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Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides
(ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endoge-
nous cardiac steroids.These substances induce the kidney to excrete sodium and therefore
participate in the regulation of sodium and water homeostasis, blood volume, and blood
pressure (BP). In addition to their peripheral functions, these hormones act as neurotrans-
mitters or neuromodulators in the brain. In this review, the established information on the
biosynthesis, release and function of NH is discussed, with particular focus on their role in
brain function.The available literature on the expression patterns of each of the NH and their
receptors in the brain is summarized, followed by the evidence for their roles in modulating
brain function. Although numerous open questions exist regarding this issue, the available
data support the notion that NH participate in the central regulation of BP, neuroprotection,
satiety, and various psychiatric conditions, including anxiety, addiction, and depressive dis-
orders. In addition, the interactions between the different NH in the periphery and the brain
are discussed.
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INTRODUCTION
Natriuretic hormones (NH) are compounds that act in an
endocrine or paracrine fashion to regulate extracellular fluid vol-
ume and blood pressure (BP) through the stimulation of sodium
excretion by the kidney. Three groups of compounds fall into this
broad definition: the natriuretic peptides (NP: ANP, BNP, and
CNP), the guanylin peptides (GP), and the endogenous cardiac
steroids (CS: ouabain, digoxin, and marinobufagenin). A large
body of evidence supports the notion that in addition to their
natriuretic effects, these hormones participate in numerous brain
functions. Our goal is to review the established information on the
biosynthesis, release, and physiological roles of NH, with particu-
lar focus on the brain. The available literature on the interactions
between the different NH families in the periphery and in the brain
is also addressed.

NATRIURETIC PEPTIDES
The first demonstration of an endocrine link between the heart
and kidneys came from the pioneering experiments of De Bold,
which led to the discovery of atrial NP (ANP), the founding
member of the family of NP. De Bold and his colleagues found
that injecting rats with an atrial homogenate caused significant
natriuresis and diuresis (1). Additional members of this family
of peptides were purified over the course of the following years:
B-type NP (BNP) (2) and C-type NP (CNP) (3). ANP, BNP, and
CNP are expressed as pre-pro-hormones and are proteolytically
processed to form the mature peptides. The three peptides share a
similar structure consisting of two cysteine residues flanking a 17-
residue disulfide-linked ring that is essential for biological activity
(3). The main inducer of ANP release is atrial wall stretch (4).
BNP is released from the atrium, as is ANP, but its main sources
are the ventricles, where BNP is transcriptionally regulated by car-
diac wall stretch resulting from volume overload (5). There are

three known NP receptors: NP receptor-A (NPR-A), or guanylyl
cyclase A (GC-A), which binds ANP and BNP (6); NPR-B (GC-
B), which is highly specific for CNP (7); and NPR-C. NPR-A and
NPR-B are membrane-bound receptors consisting of an extra-
cellular ligand binding domain, a single transmembrane region
and an intracellular GC domain that rapidly releases cyclic guano-
sine monophosphate (cGMP) in response to the NP binding (8).
The cGMP then acts as a second messenger that activates protein
kinase-G (PKG) and subsequent cellular signaling cascades (9). A
third receptor, NPR-C, contains only a short intracellular fragment
and has no GC activity. The main function of NPR-C is to clear NP
through receptor-mediated internalization and degradation (10).

PHYSIOLOGICAL ROLES OF NP
Atrial natriuretic peptide has a major role in the regulation of BP.
In the kidney, ANP induces natriuresis and diuresis by increas-
ing the glomerular filtration rate (GFR) and inhibiting sodium
and water reabsorption (11). ANP acts as a functional antag-
onist of the renin–angiotensin–aldosteron system by inhibiting
renin secretion from the kidney and aldosterone production in
the adrenal glands (12). It stimulates smooth muscle cell relax-
ation in blood vessels, causing vasorelaxation (13). It also regulates
the intravascular volume by increasing endothelium permeabil-
ity (14). In accordance with these effects, it was found that ANP
knockout mice developed salt-sensitive hypertension (15). ANP
also directly affects the heart by inhibiting cardiac hypertrophy
(16). BNP activates the same receptor as ANP but its precise func-
tional significance is not well understood. Studies on mice with
targeted disruption of BNP (17) and on cultured cardiac fibrob-
lasts (18) established BNP as an antifibrotic factor that plays a role
in ventricular remodeling. Indeed, high concentrations of BNP
were found in the ventricles following congestive heart failure or
myocardial infarction, rendering it an important biomarker for
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these conditions (19). Unlike the other two family members, CNP
acts in an autocrine/paracrine fashion. Although NPR-B is present
in the kidney, CNP has little natriuretic or diuretic effect, and it is a
much more potent cardiovascular effector (20). CNP is produced
by the endothelium and induces vasorelaxation (21). It also par-
ticipates in vascular remodeling following injury (22). In addition
to their cardiovascular and renal effects, NP show a wide-spread
effect throughout the body (8): They act as bronchodilators and
vasorelaxants in the lungs (23), elicit anti-inflammatory effects in
the immune system (24), and have metabolic effects on the adipose
tissue (25) and on long bones (26).

