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The gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are key
regulators of the reproductive axis in vertebrates. Despite the high popularity of zebrafish as
a model organism for studying reproductive functions, to date no transgenic zebrafish with
labeled gonadotropes have been introduced. Using gonadotropin regulatory elements from
tilapia, we generated two transgenic zebrafish lines with labeled gonadotropes.The tilapia
and zebrafish regulatory sequences were highly divergent but several conserved elements
allowed the tilapia promoters to correctly drive the transgenes in zebrafish pituitaries. FSH
cells reacted to stimulation with gonadotropin releasing hormone by proliferating and show-
ing increased transgene fluorescence, whereas estrogen exposure caused a decrease in
cell number and transgene fluorescence.Transgene fluorescence reflected the expression
pattern of the endogenous fshb gene. Ontogenetic expression of the transgenes followed
typical patterns, with FSH cells appearing early in development, and LH cells appearing
later and increasing dramatically in number with the onset of puberty. Our transgenic lines
provide a powerful tool for investigating the development, anatomy, and function of the
reproductive axis in lower vertebrates.

Keywords: zebrafish, tilapia, gonadotropin, transgene, LH, FSH

INTRODUCTION
The hypothalamic–pituitary–gonadal (HPG) axis is the master
regulator of reproduction in vertebrates. Hypothalamic axons
secrete peptides that bind to specific receptors on gonadotrope
cells in the anterior pituitary and stimulate the secretion of
gonadotropins (GtHs) from vesicles within these cells. The main
stimulator of GtH secretion is the decapeptide gonadotropin
releasing hormone (GnRH) but recently, several other hypothala-
mic factors have been shown to act directly on the pituitary cells
to enhance GtH expression and release (1–4). In vertebrates, two
GtHs have been identified: follicle-stimulating hormone (FSH)
and luteinizing hormone (LH). Both GtHs are dimers comprised
of a common α subunit and a distinct β subunit that confers their
biological specificity. The two GtHs are produced in tetrapods by a
single cell type, but play distinct roles in the regulation of gonadal
processes. In the testis, FSH regulates Sertoli-cell activity and germ
cell maturation whereas in females it induces germ cells and fol-
licular growth. A LH surge is associated with ovulation in females
and Leydig cell stimulation in males (5, 6).

Most experimental data in fish suggest that, as in tetrapods,
FSH and LH play distinct roles in the regulation of gonadal devel-
opment and function. In most species of fish, FSH is evident in
the pituitary and in the plasma at early developmental stages and
controls early stages of gametogenesis in both sexes. FSH is potent
at inducing estrogen production by the ovary and its levels in the
pituitary and plasma of females coincide with the process of vitel-
logenesis. LH levels are elevated during more advanced stages of
gametogenesis in both males and females and induce secretion
of estrogens, androgens, and maturation inducing steroids from

the gonad (7, 8). In male fish, expression of the FSH receptor is
not restricted to Sertoli cells and is also detected in the steroido-
genic Leydig cells. This FSH-induced steroidogenesis probably
regulates early stages of spermatogenesis, at a time when a LH
stimulus is unavailable (9). In the ovary, both GtHs elicit estro-
gen production but in the mature follicles LH is more potent
in inducing the production of the maturation inducing steroid
17α,20β-dihydroxy-4-pregnen-3-one (10).

A complex feedback of gonadal steroids tightly regulates GnRH
receptor expression thereby affecting GtH expression and secre-
tion. Estradiol is probably the most potent regulator of the
hypothalamic–pituitary axis and generally considered to decrease
lhb and fshb expression. In males, androgens play a similar role in
attenuating GtH expression in the pituitary (11).

The HPG axis of fish bears striking resemblance to that of
more evolved vertebrates, conserving all the major components
and functions found in mammals (1, 8, 12–14). Because studies
on the relationship between anatomy and function of the repro-
ductive axis in mammals are often hindered by the inaccessibility
of its components in developing and adult animals, fish models,
with their unique advantages, are exceptionally valuable as a mean
to enhance our understanding of the evolution of the axis and
the interplay between its anatomy and function. When compared
to other fish models, the zebrafish offers numerous advantages
since it presents several distinct traits that make it particularly
appropriate for this purpose: A large zebrafish research commu-
nity has resulted in a solid knowledge base and an ever-growing
array of zebrafish-related tools and resources, including method-
ologies, mutant lines (15), and transgenes (16). These, together
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with its inherent advantages such as ease of breeding and trans-
genesis, short generation time, transparency of embryonic stages,
and so forth make zebrafish a leading choice for neuroendocrine
research (13, 17).

To date several transgenic fish models with labeled GnRH neu-
rons or gonadotrope cells have been introduced. GnRH neurons
have been labeled in zebrafish (18) and medaka (19) whereas
FSH was targeted in tilapia (20) and GtHs in medaka (21). In
zebrafish, a line with labeled common α subunit-expressing cells
was recently generated (22), but lines for identifying distinct LH
and FSH producing cells have yet to be introduced.

In this study, we used regulatory elements from tilapia to drive
fluorescent protein expression in zebrafish gonadotropes. Using
these transgenic lines, we describe the ontogeny of GtH expression
in this important model species, the anatomy of gonadotropes in
the adult pituitary and demonstrate its value for testing the effects
of GnRH and estrogens on GtH expression patterns.

MATERIALS AND METHODS
FISH HUSBANDRY AND BREEDING
Zebrafish were maintained in a stand-alone unit equipped with
central filtration and heating (28± 1°C). The fish were fed twice
daily with a commercial feed (New Life Spectrum“Grow,”New Life
International Inc., Homestead, FL, USA). Breeding was performed
by housing fish of both sexes in tanks with a mesh bottom. Eggs
were collected in the morning and incubated until the yolk sac was
completely absorbed,ca. 5 days postfertilization (dpf). Larvae were
then transferred to brackish (6 ppt) water in stand-alone tanks and
fed with rotifers (Brachionus plicatilis) until 10 dpf (23). At this age,
larvae were transferred to fresh water and fed brine shrimp nauplii
and dry, prepared diets. Treatment with 1-phenyl 2-thiourea was
omitted in all experiments, because we observed developmental
setbacks when using this treatment and because imaging qual-
ity was unaffected by the pigments. Under these conditions, fish
usually reach sexual maturity at around 60 days of age.

All experimental procedures were in compliance with the Ani-
mal Care and Use Guidelines of the Hebrew University and were
approved by the local Administrative Panel on Laboratory Animal
Care.

CONSTRUCTS AND TRANSGENESIS
The construct used for the labeling of FSH gonadotropes was
as described previously (20). For the generation of labeled LH
gonadotropes, we cloned a 3.6-kb fragment from tilapia genomic
DNA (24) that includes a 3-kb fragment upstream of the first
exon, first exon, and first intron (accession number KM575842).
The primers (forward: 5′-GGGGACAA CTTTGTATAGAAAAGT
TGGGCACTGAAGAAAAACGGTCCTTAA-3′; reverse: 5′-GGGG
ACTGCTTTTTTGTACAAACTTGGTCTGTAGGCGGCAAGTTG
GA TTAGT-3′) included the appropriate attB4 and attB1R adap-
tors. The fragment was introduced into the pDestTol2CG2 desti-
nation clone through a LR Threeway Multisite Gateway reaction
(Invitrogen, Carlsbad, CA, USA). The resulting construct drove
mCherry expression in LH gonadotropes and EGFP expression
in the heart. All Gateway methods and protocols were performed
according to the Invitrogen Multisite Gateway Manual. For the
purposes of transgenesis, eggs were collected immediately after

spawning and injected with a combination of expression plas-
mid and transposase mRNA (16). After hatching embryos were
screened for a signal in the heart and only positive embryos were
grown and mated as possible founders. Tilapia transgenesis was
performed as described previously (20).

