) (7). As a result,
corticosteroids and CNIs are often used
to treat these disorders (6). Indeed, the
response to steroid therapy is an impor-
tant prognostic indicator for both MCD
and FSGS (8, 9). Recent studies, however,
suggest that these agents may have actions
that are independent of their immunosup-
pressive properties. For example, while not
a universal finding (10, 11), steroids and/or
CNIs are reported to induce partial or com-
plete remissions of proteinuria in a subset
of patients with genetic forms of nephrosis
(7, 11, 12). Although we acknowledge that
these reports have significant limitations,
the data support the concept that that

steroids and/or CNIs may have benefi-
cial effects unrelated to their immuno-
suppressive actions. Similarly, CNIs inhibit
death of cultured podocytes after apop-
totic stimuli despite the absence of immune
effector mechanisms in the tissue culture
model (13, 14). Moreover, genetic activa-
tion of the CN effector NFAT (nuclear
factor of activated T cells) in podocytes
promotes proteinuria, glomerulosclerosis,
and a decrease in podocyte numbers in
mice despite restricting the experimen-
tal manipulation to glomerular podocytes
(15).

As shown in Figure 1, non-
immunological actions of CNIs can
be broadly divided into effects on the
podocyte cytoskeleton and effects on
podocyte survival. A seminal observa-
tion was that the actin-associated protein
synaptopodin (SYN) was phosphory-
lated by either protein kinase A (PKA)
or calcium/calmodulin-dependent protein
kinase II (CaMKII). Phosphorylation of
SYN provided a docking site for 14–3–
3 proteins and prevented degradation of
SYN by the cysteine proteinase cathepsin
L (16). Dephosphorylation of the 14–3–3
docking site by calcium sensitive phos-
phatase CN promoted SYN degradation.
This group further demonstrated that SYN
competitively antagonized ubiquitination
of Rho A by Smurf1 (SMAD specific E3
ubiquitin protein ligase 1), and promoted
Rho A activation and stress fiber formation
(17). While Rho A activity is also stimu-
lated by calcium-dependent mechanisms
(18, 19), the SYN dependence of these
effects appeared relevant to glomerular
diseases because expression of a degrada-
tion resistant SYN in podocytes protected
mice from proteinuric stimuli (16). In

this scenario, CNIs promote a podocyte
phenotype that is resistant to the develop-
ment of proteinuria by stabilizing the actin
cytoskeleton.

CNIs also protect podocytes from apop-
totic stimuli (13, 14). At least one mech-
anism is dependent on gene transcription
induced by NFAT (13, 14). NFAT transcrip-
tion factors were originally discovered in
cells of the lymphoid lineage, but abun-
dant evidence indicates that NFAT iso-
forms are expressed in non-immune cells
with some family members expressed ubiq-
uitously (20). In quiescent cells, NFAT
isoforms are phosphorylated and located
in the cytoplasm (20). CN dephosphory-
lates NFAT, which permits translocation to
the nucleus and stimulation of gene tran-
scription. In cultured podocytes, expres-
sion of a constitutively active CN con-
struct causes apoptosis, and this apop-
totic effect is blocked by the pharmaco-
logic CNI FK506 as well as by a pep-
tide inhibitor of CN termed VIVIT (13).
Similarly, hyperglycemia induces nuclear
localization of NFAT isoforms as well as
promotes apoptosis of cultured podocytes,
and this apoptotic effect is also attenu-
ated by VIVIT (14). Moreover, CN activ-
ity is enhanced in kidneys of diabetic
rodents (13, 21), and treatment with
FK506 attenuates hyperglycemia-induced
podocyte apoptosis in diabetic mice (13).
Because VIVIT specifically inhibits CN-
dependent NFAT activation (22), these
data suggest that CN causes podocyte
apoptosis by mechanisms that require
NFAT mediated gene transcription. In
this regard, TRPC6 (transient receptor
potential channel C6) is an important
gene target of NFAT transcription factors
(23). Indeed, gain-of-function mutations
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FIGURE 1 | CN activation destabilizes the actin cytoskeleton and
causes podocyte apoptosis. Phosphorylation of SYN is mediated by PKA
and CamKII. Phosphorylated SYN promotes 14–3–3 binding, which protects
SYN from degradation by cathepsin L. SYN also binds Rho A, and
competitively inhibits binding of Rho A to the ubiquitin ligase Smurf1, which
prevents targeting of Rho A for proteasomal degradation. Binding of Rho A
to SYN activates Rho A (GTP bound Rho A) and, in turn, induces stress fiber
formation and stabilizes the podocyte cytoskeleton. CN dephosphorylates

the 14–3–3 docking site in SYN and promotes SYN degradation by
cathepsin L. In the absence of SYN, Rho A is targeted for proteosomal
degradation, which reduces stress fiber formation and destabilizes the actin
cytoskeleton. CN also promotes podocyte apoptosis by dephosphorylation
of either NFAT isoforms, Drp1 or BAD. This apoptotic effect is mediated
both directly by Drp1- or BAD-dependent activation of mitochondrial
apoptotic pathways, as well as indirectly by stimulation of NFAT-dependent
gene transcription.

in TRPC6 cause FSGS (24, 25). TRPC6
is also up-regulated in primary glomeru-
lar diseases (26) and over-expression of
TRPC6 in podocytes causes proteinuric
kidney disease (27). Thus, TRPC6 may
be an important downstream gene tar-
get of CN signaling in glomerular disor-
ders. In contrast, one study reported that
CNIs induced podocyte apoptosis (28).
This report, however, is controversial, and
we and others (7) have not been able to
reproduce this observation.

As shown in Figure 1, other mech-
anisms of CN-mediated podocyte apop-
tosis include induction of mitochondrial
fragmentation by Drp1 (dynamin related
protein 1) as well as activation of the
apoptosis inducing Bcl-2 family member
BAD (Bcl-2 associated death promoter).
Drp1 is phosphorylated and inhibited by

PKA (29); BAD is phosphorylated by
Akt, which causes sequestration of BAD
by 14–3–3 proteins and inhibits apopto-
sis (30). CN dephosphorylates both pro-
teins and induces apoptotic cell death
through the mitochondrial pathway (29,
30). Both Drp1 and BAD have been impli-
cated in the pathogenesis of glomerular
diseases by promoting podocyte apoptosis
(31–33), with the extent of apopto-
sis presumably dependent on the rela-
tive activities of CN and the relevant
kinases. Based on these observations as well
as the NFAT-dependent apoptotic effects
described above, we speculate that CNIs
might be useful therapies for attenuating
podocyte apoptosis in diseases with either
enhanced CN activity or in diseases asso-
ciated with reduced activity of the relevant
kinase.

In summary, CNIs may have impor-
tant beneficial effects for both the podocyte
cytoskeleton and podocyte viability. These
agents attenuate podocyte apoptosis as well
as promote a podocyte phenotype that
is resistant to the development of pro-
teinuria. The beneficial effects of CNIs
may be mediated by mechanisms that
are independent of the immune sys-
tem. Given the potential role of CN
in diverse glomerular diseases, the use
of CNIs might be useful for a broader
range of kidney disorders. We acknowl-
edge that CNI nephrotoxicity is a concern
(34), but the development of more spe-
cific agents with fewer off-target effects
(35, 36) may be an effective strategy for
expanding the use of CN inhibition to
a broader range of glomerular disease
processes.
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