NP IN THE BRAIN
The ANP, BNP, and CNP and their receptors are expressed in the
brain, which implies a possible role for these peptides in brain
function. CNP is the most abundantly present NP in the brain (27),
suggesting that it acts as a neurotransmitter or neuromodulator
rather than a cardiac hormone (28). Accordingly, the CNP-specific
receptor – NPR-B is widely spread throughout the brain: NPR-
B mRNA was detected in the cerebral cortex, the limbic area,
preoptic-hypothalamic regions, motor nuclei, and the brainstem
(29). ANP and BNP are also present in the brain and have interest-
ing neuromodulatory functions. ANP expression was first found
in the hypothalamus (30), which is the main source of NP in the
brain (31, 32). ANP is present in neurons and glia in the cerebral
cortex (33) and in the cerebellum (34). ANP was also described in
neurons and fibers in the limbic area, olfactory bulb, thalamus, and
striatum (31, 35–37). BNP was found in the hypothalamus (38)
and cerebral cortex (33). Unlike ANP and CNP, no BNP mRNA
was detected in the brain (39), suggesting the peripheral origin
of this peptide. Interestingly, ANP and BNP were described in
some of the circumventricular organs in the brain – the highly
vasculated structures in the hypothalamus that allow endocrine
communication between the periphery and CNS (40). Consider-
able ANP-like immunoreactivity was found in nerve fibers of the
vascular organ of the lamina terminalis and the subfornical organ
in rat brain (31). Neurons in the subfornical organ were shown to
respond to ANP by increased cGMP production (41). Neurons of
the circumventricular organs express receptors for the majority of
the cardiovascular hormones (42), including NP receptors: NPR-A
and NPR-B were found in the vascular organ of lamina terminalis,
the subfornical organ, area postrema, and the choroid plexus (43).

NP in central regulation of BP
The presence of NP and their receptors in the brain, and in the cir-
cumventricular organs in particular, led to the postulation that NP,
either locally produced in the brain or arriving via the peripheral
circulation, might affect neuronal pathways that centrally regulate
BP. However, the results are inconsistent. Intracerebroventricular
(i.c.v.) administration of ANP was reported to cause a decrease in
BP in normal and spontaneously hypertensive conscious rats, but
only at concentrations 10 times higher than the physiological level
(44). Low concentrations of ANP were shown to have a depres-
sor effect in anesthetized rats with sinoartic denervation, leading
to a decrease in BP and sympathetic outflow (45, 46). A study
performed on conscious sheep showed that CNP, but not ANP,
decreased BP upon i.c.v. administration (47). Numerous studies

found no change in BP upon central administration of ANP (48–
52) or BNP (53). However, there are reports describing a decrease
in vasopressin secretion following central ANP infusion, suggest-
ing that ANP and vasopressin may interact to attenuate the central
pressor effects of vasopressin (49, 51–54). Pretreatment of rats
with i.c.v. BNP was also shown to suppress vasopressin secretion
(53). In several studies it was postulated that ANP acts in the brain
by partially inhibiting the angiotensin II (ANG II) pathway. ANP
injection prevented the pressor effect of centrally administered
ANG II (46, 51). On the behavioral level, centrally administered
ANP was shown to inhibit water intake induced by ANG II or dehy-
dration in rats (55). It was also found to attenuate salt appetite in
spontaneously hypertensive rats (SHR) (48). These results suggest
that ANP may not be directly involved in central regulation of
BP, but rather act as a secondary modulator of other mechanisms,
perhaps, similar to its peripheral effect, by counteracting to the
effects of vasopressin and ANG II.