PROMOTER ANALYSIS
Upstream sequences of tilapia and zebrafish GtH genes were
extracted from published databases (UCSC blat, https://genome.
ucsc.edu). In silico analysis of the cis elements in the tilapia and
zebrafish GtH promoters was performed using the Genomatix
Software Suite.

IN SITU HYBRIDIZATION, IMMUNOFLUORESCENCE, AND IMAGING
To confirm correct expression of the transgene, fluorescent signals
were compared to the in situ hybridization (ISH) staining pattern.
ISH was generally performed as described previously (2–4). To
detect the GtH mRNA, we cloned a fragment of the zebrafish GtH
β subunit using the primers described by Ref. (25). The ampli-
con was cloned into the TOPO cloning vector (Invitrogen) and
used as a template for the preparation of a specific digoxigenin
(DIG)-labeled riboprobe (RNA DIG labeling kit, Roche Diagnos-
tics GmbH, Mannheim, Germany). Adult fish heads were fixed
overnight in 4% paraformaldehyde (PFA) at 4°C and then decal-
cified in 0.5 M EDTA at 4°C for 5 days. After cryoprotection [30%
sucrose (w/v) in PBS overnight at 4°C] tissues were embedded
in tissue freezing medium (Triangle Biomedical Sciences, Inc.,
Durham, NC, USA), flash frozen in liquid N2 and cryosectioned to
12 µm. Following ISH, the hybridization product was visualized
using a fluorescent substrate (Fast Red, Roche). After confirmation
of the hybridization signals, immunofluorescence (IF) labeling was
performed against EGFP as previously detailed (20). Following
staining, sections were mounted in anti-fade solution [2% propyl
gallate (w/v), 75% glycerol (v/v) in PBS] and imaged using stan-
dard fluorescent microscopy. Since reliable mCherry antibodies
were not available, the transgenic signal for this line was imaged
before the ISH process. For validation of the correct expression
of the LH:mCherry construct in tilapia, we applied IF using spe-
cific antibodies raised against tilapia GtH β-subunits (26, 27) and
compared the two staining patterns. Sections were imaged using
standard or confocal fluorescent microscopy.

For the ontogeny study, transgenic zebrafish from both lines
were collected throughout their development from 4 to 65 dpf.
Fish were fixed in 4% PFA overnight at 4°C. Young fish, until
the age of 21 dpf were transparent enough to allow imaging of
the pituitary in intact animals. For this purpose, fixed fish were
cleared in 75% glycerol (v/v in PBS), mounted in anti-fade solu-
tion, and imaged ventrally on a confocal microscope. Older fish
were processed for cryosectioning as described earlier and imaged
using standard fluorescent microscopy.

REAL-TIME PCR
To assess the relative abundance of mRNAs, we used real-time
PCR methodology. The genes were normalized to the amount
of endogenous reference ef1a by the comparative threshold cycle
method. Details of the method can be found elsewhere (28, 29).
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IN VIVO EXPERIMENTS
Larvae at the age of 10 dpf (n= 20) were placed in 50 ml water in
petri dishes, containing the following treatments: control (10 µl
ethanol in 50 ml), 100 or 1000 nM salmon GnRH analog (D-Ala6,
Pro9-Net)-mammalian GnRH; sGnRHa; (Bachem, Inc., Torrance,
CA, USA), 0.5, 5, or 50 ng/ml 17β-estradiol (E2; Sigma Ness Ziona,
Israel), or 5 or 50 ng/ml of the aromatase inhibitor fadrozole
(Novartis, Basel, Switzerland). In later experiments only a sin-
gle dose of E2 (5 ng/ml) was used since the two other doses tested
gave a similar response. Larvae were maintained in the treated
water for 72 h. Every 24 h, all of the water in each dish was changed
and treatments were added accordingly. Due to the transparency
of zebrafish juveniles, we were able to image whole pituitaries in
intact fish. For that purpose, at the end of the experimental period,
larvae were fixed in 4% PFA and imaged ventrally using confocal
microscopy. For gene-expression assays, total RNA was extracted
from larvae heads using Trizol, reverse-transcribed into cDNA, as
described previously (2, 29) and subjected to real-time PCR analy-
sis. All experiments were repeated three times and a representative
experiment is shown.

STATISTICAL ANALYSIS
Data are presented as mean± SEM. Data were subjected to one-
way ANOVA and Tukey analysis using GraphPad Prism 4 software
(San Diego, CA, USA). Means marked with different letters differ
significantly (P < 0.05).

RESULTS
GENE STRUCTURE AND PROMOTER COMPARISON
Since we chose to use tilapia promoters to drive fluorescent protein
expression in zebrafish gonadotropes, we compared the struc-
ture and composition of the GtH genes between the two species.
The FSHβ gene in both species is comprised of three exons
(Figure 1A). Despite retention of this basic division, the vary-
ing sizes of the exons and introns result in a more compact gene
in tilapia (~2.6 kb) than in zebrafish (~6 kb). This stems from
elongation of the zebrafish introns as well as a long (~600 bp) 3′

untranslated region (UTR) situated within the third exon of the
zebrafish gene. In both species, the first exon is relatively short and
contains only the 5′UTR. The structure of the lhb gene of zebrafish
varies from that of tilapia in its exon/intron division: whereas the
cyprinid genes (zebrafish carp and goldfish) are comprised of three
exons, in tilapia the gene is divided into four segments. Four exons
are also found in the genes of medaka and stickleback (Figure 1B).
The coding region size is relatively conserved at ~140 amino acids.
The zebrafish lhb gene contains a large 3′ UTR that is twice the
length of the coding region.

The promoters of both fshb genes contain a TATA box 25 bp
upstream of the transcription start site, although that of tilapia is a
non-canonical variant that corresponds to the consensus sequence
YYANWY (31). The tilapia promoter contains another consen-
sus TATA sequence, at nucleotide position -95. The conserved
smad- and GnRH-responsive steroidogenic factor 1 (SF1) element

FIGURE 1 | Gene structure of fish gonadotropins. Schematic overview of
the exon–intron organization of several fish GtH genes. (A) The fshb genes of
tilapia (AY294015.1 and JX887154.1) and zebrafish (NM_205624) are both
divided into three exons but vary in intron size and length of untranslated
regions. (B) The lhb genes of tilapia (XM_003438349.1) and zebrafish

(NM_205622.2) differ in size and in exon–intron numbers. For comparison,
medaka (EU_0477621) and stickleback (AJ_534969) genes contain four exons
whereas carp (X_59889.1) and goldfish (30) genes are comprised of three
exons. Grey boxes, untranslated regions; Hatched boxes, coding regions;
lines, introns. Numbers indicate length of specified region in nucleotides.
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identified in goldfish (32) is also found in both tilapia and zebrafish
proximal promoters and is adjacent to an estrogen-responsive
site. Several other smad-binding sites and estrogen-responsive ele-
ments (EREs) can be found on both promoters. Pituitary-specific
Pitx1 and Pit1 boxes can also be found on both promoters ~700 bp
upstream of the transcription start site (Figure 2).