NP in neuroprotection
Natriuretic peptides were shown to exert a neuroprotective effect
in cultured cells and in vivo. Cortical spreading depression (CSD)
is a wave of depolarization followed by transient suppression of
electrical activity in the brain (56). Rats preconditioned with an
evoked episode of CSD were protected from neuronal damage fol-
lowing cerebral ischemia (57). Wiggins and his colleagues found
that an acute episode of CSD caused an elevation in ANP mRNA
and peptide levels in the rat cortex. The elevation was prolonged,
overlapped the time window for CSD-induced neuroprotection
and accompanied by ANP-dependent activation of cGMP signal-
ing cascades (58). Increased cGMP levels were previously impli-
cated in the neuroprotective mechanism of CSD (59). This notion
is supported by studies showing that ANP and BNP caused an
elevation in cGMP levels and inhibited apoptosis of PC12 cells
(60). However, there is no direct evidence of this effect in the
brain. A neuroprotective effect was also demonstrated in rat reti-
nal neurons, where ANP was shown to ameliorate NMDA-induced
neurotoxicity, presumably in a dopamine-dependent manner (61).
It was postulated that the ANP neuroprotective effect is mediated
via the cerebral blood flow. Indeed, an increased number of ANP-
immunoreactive astrocytes and other glial cells were found in the
white matter surrounding an infarction area in rats (62). This neu-
roprotective effect may be modulated by cGMP signaling, since
cGMP-phosphodiesterase inhibitor was found to have a protec-
tive effect in a focal brain injury model in rats (63). In ischemic
brain edema induced in rats, intravenous (i.v.) administration of
ANP proved to have a beneficial effect. At pharmacological doses,
the peptide significantly suppressed the elevation of the brain’s
water and sodium content and reduced the area of edema, as
revealed by magnetic resonance imaging (MRI) (64). ANP was
beneficial even after delayed administration, and reduced brain
edema when injected i.c.v. 4 h after induction of hemorrhagic
brain injury in rats (65). BNP too was implicated in neuroprotec-
tion following brain injury. James and colleagues demonstrated
that i.v. administration of BNP improved cerebral blood flow and
reduced inflammation in brain injury models in mice, as man-
ifested by reduced neurodegeneration and improved functional
outcome (66). Although these experiments were performed using
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high doses of exogenous human recombinant BNP (nesiritide),
endogenous BNP may play a role in recovery from brain injury, as
elevated BNP levels have been associated with this condition. Ele-
vated plasma BNP levels were described in patients with traumatic
brain injury (67, 68), stroke (69), and other brain injuries (70, 71).
Elevated BNP levels were also reported in the cerebrospinal fluid
(CSF) of brain trauma patients (67). These changes, however, cor-
related with a poor clinical outcome in trauma and stroke patients
(72, 73). This may indicate an insufficiency of the endogenous neu-
roprotective mechanism. The mechanism of NP neuroprotection
could be mediated through immunomodulation, as was demon-
strated in the periphery (74). All these clinical and pre-clinical
observations lead to the premise that ANP and BNP are part of an
endogenous protective mechanism in the brain against injury or
damage.

NP in behavior
Natriuretic peptides modulate the function of the hypothalamic–
pituitary–adrenal (HPA) axis and influence anxiety and addictive
behavior. NP regulate the HPA-axis at several levels: ANP inhibits
the release of corticotrophin (ACTH) and corticortrophin releas-
ing hormone (CRH) (75, 76), which, in turn, stimulate ANP
release, acting in a feedback loop (76). ANP also directly inhibits
cortisol secretion, whereas CNP exerts the opposite effect (77).
Central or peripheral administration of ANP decreased anxiety-
associated behavior in rats (78). In humans, lower levels of ANP
were described in patients with anxiety-related disorders, includ-
ing panic disorder (79) and posttraumatic stress disorder (80),
and high ANP levels were associated with lower anxiety levels
in patients recovering from cardiac failure (81). Experimentally
induced panic attacks were followed by an increase in plasma ANP
levels, which was faster and more pronounced in panic disorder
patients (79, 82). These observations suggest a therapeutic poten-
tial for ANP agonists in the treatment of anxiety-related disorders
(83). Indeed, pretreatment with i.v. ANP significantly reduced the
number of experimentally induced panic attacks in panic disor-
der patients and in healthy individuals (84, 85). The effects of
ANP on anxiety are presumed to be mediated through inhibition
of the HPA-axis. In healthy individuals, pretreatment with ANP
was able to partially block the sympathetic activation induced by
a bolus injection of CRH (86). However, further investigation is
needed to fully understand the interplay between ANP and the
HPA-axis.

B-type natriuretic peptide, like ANP, was found to have an
anxiolytic effect (87). On the other hand, CNP enhances corti-
sol secretion (77) and has an anxiogenic effect in rodents and
humans (88, 89). However, it is worth mentioning that high doses
of CNP (up to 5 µg), were used in these experiments; at low doses
(100 ng), CNP reduced anxiety-like behavior in rats (87). At doses
similar to those used for ANP, CNP increased the levels of anxiety-
related behavior when administered i.c.v. in rats (88). This effect
was abolished by a CRH antagonist, pointing toward an HPA-
axis related mechanism (89). In humans, pretreatment with CNP
enhanced the emotional effect of the anxiogenic agent CCK-4, and
increased the release of ACTH following this treatment (90). CNP
was also shown to stimulate cortisol and prolactin release (91). All
these finding indicate that CNP is a potent anxiogenic substance

that acts by stimulating the HPA-axis. It is therefore that CNP
antagonists were considered in anti-anxiety therapy (83).

Atrial natriuretic peptide may modulate alcohol withdrawal-
related anxiety. In alcohol-dependant patients, abrupt cessation
of alcohol consumption is accompanied by an array of symptoms
known as alcohol withdrawal (92). ANP is involved in some of the
neurobehavioral aspects of alcohol withdrawal, including anxiety
and alcohol craving (93). In mice, i.p. ANP administration atten-
uated anxiety-like behavior following alcohol withdrawal (94).
Handling-induced convulsions resulting from withdrawal were
reduced by i.c.v. infusion of ANP, whereas anti-ANP antibod-
ies had the opposite effect (95). Consistently, NPR-A knockout
mice showed increased stress-related alcohol consumption and
aggravated withdrawal symptoms (96). In humans, acute alcohol
consumption elevated plasma ANP levels in healthy individuals
(97). In patients with alcohol-dependence, plasma ANP levels were
lower during detoxification compared with those in non-drinking
individuals (93). The lower levels correlated with alterations in
promoter DNA methylation, which was significantly reduced as
compared with that in healthy controls (98). On the emotional
level, lower ANP levels were associated with increased anxiety and
alcohol craving during withdrawal (93, 99). It was postulated that
the mechanism of ANP involvement in withdrawal-related stress
is mediated through the HPA-axis (100). However, although the
HPA-axis stress response affects the patient’s recovery from alcohol
addiction (101) as well as relapse rate (102), cortisol and ACTH
levels do not correlate with those factors affected by ANP, such as
alcohol craving (102) and perceived stress (99). ANP involvement
in alcohol dependence is supported by recent genetic studies. A
genome-wide association study (GWAS) revealed alcohol depen-
dence to be associated with a single-nucleotide polymorphism
located in gene GATA4, which encodes a transcription factor regu-
lating ANP (103, 104). This finding was confirmed by a candidate
association study, which found GATA4 to be linked to alcohol
dependence at the gene level (105). This genetic variation in
GATA4 was also shown to be associated with an increased relapse
rate in patients (106), and greater reactivity in the amygdala to
alcohol-related images, as shown by functional MRI (107). These
results suggest that NP, possibly by modifying the stress response
of the HPA-axis, are involved in the pathological states of anxiety
disorders and alcohol dependence.

FUTURE CHALLENGES
As described above, there is evidence for the involvement of NP
in several brain functions. These observations open exciting new
venues for research and drug development. However, many open
questions remain to be clarified. In all the cases described above,
it appears that NP do not regulate brain functions directly, but
rather modulate other endocrine pathways, such as ANG II in BP
regulation, or the HPA-axis in anxiety-related disorders. As for
their neuroprotective qualities, those could be mediated via other
mechanisms activated by brain injury, such as the immune system.
The intricate interactions between NP and other cellular systems
need to be studied in depth. On the more basic level, although
the control of NP biosynthesis and release in the periphery is well
established, not much is known about locally produced NP in non-
cardiac tissues, the brain in particular. Information is lacking as to
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the specific cell types in the brain that produce NP, the factors reg-
ulating NP production and release, the modes of their elimination,
and the neuronal signaling pathways that they affect. Electrophys-
iological studies are necessary to establish the effects of NP on
neuronal excitation and channel activation. It is possible that NP
do not directly regulate neuronal activity, but rather modulate it
via their effect on glial cells. Studies on the NP effect on calcium
release and neurotransmitters uptake in glial cells may help elu-
cidate this point. Also, the interactions between NP and known
neurotransmitters and their receptors may be of importance, and
should be addressed.