The combination of adjacent SF1 and ERE boxes also appeared
in both proximal lhb promoters. Early growth response elements
were also found in the zebrafish and tilapia lhb promoters although
their position was rather distal (−650 in zf and−1300 in tilapia).
Both proximal lhb promoters also contained the pituitary-specific
Pit1 element, as well as activator protein 1 (AP1)-binding sites
and numerous EREs (Figure 2). Other steroid-responsive sites
included androgen and glucocorticoid receptor-binding elements.
These steroid-responsive elements were also present in the more
distal part of both promoters (−1000 bp and upstream). Trials to
label LH gonadotropes with tilapia constructs lacking the region
upstream of position-600 failed, although stable genome integra-
tion was achieved (data not shown). This implies that some of
the elements found in this distal region are mandatory for correct
expression of the lhb subunit.

We also analyzed transcription factor-binding (TFB) sites in
the first intron since they were found to be important in the reg-
ulation of gene expression (33) and were thus included in our
constructs. The first introns of the fshb genes did not exhibit sig-
nificant similarity in composition and order of the TFB sites, but
in the lhb genes, both tilapia and zebrafish first introns showed
similar composition and order of several TFB sites, including
cAMP-responsive elements, AP1 and Pit1 sites (Figure 2).

TRANSGENES VALIDATION
In tilapia, transgenic LH:mCherry individuals showed a high level
of transgene expression in LH cells as evidenced by the colocal-
ization of the mCherry signal in cells immunopositive for LHβ

(Figures 3A–C). FSHβ immunoreactive cells represented a differ-
ent subpopulation and did not express mCherry (Figures 3D–F).
Both FSH:EGFP and LH:mCherry transgenic lines exhibited
strong and clear expression of the fluorescent reporter in the
zebrafish pituitary. Correct expression of the transgene in zebrafish
was validated by comparing the expression patterns of the fluo-
rescent reporter and that of GtH as revealed by ISH of the specific
GtHβ-subunits (Figure 4). For the FSH:EGFP line, 94% (266
of 283) of the cells showed colocalization of the reporter sig-
nal and GtH expression, 3.5% (10 of 283) of the cells showed
a GFP signal but no fshb expression (ISH), and 2.5% (7 of 283)
of the cells showed fshb expression but no GFP signal detected
by IF against GFP (Figures 4A–C). In the LH:mCherry line, the
tight clustering of the cells, the unavailability of good antibod-
ies against mCherry and the fact that the reporter tended to
form aggregates inside the cells (34) made it difficult to deter-
mine the exact degree of overlap between the LHβ subunit and
reporter expression. However, comparing the expression pat-
terns of the two showed excellent colocalization of both signals
(Figures 4D–F).

In double-labeled zebrafish carrying both transgenes, the two
cell types were easily identified and all strongly labeled cells
exhibited only one type of reporter (Figure 5). However, in the
ventral part of the gland, a population of cells with low-level
of expression of both reporters could be identified (Figure 5D).

FIGURE 2 | Comparison of regulatory elements of tilapia and zebrafish
gonadotropin genes. The 5′ upstream sequence of tilapia and zebrafish GtHs
was analyzed for identification of transcription factor-binding (TFB) sites.
Upper panel: TFB map of the fshb promoters of tilapia and zebrafish. The
common ERE/SF1 site is circled. Lower panel: TFB map of the lhb promoters
of tilapia and zebrafish. This analysis also includes the first intron since

common TFB sites were identified in the first introns of both species.
Common TFB sites are indicated by arrows. Thick blue arrow indicates
transcription start site. Gray box, first exon; ERE, estrogen-responsive
element; PR, progesterone receptor-binding site; AR, androgen
receptor-binding site; GR, glucocorticoid receptor-binding site; SBE,
smad-binding element; EGR, early growth response-binding site.
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FIGURE 3 | LH:mCherry transgene validation in tilapia. Correct expression
of the fluorescent proteins in gonadotrope cells was verified by comparing
the fluorescent protein expression pattern (magenta) to immunofluorescence
staining using specific antibodies raised against tilapia GtH β-subunit (green).

(A) LH:mCherry in the adult pituitary. (B) LHβ immunoreactivity. (C) Merge of
A and B shows high level of colocalization of both signals. (D) LH:mCherry in
the adult pituitary. (E) FSHβ immunoreactivity. (F) Merge of D and E shows
FSH is expressed in a different subset of cells.

FIGURE 4 |Transgene validation in zebrafish. Correct expression of
the fluorescent proteins in gonadotrope cells was verified by
comparing the fluorescent protein expression pattern (green) to
fluorescent in situ hybridization using probes for GtH β-subunit mRNA
(magenta). (A–C) FSH:EGFP line, (D–F): LH:mCherry line. (A)

FSH:EGFP in the adult pituitary. (B) fshb mRNA expression. (C)
Merge of A and B shows high level of colocalization of both signals.
(D) LH:mCherry in the adult pituitary. (E) lhb mRNA expression. (F)
Merge of (D) and (E) shows high level of colocalization of both
signals. Scale – 100 µm.
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FIGURE 5 | Distribution of LH and FSH gonadotropes in the
pituitary of adult zebrafish. Adult male (A,B) and female
(C,D) double-transgenic zebrafish expressing EGFP (green) in FSH
gonadotropes and mCherry (magenta) in LH cells. Boxed areas in
(A) and (C) mark the areas imaged in (B,D), respectively (anterior – left;

dorsal – up). In both sexes, FSH cells are situated at the periphery of
LH-cell clumps. Strongly labeled cells do not show colocalization of
both signals. Some cells in the ventral part of the pituitary cells show
low expression of both signals (arrows). Scale bars for (A,B) are the
same as for (C,D), respectively.

These cells comprised <1.5% of the gonadotropes in the adult
pituitary. No differences in expression patterns were found
between adult males and females (Figure 5).

Contrary to a previous report in medaka (35) identifying signif-
icant extra-pituitary expression of the LH transgene, we found the
expression of our LH transgene to be highly specific and restricted
only to the pituitary.