GUANYLIN AND UROGUANYLIN
Dietary sodium leads to increased natriuresis in an aldosterone-
independent manner. This observation led to the postulation that
an additional NH is released from the intestine in response to
salt intake (108). Such a hormone was discovered in 1992 – the
previously unknown endogenous ligand of the intestinal recep-
tor GC-C, activated by bacterial enterotoxins (109), and termed
guanylin. Guanylin was purified from rat jejunum, and it was
shown to activate GC-C in T84 human intestinal cells (109).
One year later, a second endogenous ligand of GC-C was puri-
fied from the urine and intestinal mucosa of opossums, and named
uroguanylin (110). More recently, additional members of the fam-
ily, such as lymphoguanylin and renoguanylin were identified (111,
112). GP are expressed as pre-pro-hormones and are proteolyti-
cally cleaved to produce the biologically active peptides (113). They
share a similar structure two pairs of cysteine residues forming
disulfide bonds in conserved positions that are essential for their
biological function (114, 115). Like NP, guanylin and uroguanylin
bind to a single-membrane-spanning receptor GC (116). GC-C
has a similar GC-C domain architecture to GC-A and GC-B and
elicit an increase in cellular cGMP (8), which may account for
the similar function of the two peptide families. GC-C is mainly
expressed in the intestine, but GC-C transcripts were also found
in the adrenal gland, kidney, lung, reproductive system, lymphatic
organs, and brain (117, 118).

PHYSIOLOGICAL FUNCTION OF GP
Guanylin peptides are produced in the intestine after oral sodium
intake and are secreted into the intestinal lumen (119). The
resulting increase in enterocyte cGMP stimulates chloride and
bicarbonate secretion and inhibits sodium absorption, causing
greater secretion of fluids into the intestine (113). Guanylin and
uroguanylin also exert long-term effects on the intestine by reg-
ulating intestinal cell proliferation (120). In the kidney, these
peptides cause increased natriuresis, kaliuresis, and diuresis with-
out changes in GFR or renal blood flow (121). The renal effects
of GP are maintained in GC-C null mice (122), suggesting the
existence of an additional receptor whose identity is yet to be dis-
covered. Indeed, novel members of the receptor GC family were
described in specific cell types in the olfactory system (123, 124).

GP IN THE BRAIN
There are few reports on the expression of GP in the brain (118).
Their main effect in the CNS is likely endocrine: guanylin and
uroguanylin are secreted from the gut and enter the circulation,

mainly as prohormones (125, 126), and subsequently affect extra-
intestinal tissues such as the kidney (127) and the brain (128).
GC-C, the main intestinal receptor for GP, was found in the
midbrain (129) and the hypothalamus (128).

Uroguanylin in satiety control
The intestine is an important endocrine organ, secreting hormones
that centrally regulate satiety and food intake (130). The intestinal
hormones are vigorously studied as possible therapeutic targets for
the growing public health concern regarding obesity and metabolic
diseases (131). Valentino and colleagues identified uroguanylin
as a novel satiety hormone and showed that food intake causes
increased intestinal prouroguanylin secretion in fasting individ-
uals and mice (128). Administration of bacterial enterotoxins (a
GC-C agonist) i.v. or i.c.v. (but not orally) reduced food intake
in fasting mice, and i.v. administration of anti-prouroguanylin
antibodies blocked this response (128). The receptor GC-C is
expressed in the mouse hypothalamus. However, uroguanylin
expression was not found in this region, suggesting an endocrine
rather than a paracrine mode of regulation (128). To strengthen
this postulation, Valentino showed an increase in cGMP in the
hypothalamus in response to treatment with prouroguanylin, sug-
gesting that this prohormone is cleaved in the hypothalamus by an
unknown enzyme to produce the active peptide form (128). Mice
lacking GC-C exhibited impaired satiety that resulted in increased
food intake, obesity, and metabolic syndrome. In these animals,
as opposed to the normal controls, i.v. administration of bacterial
enterotoxins did not reduce food intake (128). Although further
validation of this new endocrine pathway is necessary, the study
provides strong evidence that uroguanylin is a central mediator
of food intake, and it may provide a new therapeutic target for
obesity and metabolic diseases (132).

GP in behavior
Guanylate cyclase C is expressed in dopaminergic neurons in the
midbrain, and GC-C knockout was associated with behavioral
changes in mice (129). Gong and collogues showed the expres-
sion of the GC-C protein in the ventral tegmental area and sub-
stantia nigra compacta in mice (129). Voltage clamp recordings
from mouse dopaminergic neurons revealed that guanylin and
uroguanylin significantly increased the neuronal activation evoked
by metabotropic and muscarinic receptor agonists. This effect was
abolished by blocking PKG signaling downstream from GC-C, and
it was absent in GC-C knockout mice (129). The knockout mice
exhibited increased locomotor activity, high levels of novelty seek-
ing behavior and impulsivity. Such behavior was attenuated by low
doses (1 mg/kg) of amphetamine, used to treat attention deficit
hyperactivity disorder (ADHD) in humans. It is widely accepted
that the dopaminergic system in the midbrain is involved in the eti-
ology of ADHD (133). The GC-C knockout mice were described by
the authors as a new animal model for ADHD, as they exhibit some
of the symptoms related to this condition (129, 134). However, as
the behavioral changes described could mimic several human con-
ditions, further validation of the model is needed, and evidence of
the involvement of GC-C in ADHD in humans is required. This
pathway can provide new therapeutic targets for diseases involving
the dopamine system, such as ADHD and schizophrenia.
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FUTURE CHALLENGES
Unlike NP and CS, it appears that GP are not synthesized in
the brain, but rather arrive via the circulation from the intes-
tine. However, the link between the intestine and the brain is not
clear. Which brain-derived factors, if any, induce GP release from
the intestine, and what signaling pathways they regulate require
further investigation. The humoral or neuronal pathways that
mediate the differential endocrine and paracrine effects of GP
on remote organs such as the brain and kidney need to be estab-
lished. Additionally, new members of the GC receptor family have
been recently described in specific sensory neurons (135). There
is a strong possibility that there are additional receptors which
mediate GP functions in specific brain areas.

CARDIAC STEROIDS
Cardiac steroids are a group of compounds that bind to and
inhibit Na+, K+-ATPase. These compounds, originally discovered
in plants and toad skin, have been used for centuries in Eastern and
Western medicine to treat cardiac failure (136). Investigation into
these substances started with the search for a missing“third factor”
in the regulation of sodium homeostasis, as described in the classic
work by de Wardener et al. (137). Although the interest in endoge-
nous CS as the “third factor” has subsided with the finding of the
NH, these studies paved the way for the recognition of CS in mam-
malian tissues and circulation. Rat brain extracts were shown to
inhibit Na+, K+-ATPase activity and ouabain binding (138–140).
Consequently, ouabain (141, 142), digoxin (143), and several bufa-
dienolides (144–148) were identified in mammalian tissues, urine
and plasma. CS are considered to be produced in the adrenal cortex
and hypothalamus (149, 150), although their complete synthetic
pathway is unknown. CS are subdivided into cardenolides, such
as ouabain and digoxin, and bufadienolides, including bufalin and
marinobufagenin. All CS have a steroid nucleus with a lactone ring
at position C-17, and a hydroxyl group at C-14. The 5-member-
and 6-member lactone rings are essential for the biological func-
tion of the cardenolides and bufadienolides, respectively (151).
The only established receptor for all CS is the catalytic α sub-
unit of the plasma membrane Na+, K+-ATPase. In addition to the
inhibition of the Na+, K+-ATPase pumping function (152), the
binding of CS results in the activation of signaling transduction
cascades, including the Src-kinase, the MAP-kinase, and the PKC
signaling pathways (153, 154).

PHYSIOLOGICAL FUNCTION OF CS
Na+, K+-ATPase is an essential enzyme expressed in all mam-
malian cells. CS have widespread effects in different types of cells,
including cardiac myocytes, smooth muscle cells, epithelial cells,
and neurons (153, 154). CS play important roles in many physi-
ological and pathological processes, among them sodium home-
ostasis (155), cardiac function (156), BP (157), cell growth (158),
and behavior (159). CS form the link between dietary sodium
intake and salt-sensitive hypertension (155). As described below,
CS regulate BP and hypertension by their effects in the periphery
and in the CNS. Given their presence in the brain and CSF, these
substances were postulated to act as neurotransmitters or neu-
romodulators, and they were shown to be involved in psychiatric
conditions such as depressive disorders (159). On the cellular level,

CS were found to function in cell growth and proliferation (158)
as well as in cell migration (160) and they may be associated with
the development of cancer (161).

CS IN THE BRAIN
Based on their ability to inhibit ouabain binding and Na+, K+-
ATPase activity, CS were identified in bovine hypothalamus (140),
rat brain (138), and CSF from humans (162, 163). Immunohis-
tochemical studies of mammalian brains revealed high concen-
trations of CS in the paraventricular nucleus and the supraoptic
nucleus (164). Cultured rat hypothalamic neurons were shown
to secrete CS in vitro (164, 165), supporting the premise that the
hypothalamus is the source of endogenous brain CS. The only
established CS receptor, Na+, K+-ATPase, is expressed through-
out the brain. Three isoforms of this enzyme are expressed in the
brain: α1, α2, and α3. They display a complex expression pattern:
neurons are the principal source of the α3 isoform (166) [although
some express α2,especially in the neonate (167)],whereas glial cells
predominantly express α2 (168). The α1 isoform is expressed in all
cell types, and considered a house keeping protein. The different
subunit isoforms vary in their sensitivity to CS and may mediate
differential functions of these substances.