FSH TRANSGENE RESPONSE TO GnRH AND ESTRADIOL
Application of GnRH in the rearing water caused an increase
in FSH cell number when larvae were exposed to concentra-
tions of 100 and 1000 nM sGnRHa from 10 to 13 dpf. In con-
trol fish, 8.9± 1.12 cells were found in the pituitary at this
stage whereas in fish treated with GnRH, the number of cells
increased to 13.9± 0.5 and 17.6± 1.7 cells in the 100 and 1000 nM
treatments, respectively. Exposure to estradiol caused a marked
decrease in the number of FSH cells, from the basal levels of
8.9 to 3.4± 1.2, 2.6± 0.7, and 3.7± 0.6 cells per pituitary in
the 0.5, 5, and 50 ng/ml treatments, respectively (Figure 6B,
n= 8). Total fluorescence in the pituitary, composed of number

of fluorescent cells as well as GFP intensity, was increased by
GnRH (1.7± 0.35 and 2.4± 0.48 times the control for the 100
and 1000 nM GnRH treatments, respectively; n= 8) and aro-
matase inhibitor (1.3± 0.39 and 2.5± 0.15 times basal with 5
and 50 ng/ml fadrozole, respectively; n= 8), and dramatically
reduced by exposure to estradiol (0.1± 0.04 relative to basal;
n= 8) (Figures 6A,D). To determine whether these changes also
reflected the actual levels of fshb, we measured the expression of
fshb by real-time PCR. The fshb expression levels exhibited a pat-
tern similar to that of the fluorescence intensity in the different
treatments (1.1± 0.3, 1.7± 0.4, 0.14± 0.02, 1.5± 0.3, 1.6± 0.2
relative to control in the control, GnRH 100, GnRH 1000, E2
5, fadrozole 5, and fadrozole 50 treatments, respectively; n= 8;
Figure 6C). A high correlation (r2

= 0.81; P = 0.015) was found
between fshb expression and gonadotrope fluorescence intensity
(Figure 6E). This correlation proves that the tilapia promoter not
only correctly labels zebrafish FSH gonadotropes, but also conveys
physiologically relevant signals to the transgene, thereby affecting
its expression levels in the same way as these signals affect the
endogenous gene.
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FIGURE 6 | Effect of GnRH and estrogen on fshb and transgene
expression. FSH:EGFP larvae at 10 days postfertilization were reared for 72 h
in water containing sGnRHa (100 and 1000 nM), 17β-estradiol (E2, 0.5, 5, and
50 ng/ml) or the aromatase inhibitor fadrozole (5 and 50 ng/ml).
(A) Representative heat map of the pituitary of treated fish at the end of the
treatment (anterior – up). Color coding corresponds to EGFP signal intensity.
GnRH and fadrozole treatment caused an increase in cell number and signal
intensity. Estradiol decreased both parameters. (B) Quantification of the

treatments effects on number of labeled cells per pituitary. GnRH increased
and E2 decreased the number of fluorescent cells per pituitary. (C) Real-time
quantification of the treatment effect on fshb gene expression also shows a
significant decrease in the estradiol treatment. (D) Quantification of the
treatment effect on fluorescent signal intensity shows an increase at the high
doses of GnRH and fadrozole and a significant decrease in the estradiol
treatment. (E) Correlation analysis of fshb expression and EGFP fluorescent
signal intensity.

FIGURE 7 | Ontogeny of gonadotrope cells in zebrafish. FSH (green) and
LH (magenta) cell patterns were followed throughout development.
(A–D) Proliferation of FSH cells during early development. At 4 dpf (A) 5–6
cells can be found in the pituitary. Cell number rises gradually as the fish
develops [(B)-7 dpf; (C)-14 dpf; and (D)-21 dpf]. LH cells begin appearing at

~25 dpf (F) and increase in number toward puberty (H). FSH cells continue to
proliferate with age [(E)-28 dpf and (G)-38 dpf]. Images (A–D) are ventral
whole-mount z-stacks (anterior – up). Images (E–H) are 12-µm thick sagittal
sections [anterior – left, common scale bar in (H)]. (I) Summary of
gonadotrope population dynamics from 4 dpf to adulthood.

ONTOGENIC EXPRESSION OF THE TRANSGENE
In the present study, FSH cells appeared as early as 4 dpf, when
5–6 cells per pituitary can be detected (Figure 7A). The num-
ber of FSH cells increased with age (Figure 7) to approximately
700 cells per pituitary in the adult. LH cells were completely absent

during the early life stages and only appeared (8–10 cells) at around
28 dpf (Figure 7F), their number gradually increasing thereafter
(Figure 7H). At sexual maturity (~60 dpf), LH gonadotropes out-
numbered FSH cells by a factor of 4.5:1 (Figures 5 and 7I).
This shift in gonadotrope population implies that FSH has an
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important role in the developmental stages of the reproductive
system whereas the role of LH becomes dominant as puberty
approaches, coinciding with the transition of the ovary from pri-
mary growth to vitellogenesis in females and spermatogenesis
in males.

DISCUSSION
In the current study, we introduce three new transgenic fish
lines with fluorescently-labeled gonadotropes. The transgenic
LH:mCherry tilapia joins our previously reported FSH:EGFP line
(20) and completes the task of labeling gonadotropes in this
emerging model species. The two zebrafish transgenic lines that
were generated further enhance the value of this popular model
for the study of reproductive biology.

Although the zebrafish and tilapia lineages are separated by
over 250 million years of evolution (36), we could still use the pro-
moter from tilapia to accurately drive reporter proteins in zebrafish
gonadotropes. Comparison of the gene structures showed rela-
tively high conservation in the fshb gene, but lhb subunits differed
between the two species – the tilapia gene was comprised of four
exons whereas the zebrafish had only three. The fourth exon can
also be found in other advanced teleosts such as the medaka and
stickleback. The zebrafish as well as salmon, carp, and goldfish
(37) gene’s division into three exons is more reminiscent of the
mammalian organization. Whereas the exon–intron division is a
relatively well-conserved feature of closely related genes, addition
or deletion of introns occurs at a frequency of ca. 1 intron/gene
every 100 million years (38–40), and such events are common in
many fish (41, 42). The fact that much of the other observed dif-
ferences in mRNA size could be attributed to changes in the length
of non-coding sequences, and not changes within the open read-
ing frame, may also serve to explain the high tolerance to these
significant insertions/deletions since these regions are less subject
to functional constraints.

A low-level of conservation was even more salient in the gene
promoters. An examination of the regulatory elements of both
GtHs in tilapia and zebrafish showed very little resemblance in
nucleotide sequence, and in the composition and order of the
major TFB sites. Yet, the tilapia promoters drove correct reporter
expression in zebrafish, suggesting that they contain enough con-
served elements to enable the transgene to recruit the cell machin-
ery in a gonadotrope-specific manner. This plasticity of the regula-
tory regions allows significant DNA-sequence divergence without
loss of functionality (43). Our analysis showed that in the fshb pro-
moters, a functional smad-response element identified in goldfish
(32) also exists in both tilapia and zebrafish proximal promoters.
In the distal promoters, adjacent AP1 and smad-binding element
sites were also apparent in both species and found to be functional
in goldfish (32). Apart from these sites, several estrogen-receptor-
and SF-binding sites were present in the regulatory regions. The
presence of these sites can explain the high responsiveness of the
transgene to estrogen exposure. A strong response of fshb expres-
sion to estrogen exposure has also been observed in salmon (44)
and mammals (45). Since GnRH is the key stimulator of fshb
expression and proliferation (28, 46), it is not surprising that
exposure of larvae to high doses of GnRH caused an increase
in transgene and fshb expression. Because an in vivo model was

used in this study, it is difficult to determine whether estrogen
and GnRH exerted their effects directly, by binding to their cog-
nate receptors on the gonadotrope, or indirectly by paracrine or
autocrine effects – by affecting other regulatory pathways, which
control gonadotrope proliferation and expression. Nevertheless,
the fact that our transgene can react to external stimuli in a phys-
iologically relevant context strengthens its value and reliability.
Moreover, this model can be easily applied to test for the presence
and physiological effect of estrogenic substances simply by expos-
ing transgenic fish to potentially contaminated water and then
directly quantifying fluorescence intensity of the gonadotropes.