CS in central regulation of BP
It is widely accepted that excess dietary sodium is an extremely
important factor in essential hypertension (169), although the
mechanism by which sodium elevates BP is not clear. A large
body of evidence links endogenous CS to the regulation of BP
and hypertension. In patients with essential hypertension, plasma
levels of ouabain and marinobufagenin were increased in about
40%, with a high correlation with BP (170–175). The plasma levels
of these substances in hypertensive patients and in rats increased
with sodium intake (176–178). Several animal models for hyper-
tension showed increased circulating levels of CS (178–180). Fur-
thermore, prolonged infusion of ouabain produced hypertension
in animals (181–183), but had no effect in genetically modified
ouabain-insensitive mice (183, 184). In transgenic mice, a greater
natriuretic response to sodium loading was demonstrated in ani-
mals expressing a highly CS-sensitive Na+, K+-ATPase α1 subunit
(185). Studies on mice carrying mutations in the gene encoding α2
showed that ouabain-induced elevation of BP in rodents was medi-
ated via this isoform: reduction of the expression level of α2 was
associated with increased BP (186). In contrast, animals overex-
pressing α2 were hypotensive (187). Treatment of hypertensive rats
with anti-digoxin antibodies (185, 188) or anti-marinobufogenin
antibodies (178) administered to rats on a high sodium intake,
resulted in a marked reduction in BP. Endogenous ouabain was
put forward as a putative target for the treatment of hypertension;
the ouabain inhibitor rostafuroxin showed promising results in
hypertensive rats (189). Studies by Leenen and colleagues indi-
cated that CS involvement in BP regulation is partially mediated
by their effect in the CNS. The first indication of brain involve-
ment came from experiments in SHR, in which adrenalectomy did
not prevent the increase in CS levels following high sodium intake
(177). Lesions in the most anteroventral part of the third ventricle
(AV3V) showed that this region is essential in mediating the pres-
sor effects of increased CSF sodium concentration via endogenous
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ouabain (190, 191). The effects of both acute and prolonged
ouabain infusion in sodium-loaded rodents were abolished by
administration of ANG II type 1 receptor blockers such as losartan
(192, 193), as well as in transgenic rats with reduced brain renin-
angiotensin pathway activity (194). These results pointed to the
involvement of this pathway in the effect of ouabain. All of these
finding led to a unifying hypothesis regarding the role of CS in
sodium-induced hypertension: sodium loading increases the lev-
els of ouabain in salt-sensitive individuals (195,196). In addition to
induction of vasoconstriction in the periphery, ouabain also acts in
the brain, where it activates the renin-angiotensin pathway, caus-
ing sympathetic activation, vasoconstriction and consequently, an
elevation in BP.

CS in depressive disorders
Mood disorders include major depression and dysthymia, charac-
terized by depressive episodes, and bipolar disorder (BD) marked
by both depressive and manic episodes. These conditions pose a
growing public health concern in the Western world. The etiol-
ogy of these diseases is not completely understood. Early reports
of the psychiatric effects of CS came from doctors describing
a syndrome termed “foxglove frenzy” or “digitalis delirium” in
patients with digitalis intoxication (197). More recently, a com-
prehensive hypothesis was put forward, linking brain CS levels
and Na+, K+-ATPase activity with BD (198, 199). BD has con-
sistently been associated with abnormalities in Na+, K+-ATPase
activity in erythrocytes (200, 201). A significant mood-related
decrease in the enzyme’s activity was found in manic BD patients
(202). Furthermore, Na+, K+-ATPase density was significantly
lower in BD patients than in major depressed and schizophrenic
patients (159). The plasma levels of endogenous CS were found
to be significantly decreased in manic individuals as compared
with those in normal controls (203, 204). Conversely, the lev-
els of these compounds were higher in the parietal cortex of
BD patients (159). More recently, it was found that there is a
reduction in brain Na+, K+-ATPase α1 isoform expression in
mice treated with the mood stabilizer lithium (205). An allelic
association between BD and a Na+, K+-ATPase α subunit gene
(ATP1A3) was reported (206). We have demonstrated the promi-
nent linkage to BD of six single-nucleotide polymorphisms (SNPs)
in the three genes of the Na+, K+-ATPase α isoforms. Haplo-
type analysis of the α2 isoform showed the significant association
of two loci haplotypes with BD (207). A genetic knockdown of
the neuron-specific Na+, K+-ATPase α3 isoform induced manic-
like behavior in mice (208). Numerous studies have demonstrated
that i.c.v. injection of ouabain induces hyperactive behavior in
rats (159, 209), which could be ameliorated by administration
of mood stabilizing drugs such as lithium (210). Reduction of
the endogenous brain CS level by i.c.v. injection of anti-ouabain
antibodies had anti-depressive effects in rats (159, 211). This was
reflected by significant changes in catecholamine metabolism in
the hippocampus and ventral tegmentum, two regions known to
be associated with mood disorders (211). The molecular pathway
underlying the CS behavioral effect is unknown. Ouabain injected
i.c.v. elicited the activation of the ERK and Akt signaling path-
ways in the brain (212, 213), which are known to be activated via
Na+, K+-ATPase. Other effects of ouabain include a reduction

in brain-derived neurotrophic factor (BDNF) (214), activation of
mammalian target of rapamycin (mTOR) signaling (213) and an
increased level of oxidative stress (215). These findings strongly
link the Na+, K+-ATPase and CS system to the etiology of depres-
sive disorders, and BD in particular, and suggest their potential
application in future drug development.

FUTURE CHALLENGES
Despite the identification of cardenolides and bufadienolides
in mammalian tissue in many independent studies (see Car-
diac steroids), some still question the validity of these findings.
Recently, it was claimed that ouabain, the most studied cardeno-
lide, could not be detected in human plasma (216). This issue must
be clarified. An additional major missing piece of information for
the establishment of CS as neurotransmitters or neuromodula-
tors is the elucidation of their biosynthetic pathway in the adrenal
gland and brain. Although the available literature supports the
notion that these steroids are synthesized in mammals, the key
enzymes involved have not been identified. This issue was recently
reviewed in Ref. (217). Several CS were identified in the human
body. It was postulated that the different α isoforms of the Na+,
K+-ATPase serve as receptors for the different CS. Which of the CS
are involved in brain functions, and which isoform combinations
they activate are topics for future research.

INTERACTIONS OF ANP WITH CS AND GP
Mutual interactions exist between CS and NP in the periphery and
in the brain. Ouabain and digoxin were shown to cause increased
ANP expression and secretion in rat and rabbit atria (218–221),
and in anesthetized dogs (222). In patients with congestive heart
failure, i.v. administration of digitalis increased the plasma lev-
els of ANP and BNP (223). Indeed, ANP regulates the secretion
of CS in the brain (224–226). ANP decreased the release of CS
from rat brain extract when added to the tissue, or when adminis-
tered i.v. to the animals prior to their sacrifice (224). On the other
hand, another study showed that i.c.v. injection of synthetic ANP
increased blood CS levels, whereas i.v. administration or incuba-
tion with this peptide had no effect (225). The effect of ANP on CS
release was abolished by lesions in the AV3V region (226), the area
in the hypothalamus that is thought to mediate CS central reg-
ulation of BP (191). In addition to secretion regulation, NP and
CS interact at the functional level. ANP differentially modulates
the effect of marinobufogenin in the rat heart and kidney (227).
Ouabain was shown to antagonize the effect of ANP on vasorelax-
ation in rabbit aorta and in dogs (228, 229), whereas ANP abol-
ished an ouabain-induced increase in aldosteron secretion (230).
Administration of anti-ouabain antibodies caused increased sen-
sitivity to ANP-induced vasodilation in rat aorta (231). In rat heart
muscle preparations,ANP was shown to attenuate several effects of
ouabain, including ouabain-induced increase in contractility,Na+,
K+-ATPase and ERK phosphorylation (232). ANP also interacts
with GP. Santos-Neto and colleagues showed synergism between
ANP, guanylin, and uroguanylin in the kidney (233). They demon-
strated in an isolated perfused rat kidney that pretreatment with
ANP significantly enhanced the natriuretic, kaliuretic, and chlori-
uretic responses to low doses of guanylin and uroguanylin (233).
Low doses of ANP enhanced GP induced diuresis, and vice versa
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FIGURE 1 | Origin, brain distribution, and function of natriuretic hormones.

(233). Since GP and NP activate GC receptors, their interaction
may be mediated through the shared second messenger, cGMP (6,
116, 234). These initial studies suggest the physiological crosstalk
between ANP and CS, particularly in the cardiovascular system
and in the brain, and between ANP and GP in the kidney. More
studies are needed to deepen our understanding of the nature of
these interactions, which may be of significance in the regulation
of peripheral and central functions of the NH.

CONCLUSION
This review summarizes the available data implicating NH in brain
function. There is a vast amount of data supporting the assessment
that the three families of NH, NP, Guanylins, and endogenous CS
are present in the brain and participate in high brain functions
(see Figure 1). These include central regulation of BP, satiety, neu-
roprotection, and behavior. In depth research of these effects will
not only increase our thorough understanding of brain function
but may also lead to new treatments for brain-related diseases.
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