The regulatory region of the lhb gene also showed little similar-
ity in nucleotide sequence and transcription factor organization
between tilapia and zebrafish. However, an ERE/SF1 complex that
was found in the fshb promoters was also found in both lhb
sequences. This combination plays an important role in inducing
lhb transcription (47). Early growth response-binding elements
are also vital for lhb gene expression (37) and can be found on
both promoters in an intermediate position (tilapia at −1332;
zebrafish at −707). A PitX1-binding site in the proximal pro-
moter was found to be fundamental for the activation of the
lhb gene in chinook salmon (48) and play an important role
in mammalian lhb gene regulation (49). The additional Pitx1-
binding site is present in the tilapia proximal lhb promoter, close
to the ERE/SF1 element, but in the zebrafish, it is located further
upstream at−1032. Many other EREs are located in the proximal
and distal promoters of tilapia and zebrafish and may account for
the reported effects of estrogens on lhb expression. In general, in
most fish species examined estrogens had an overall increasing
effect on lhb gene expression and secretion whereas the effect on
FSH was less consistent (7). In sub-adult salmon, estrogens had a
profound up-regulating effect on lhb and a downregulating effect
on fshb gene expression (44). In tilapia, estradiol has been shown
to decrease fshb and lhb expression in vivo and decrease effect of
GnRH on GtH secretion (28). In primary cell cultures from the
adult zebrafish pituitary, estrogen increased expression of both
GtHs (50). Gonadectomy studies further support the notion of
tight feedback mechanisms exerted by gonadal steroids on GtH
expression and secretion levels. When gonads are removed pitu-
itaries reacted to the decrease in gonadal steroid levels by increasing
GtH production, dependent on the reproductive stage of the fish
(51–53).

Introns are incorporated into many transgenic cassettes as a
mean of increasing transgene expression in mammals (54–56), fish
(57, 58), and invertebrates (59). The effect of introns on transgene
performance can be attributed to the fact that the 5′ region (first
500–1000 nt from the splice site) of the first intron in many genes
exhibits an exceptional degree of conservation and has been shown
to contain functional regulatory elements (33). Since we included
the first intron of both genes in our constructs, we also tested for
similarities within these sequences. In the lhb introns, a specific
sequence of putative binding motifs was found in both zebrafish
and tilapia, although the motifs were more densely distributed in
the tilapia, corresponding to the trend toward a more compact
genome in tilapia than in zebrafish (42).

Our model shows good separation between the expression pat-
terns of the two gonadotropes, evidenced by the fact that all clearly
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labeled cells expressed only one GtH, in both zebrafish and tilapia.
However, very few cells in the ventral-most part of the proxi-
mal pars distalis showed low expression levels of both fluorescent
proteins. While fish are generally considered to have complete
separation of the two GtH types (8), there is some evidence
of coexpression of both hormones within the same cells in the
Mediterranean yellowtail (60). Another explanation relies on the
concept that both LH and FSH are derived from the same lineage
(61), and the fact that FSH gonadotropes begin appearing in this
area and gradually migrate to their final, more dorsal position (25),
thus marking the ventral pituitary as the gonadotrope’s “birth-
place.” It is possible that these ventral cells represent a portion
of the population that is going through phases of differentiation
and may experience a bipotent stage before committing to their
final roles.

The developmental pattern of FSH and LH found in our fish
corresponds well with that described by Chen and Ge (25) for
the same species. FSH was expressed at relatively early stages of
development whereas the appearance of LH cells was highly cor-
related with the onset of puberty, as is the case for tilapia and
mummichog (62, 63). This large gap in the temporal expression
of FSH and LH differs from the situation in mammals, in which
both GtHs are expressed at approximately the same time during
development (64). The early expression of FSH may be related to
the fact that at these initial stages, FSH seems to play developmen-
tal roles in processes other than reproduction, and depletion of its
β-subunit mRNA causes severe developmental abnormalities (25).
In accordance with the concept of a non-reproductive role for early
FSH expression, we could not find any GnRH3 fibers reaching the
pituitary until 7 dpf, and even at 14 dpf, some of the fish failed to
exhibit GnRH axons in the pituitary (data not shown), although
a significant number of FSH cells were present in the pituitary
at that time. This observation is strengthened by the fact that in
mammals, FSH cells are unresponsive to GnRH at early develop-
mental stages and require LH signaling to begin expressing GnRH
receptor (65). This activation by LH is apparently not necessary
in fish, as in our model at 14 dpf the FSH cells were receptive to
GnRH stimuli, as evidenced by the increase in fshb expression in
response to GnRH application (despite a lack of LH at this stage).

Our transgenic zebrafish lines have been validated using
accepted methodologies and the transgene response to estrogens
and GnRH – the key modulators of GtH secretion – reflects
the endogenous gene response patterns. Moreover, the transgene
ontogeny profiles closely follow those described for this species.
Nevertheless, it is important to note that the tilapia regulatory ele-
ments, operating within the zebrafish genomic environment, may
respond differently from the endogenous zebrafish genes to some
relevant stimuli. Factor-specific validation is therefore required
when applying this model to investigate other aspects of GtH
regulation.

In summary, we used regulatory elements from an evolution-
ary distant species to drive correct expression of transgenes in
zebrafish gonadotropes. Our results highlight the functional con-
servation of highly diverged genomic regulatory regions. Our
newly introduced transgenic zebrafish lines provide an important
and powerful tool for investigating the differential development,
anatomy, and function of the reproductive axis in vertebrates.

ACKNOWLEDGMENTS
The authors would like to thank Mrs. Naama Gruber for her help
with the in silico analysis of promoter elements. Fadrozole was a
kind gift from Novartis. The research was funded Binational Agri-
cultural Research and Development Fund (BARD IS-4499-12) and
by the Israel Science Foundation (ISF) nos. 1350/06 and 237/12.

REFERENCES
1. Zohar Y, Munoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduc-

tion in teleost fish. Gen Comp Endocrinol (2010) 165:438–55. doi:10.1016/j.
ygcen.2009.04.017

2. Biran J, Palevitch O, Ben-Dor S, Levavi-Sivan B. Neurokinin Bs and neurokinin
B receptors in zebrafish-potential role in controlling fish reproduction. Proc Natl
Acad Sci U S A (2012) 109:10269–74. doi:10.1073/pnas.1119165109

3. Biran J, Golan M, Mizrahi N, Ogawa S, Parhar SI, Levavi-Sivan B. Direct regula-
tion of gonadotropin release by neurokinin B in tilapia (Oreochromis niloticus).
Endocrinology (2014). doi:10.1210/en.2013-2114

4. Biran J, Golan M, Mizrahi N, Ogawa S, Parhar S I, Levavi-Sivan B. LPXRFa, the
piscine ortholog of GnIH, and LPXRF-receptor positively regulate gonadotropin
secretion in tilapia (Oreochromis niloticus). Endocrinology (2014) 155:4391–401.
doi:10.1210/en.2013-2047

5. Hedger MP. Chapter 2 hypophyseal-gonadal relationships in the male. In: Bittar
EE, Neville Edward B, editors. Principles of Medical Biology. Elsevier (1998). p.
25–55.

6. Mroueh J, Danforth DR. Chapter 3 hypophyseal-ovarian relationships. In: Bittar
EE, Neville Edward B, editors. Principles of Medical Biology. Elsevier (1998). p.
57–75.

7. Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B. Regulation
of fish gonadotropins. Int Rev Cytol (2003) 225:131–85. doi:10.1016/S0074-
7696(05)25004-0

8. Levavi-Sivan B, Bogerd J, Mananos EL, Gomez A, Lareyre JJ. Perspectives on fish
gonadotropins and their receptors. Gen Comp Endocrinol (2010) 165:412–37.
doi:10.1016/j.ygcen.2009.07.019

9. Schulz RW, De Franca LR, Lareyre JJ, Le Gac F, Chiarini-Garcia H, Nobrega
RH, et al. Spermatogenesis in fish. Gen Comp Endocrinol (2010) 165:390–411.
doi:10.1016/j.ygcen.2009.02.013

10. Aizen J, Kobayashi M, Selicharova I, Sohn YC, Yoshizaki G, Levavi-Sivan B.
Steroidogenic response of carp ovaries to piscine FSH and LH depends on
the reproductive phase. Gen Comp Endocrinol (2012) 178:28–36. doi:10.1016/j.
ygcen.2012.04.002

11. Schulz RW, Vischer HF, Cavaco JE, Santos EM, Tyler CR, Goos HJ, et al.
Gonadotropins, their receptors, and the regulation of testicular functions in
fish. Comp Biochem Physiol B Biochem Mol Biol (2001) 129:407–17. doi:10.1016/
S1096-4959(01)00339-6

12. McGonnell IM, Fowkes RC. Fishing for gene function – endocrine modelling in
the zebrafish. J Endocrinol (2006) 189:425–39. doi:10.1677/joe.1.06683

13. Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into
view. Nat Rev Genet (2007) 8:353–67. doi:10.1038/nrg2091

14. Lohr H, Hammerschmidt M. Zebrafish in endocrine systems: recent advances
and implications for human disease. Annu Rev Physiol (2011) 73:183–211.
doi:10.1146/annurev-physiol-012110-142320

15. Gagnon JA, Valen E, Thyme SB, Huang P, Ahkmetova L, Pauli A, et al. Effi-
cient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and
large-scale assessment of single-guide RNAs. PLoS One (2014) 9:e98186.
doi:10.1371/journal.pone.0098186

16. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS,
et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transpo-
son transgenesis constructs. Dev Dyn (2007) 236:3088–99. doi:10.1002/dvdy.
21343

17. Friedrich RW, Jacobson GA, Zhu P. Circuit neuroscience in zebrafish. Curr Biol
(2010) 20:R371–81. doi:10.1016/j.cub.2010.02.039

18. Abraham E, Palevitch O, Ijiri S, Du SJ, Gothilf Y, Zohar Y. Early development of
forebrain gonadotrophin-releasing hormone (GnRH) neurones and the role of
GnRH as an autocrine migration factor. J Neuroendocrinol (2008) 20:394–405.
doi:10.1111/j.1365-2826.2008.01654.x

19. Karigo T, Kanda S, Takahashi A,Abe H, Okubo K, OkaY. Time-of-day-dependent
changes in GnRH1 neuronal activities and gonadotropin mRNA expression in a

www.frontiersin.org October 2014 | Volume 5 | Article 182 | 9

http://dx.doi.org/10.1016/j.ygcen.2009.04.017
http://dx.doi.org/10.1016/j.ygcen.2009.04.017
http://dx.doi.org/10.1073/pnas.1119165109
http://dx.doi.org/10.1210/en.2013-2114
http://dx.doi.org/10.1210/en.2013-2047
http://dx.doi.org/10.1016/S0074-7696(05)25004-0
http://dx.doi.org/10.1016/S0074-7696(05)25004-0
http://dx.doi.org/10.1016/j.ygcen.2009.07.019
http://dx.doi.org/10.1016/j.ygcen.2009.02.013
http://dx.doi.org/10.1016/j.ygcen.2012.04.002
http://dx.doi.org/10.1016/j.ygcen.2012.04.002
http://dx.doi.org/10.1016/S1096-4959(01)00339-6
http://dx.doi.org/10.1016/S1096-4959(01)00339-6
http://dx.doi.org/10.1677/joe.1.06683
http://dx.doi.org/10.1038/nrg2091
http://dx.doi.org/10.1146/annurev-physiol-012110-142320
http://dx.doi.org/10.1371/journal.pone.0098186
http://dx.doi.org/10.1002/dvdy.21343
http://dx.doi.org/10.1002/dvdy.21343
http://dx.doi.org/10.1016/j.cub.2010.02.039
http://dx.doi.org/10.1111/j.1365-2826.2008.01654.x
http://www.frontiersin.org
http://www.frontiersin.org/Pituitary_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Golan et al. A new zebrafish gonadotrope model

daily spawning fish, medaka. Endocrinology (2012) 153:3394–404. doi:10.1210/
en.2011-2022

20. Golan M, Levavi-Sivan B. Social dominance in tilapia is associated with
gonadotroph hyperplasia. Gen Comp Endocrinol (2013) 192:126–35. doi:10.
1016/j.ygcen.2013.04.032

21. Karigo T, Aikawa M, Kondo C, Abe H, Kanda S, Oka Y. Whole brain-pituitary
in vitro preparation of the transgenic medaka (Oryzias latipes) as a tool for ana-
lyzing the differential regulatory mechanisms of LH and FSH release. Endocrinol-
ogy (2014) 155:536–47. doi:10.1210/en.2013-1642

22. Cheng X, Chen X, Jin X, He J, Yin Z. Generation and characterization of
gsuα:EGFP transgenic zebrafish for evaluating endocrine-disrupting effects.
Toxicol Appl Pharmacol (2014) 278:78–84. doi:10.1016/j.taap.2014.04.009

23. Best J, Adatto I, Cockington J, James A, Lawrence C. A novel method for rearing
first-feeding larval zebrafish: polyculture with type L saltwater rotifers (Bra-
chionus plicatilis). Zebrafish (2010) 7:289–95. doi:10.1089/zeb.2010.0667

24. Brawand D,Wagner CE,LiYI,Malinsky M,Keller I,Fan S,et al. The genomic sub-
strate for adaptive radiation in African cichlid fish. Nature (2014) 513:375–81.
doi:10.1038/nature13726

25. Chen W, Ge W. Ontogenic expression profiles of gonadotropins (fshb and
lhb) and growth hormone (gh) during sexual differentiation and puberty
onset in female zebrafish. Biol Reprod (2012) 86:73. doi:10.1095/biolreprod.111.
094730

26. Kasuto H, Levavi-Sivan B. Production of biologically active tethered tilapia
LHβα by the methylotrophic yeast Pichia pastoris. Gen Comp Endocrinol (2005)
140:222–32. doi:10.1016/j.ygcen.2004.10.016

27. Aizen J, Kasuto H, Levavi-Sivan B. Development of specific enzyme-linked
immunosorbent assay for determining LH and FSH levels in tilapia, using
recombinant gonadotropins. Gen Comp Endocrinol (2007) 153:323–32. doi:10.
1016/j.ygcen.2007.04.004

28. Levavi-Sivan B, Biran J, Fireman E. Sex steroids are involved in the regula-
tion of gonadotropin-releasing hormone and dopamine D2 receptors in female
tilapia pituitary. Biol Reprod (2006) 75:642–50. doi:10.1095/biolreprod.106.
051540

29. Biran J,Ben-Dor S,Levavi-Sivan B. Molecular identification and functional char-
acterization of the kisspeptin/kisspeptin receptor system in lower vertebrates.
Biol Reprod (2008) 79:776–86. doi:10.1095/biolreprod.107.066266

30. Sohn YC, Yoshiura Y, Suetake H, Kobayashi M, Aida K. Nucleotide sequence of
gonadotropin II beta subunit gene in goldfish. Fish Sci. (1999) 65:800–1.

31. Yang C, Bolotin E, Jiang T, Sladek FM, Martinez E. Prevalence of the initia-
tor over the TATA box in human and yeast genes and identification of DNA
motifs enriched in human TATA-less core promoters. Gene (2007) 389:52–65.
doi:10.1016/j.gene.2006.09.029

32. Lau MT, Lin SW, Ge W. Identification of smad response elements in the pro-
moter of goldfish FSHbeta gene and evidence for their mediation of activin
and GnRH stimulation of FSHbeta expression. Front Endocrinol (2012) 3:47.
doi:10.3389/fendo.2012.00047

33. Majewski J, Ott J. Distribution and characterization of regulatory elements in
the human genome. Genome Res (2002) 12:1827–36. doi:10.1101/gr.606402

34. Davidson MW, Campbell RE. Engineered fluorescent proteins: innovations and
applications. Nat Methods (2009) 6:713–7. doi:10.1038/nmeth1009-713

35. Hildahl J, Sandvik GK, Lifjeld R, Hodne K, Nagahama Y, Haug TM, et al. Devel-
opmental tracing of luteinizing hormone beta-subunit gene expression using
green fluorescent protein transgenic medaka (Oryzias latipes) reveals a puta-
tive novel developmental function. Dev Dyn (2012) 241:1665–77. doi:10.1002/
dvdy.23860

36. Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledge-base of diver-
gence times among organisms. Bioinformatics (2006) 22:2971–2. doi:10.1093/
bioinformatics/btl505

37. Chong KL, Koh M, Melamed P. Hormones and their Receptors in Fish Reproduc-
tion. Singapore: World Scientific Publishing Co. Pvt. Ltd (2005).

38. Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, et al. The genome
sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS
Biol (2003) 1:E45. doi:10.1371/journal.pbio.0000045

39. Coghlan A, Wolfe KH. Origins of recently gained introns in Caenorhabditis. Proc
Natl Acad Sci U S A (2004) 101:11362–7. doi:10.1073/pnas.0308192101

40. Yandell M, Mungall CJ, Smith C, Prochnik S, Kaminker J, Hartzell G, et al. Large-
scale trends in the evolution of gene structures within 11 animal genomes. PLoS
Comput Biol (2006) 2:e15. doi:10.1371/journal.pcbi.0020015

41. Venkatesh B, Ning Y, Brenner S. Late changes in spliceosomal introns define
clades in vertebrate evolution. Proc Natl Acad Sci U S A (1999) 96:10267–71.
doi:10.1073/pnas.96.18.10267

42. Kumar A, Bhandari A, Sinha R, Goyal P, Grapputo A. Spliceosomal intron inser-
tions in genome compacted ray-finned fishes as evident from phylogeny of MC
receptors, also supported by a few other GPCRs. PLoS One (2011) 6:e22046.
doi:10.1371/journal.pone.0022046

43. Taher L, Mcgaughey DM, Maragh S, Aneas I, Bessling SL, Miller W, et al.
Genome-wide identification of conserved regulatory function in diverged
sequences. Genome Res (2011) 21:1139–49. doi:10.1101/gr.119016.110

44. Harding LB, Schultz IR, Goetz GW, Luckenbach JA, Young G, Goetz FW, et al.
High-throughput sequencing and pathway analysis reveal alteration of the pitu-
itary transcriptome by 17alpha-ethynylestradiol (EE2) in female coho salmon,
Oncorhynchus kisutch. Aquat Toxicol (2013) 14(2–143):146–63. doi:10.1016/j.
aquatox.2013.07.020

45. Baratta M, West LA, Turzillo AM, Nett TM. Activin modulates differential effects
of estradiol on synthesis and secretion of follicle-stimulating hormone in ovine
pituitary cells. Biol Reprod (2001) 64:714–9. doi:10.1095/biolreprod64.2.714

46. Bernard DJ, Fortin J, Wang Y, Lamba P. Mechanisms of FSH synthesis: what we
know, what we don’t, and why you should care. Fertil Steril (2010) 93:2465–85.
doi:10.1016/j.fertnstert.2010.03.034

47. Le Drean Y, Liu D, Xiong F, Hew CL. Presence of distinct cis-acting ele-
ments on gonadotropin gene promoters in diverse species dictates the selective
recruitment of different transcription factors by steroidogenic factor-1. Mol Cell
Endocrinol (1997) 135:31–40.

48. Melamed P, Koh M, Preklathan P, Bei L, Hew C. Multiple mechanisms for Pitx-1
transactivation of a luteinizing hormone beta subunit gene. J Biol Chem (2002)
277:26200–7. doi:10.1074/jbc.M201605200

49. Quirk CC, Lozada KL, Keri RA, Nilson JH. A single Pitx1 binding site is essential
for activity of the LHbeta promoter in transgenic mice. Mol Endocrinol (2001)
15:734–46. doi:10.1210/mend.15.5.0628

50. Lin S-W, Ge W. Differential regulation of gonadotropins (FSH and LH) and
growth hormone (GH) by neuroendocrine, endocrine, and paracrine factors in
the zebrafish – an in vitro approach. Gen Comp Endocrinol (2009) 160:183–93.
doi:10.1016/j.ygcen.2008.11.020

51. Larsen DA, Swanson P. Effects of gonadectomy on plasma gonadotropins I
and II in coho salmon, Oncorhynchus kisutch. Gen Comp Endocrinol (1997)
108:152–60. doi:10.1006/gcen.1997.6958

52. Borg B, Antonopoulou E, Mayer I, Andersson E, Berglund I, Swanson P. Effects
of gonadectomy and androgen treatments on pituitary and plasma levels of
gonadotropins in mature male Atlantic salmon, Salmo salar, parr – posi-
tive feedback control of both gonadotropins. Biol Reprod (1998) 58:814–20.
doi:10.1095/biolreprod58.3.814

53. Khan IA, Hawkins MB, Thomas P. Gonadal stage-dependent effects of gonadal
steroids on gonadotropin II secretion in the Atlantic croaker (Micropogonias
undulatus). Biol Reprod (1999) 61:834–41. doi:10.1095/biolreprod61.3.834

54. Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD. Introns increase
transcriptional efficiency in transgenic mice. Proc Natl Acad Sci U S A (1988)
85:836–40. doi:10.1073/pnas.85.3.836

55. Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL. Heterologous
introns can enhance expression of transgenes in mice. Proc Natl Acad Sci U S A
(1991) 88:478–82. doi:10.1073/pnas.88.2.478

56. Furger A, O’sullivan JM, Binnie A, Lee BA, Proudfoot NJ. Promoter proximal
splice sites enhance transcription. Genes Dev (2002) 16:2792–9. doi:10.1101/
gad.983602

57. Moav B, Liu Z, Caldovic LD, Gross ML, Faras AJ, Hackett PB. Regulation of
expression of transgenes in developing fish. Transgenic Res (1993) 2:153–61.
doi:10.1007/BF01972609

58. Rocha A, Ruiz S, Estepa A, Coll JM. Application of inducible and targeted gene
strategies to produce transgenic fish: a review. Mar Biotechnol (NY) (2004)
6:118–27. doi:10.1007/s10126-003-0013-9

59. Duncker BP, Davies PL, Walker VK. Introns boost transgene expression
in Drosophila melanogaster. Mol Gen Genet (1997) 254:291–6. doi:10.1007/
s004380050418

60. Pilar Garcia Hernandez M, Garcia Ayala A, Zandbergen MA,Agulleiro B. Investi-
gation into the duality of gonadotropic cells of Mediterranean yellowtail (Seriola
dumerilii, Risso 1810): immunocytochemical and ultrastructural studies. Gen
Comp Endocrinol (2002) 128:25–35. doi:10.1016/S0016-6480(02)00052-7

Frontiers in Endocrinology | Pituitary Endocrinology October 2014 | Volume 5 | Article 182 | 10

http://dx.doi.org/10.1210/en.2011-2022
http://dx.doi.org/10.1210/en.2011-2022
http://dx.doi.org/10.1016/j.ygcen.2013.04.032
http://dx.doi.org/10.1016/j.ygcen.2013.04.032
http://dx.doi.org/10.1210/en.2013-1642
http://dx.doi.org/10.1016/j.taap.2014.04.009
http://dx.doi.org/10.1089/zeb.2010.0667
http://dx.doi.org/10.1038/nature13726
http://dx.doi.org/10.1095/biolreprod.111.094730
http://dx.doi.org/10.1095/biolreprod.111.094730
http://dx.doi.org/10.1016/j.ygcen.2004.10.016
http://dx.doi.org/10.1016/j.ygcen.2007.04.004
http://dx.doi.org/10.1016/j.ygcen.2007.04.004
http://dx.doi.org/10.1095/biolreprod.106.051540
http://dx.doi.org/10.1095/biolreprod.106.051540
http://dx.doi.org/10.1095/biolreprod.107.066266
http://dx.doi.org/10.1016/j.gene.2006.09.029
http://dx.doi.org/10.3389/fendo.2012.00047
http://dx.doi.org/10.1101/gr.606402
http://dx.doi.org/10.1038/nmeth1009-713
http://dx.doi.org/10.1002/dvdy.23860
http://dx.doi.org/10.1002/dvdy.23860
http://dx.doi.org/10.1093/bioinformatics/btl505
http://dx.doi.org/10.1093/bioinformatics/btl505
http://dx.doi.org/10.1371/journal.pbio.0000045
http://dx.doi.org/10.1073/pnas.0308192101
http://dx.doi.org/10.1371/journal.pcbi.0020015
http://dx.doi.org/10.1073/pnas.96.18.10267
http://dx.doi.org/10.1371/journal.pone.0022046
http://dx.doi.org/10.1101/gr.119016.110
http://dx.doi.org/10.1016/j.aquatox.2013.07.020
http://dx.doi.org/10.1016/j.aquatox.2013.07.020
http://dx.doi.org/10.1095/biolreprod64.2.714
http://dx.doi.org/10.1016/j.fertnstert.2010.03.034
http://dx.doi.org/10.1074/jbc.M201605200
http://dx.doi.org/10.1210/mend.15.5.0628
http://dx.doi.org/10.1016/j.ygcen.2008.11.020
http://dx.doi.org/10.1006/gcen.1997.6958
http://dx.doi.org/10.1095/biolreprod58.3.814
http://dx.doi.org/10.1095/biolreprod61.3.834
http://dx.doi.org/10.1073/pnas.85.3.836
http://dx.doi.org/10.1073/pnas.88.2.478
http://dx.doi.org/10.1101/gad.983602
http://dx.doi.org/10.1101/gad.983602
http://dx.doi.org/10.1007/BF01972609
http://dx.doi.org/10.1007/s10126-003-0013-9
http://dx.doi.org/10.1007/s004380050418
http://dx.doi.org/10.1007/s004380050418
http://dx.doi.org/10.1016/S0016-6480(02)00052-7
http://www.frontiersin.org/Pituitary_Endocrinology
http://www.frontiersin.org/Pituitary_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Golan et al. A new zebrafish gonadotrope model

61. Pulichino AM, Vallette-Kasic S, Tsai JP, Couture C, Gauthier Y, Drouin J. Tpit
determines alternate fates during pituitary cell differentiation. Genes Dev (2003)
17:738–47. doi:10.1101/gad.1065703

62. Shimizu A, Hamaguchi M, Ito H, Ohkubo M, Udagawa M, Fujii K, et al. Appear-
ances and chronological changes of mummichog Fundulus heteroclitus FSH cells
and LH cells during ontogeny, sexual differentiation, and gonadal development.
Gen Comp Endocrinol (2008) 156:312–22. doi:10.1016/j.ygcen.2008.01.022

63. Yan H, Ijiri S, Wu Q, Kobayashi T, Li S, Nakaseko T, et al. Expression pat-
terns of gonadotropin hormones and their receptors during early sexual dif-
ferentiation in Nile tilapia Oreochromis niloticus. Biol Reprod (2012) 87:116.
doi:10.1095/biolreprod.112.101220

64. Japon MA, Rubinstein M, Low MJ. In situ hybridization analysis of anterior pitu-
itary hormone gene expression during fetal mouse development. J Histochem
Cytochem (1994) 42:1117–25. doi:10.1177/42.8.8027530

65. Wen S, Ai W, Alim Z, Boehm U. Embryonic gonadotropin-releasing hormone
signaling is necessary for maturation of the male reproductive axis. Proc Natl
Acad Sci U S A (2010) 107:16372–7. doi:10.1073/pnas.1000423107

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 16 September 2014; accepted: 08 October 2014; published online: 22 October
2014.
Citation: Golan M, Biran J and Levavi-Sivan B (2014) A novel model for development,
organization, and function of gonadotropes in fish pituitary. Front. Endocrinol. 5:182.
doi: 10.3389/fendo.2014.00182
This article was submitted to Pituitary Endocrinology, a section of the journal Frontiers
in Endocrinology.
Copyright © 2014 Golan, Biran and Levavi-Sivan. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

www.frontiersin.org October 2014 | Volume 5 | Article 182 | 11

http://dx.doi.org/10.1101/gad.1065703
http://dx.doi.org/10.1016/j.ygcen.2008.01.022
http://dx.doi.org/10.1095/biolreprod.112.101220
http://dx.doi.org/10.1177/42.8.8027530
http://dx.doi.org/10.1073/pnas.1000423107
http://dx.doi.org/10.3389/fendo.2014.00182
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Pituitary_Endocrinology/archive

	A novel model for development, organization, and function of gonadotropes in fish pituitary
	Introduction
	Materials and methods
	Fish husbandry and breeding
	Constructs and transgenesis
	Promoter analysis
	In situ hybridization, immunofluorescence, and imaging
	Real-time PCR
	In vivo experiments
	Statistical analysis

	Results
	Gene structure and promoter comparison
	Transgenes validation
	FSH transgene response to GnRH and estradiol
	Ontogenic expression of the transgene

	Discussion
	Acknowledgments
	References


