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The insulin-like growth factor system and its two major receptors, the IGF receptor I (IGF-IR)
and IR, plays a central role in a variety of physiological cellular processes including growth,
differentiation, motility, and glucose homeostasis. The IGF-IR is also essential for tumori-
genesis through its capacity to protect cancer cells from apoptosis. The IR is expressed in
two isoforms: the IR isoform A (IR-A) and isoform B (IR-B). While the role of the IR-B in the
regulation of metabolic effects has been known for several years, more recent evidence
suggests that the IR, and in particular the IR-A, may be involved in the pathogenesis of
cancer. Ligand-mediated endocytosis of tyrosine-kinases receptors plays a critical role in
modulating the duration and intensity of receptors action but while the signaling pathways
induced by the IGF-IR and IR are quite characterized, very little is still known about the
mechanisms and proteins that regulate ligand-induced IGF-IR and IR endocytosis and traf-
ficking. In addition, how these processes affect receptor downstream signaling has not
been fully characterized. Here, we discuss the current understanding of the mechanisms
and proteins regulating IGF-IR and IR endocytosis and sorting and their implications in
modulating ligand-induced biological responses.
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INTRODUCTION
The IGF receptor I (IGF-IR) and its cognate ligands insulin-like
growth factors I and II (IGF-I and IGF-II) play an essential role in
modulating mammalian growth in vitro (1, 2) and in vivo (3–5).
The IGF-IR, IGF-I, and IGF-II are often deregulated in cancer and
may have a critical function not only in the early phases of tumor
initiation but also in cancer progression and resistance to thera-
pies (6–9). IGF-II, and to a lesser extent IGF-I, binds to the isoform
A of the insulin receptor (IR-A), which has high homology to the
IGF-IR (10, 11) (Figure 1). The IR-A is the fetal form of the IR and
mediates primarily mitogenesis upon IGF-II or insulin activation
(11–13) and is also implicated in transformation (14, 15), while
the second IR isoform (IR-B) is involved in glucose homeostasis of
insulin-sensitive organs (11, 14). Prevalent expression of the IR-A
over the IR-B has been discovered in several cancer models, and
an autocrine proliferative loop between IGF-II and the IR-A has
been detected in malignant thyrocytes, breast cancer, and sarcoma
cells (16–19).

Ligand-dependent endocytosis and sorting for degradation of
receptor-tyrosine kinases (RTKs) has recently emerged as a crit-
ical step in modulating the duration and intensity of receptor
biological activities (20, 21). Ligand-mediated polyubiquitination
of RTKs targets them for degradation to the lysosomal path-
way, to mediate receptor down-regulation (20). Recent reports
have suggested that the EGF-R and the PDGFR may not be

polyubiquitinated but rather monoubiquitinated at multiple sites
(multiubiquitination), and this modification is sufficient to ensure
receptor sorting and degradation (22, 23).

While the mechanisms regulating EGF-R and PDGFR endocy-
tosis have been extensively studied, very little is still understood
about endocytosis of the IGF-IR and IR. In this review, we will
summarize recent advances in understanding the mechanisms reg-
ulating IGF-IR and IR-A ubiquitination, endocytosis, and sorting,
and discuss the role that different cognate ligands play in regulating
these processes.

IGF-IR UBIQUITINATION, ENDOCYTOSIS, AND TRAFFICKING
Our and other laboratories identified the adaptor protein Grb10
as a novel IGF-IR and IR binding partner (24, 25) and estab-
lished an important role for this adapter in the regulation of
IGF-IR-dependent cell proliferation (26). We later discovered
that Grb10 constitutively associates with the Hect E3 ubiqui-
tin ligase Nedd4 (27) and promotes IGF-I-dependent multiu-
biquitination of the IGF-IR (28, 29), internalization through
clathrin-dependent and -independent pathways (29) and subse-
quent degradation of the IGF-IR through a mechanism sensitive
to inhibitors of both the proteosomal and lysosomal pathways
(28, 29). IGF-IR down-regulation has been associated with the
ubiquitin–proteasome pathway in lung cancer cells (30) while
Nedd4-mediated and LDL-induced IGF-IR ubiquitination and
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FIGURE 1 | Schematic draws of IGF-IR regulation by various ligases
and adaptors. Upon ligand-stimulation ubiquitin ligases complex with the
IGF-IR either directly or through adaptor proteins, promoting receptor
ubiquitination, internalization, and sorting for degradation.

degradation of the IGF-IR likely occurs through a proteosome-
independent pathway (31).

Our work provided the first evidence of the involvement of
a Hect E3 ligase in promoting ubiquitination of a RTK, and con-
firmed the critical role that receptor endocytosis plays in regulating
IGF-IR downstream signaling (32) and biological responses (26).
However, additional ubiquitin ligases have been shown to regulate
ligand-induced ubiquitination of the IGF-IR in different cellular
systems, utilizing Grb10-independent mechanisms.

Girnita et al. (33) discovered that the ubiquitin ligase Mdm2
promotes ubiquitination of the IGF-IR (33) via the adaptor func-
tion of β-arrestin1 protein (34). Mdm2 is a ring-finger ubiquitin
ligase, which also regulates p53 ubiquitination and stability (35,
36), therefore, these data suggest that the role of Mdm2 in pro-
moting ubiquitination of the IGF-IR is likely more relevant in
cellular backgrounds where decreased levels of p53 may enhance
Mdm2 availability and action outside the nucleus.

The ring-finger E3 cCbl has been also identified as a novel
IGF-IR ubiquitin ligase but it has distinct role from Mdm2
in receptor ubiquitination and endocytosis (37). Upon ligand-
stimulation, both Mdm2 and cCbl are recruited to the IGF-IR but
while Mdm2 promoted polyubiquitination through Lys 63 link-
ages, cCbl-mediated polyubiquitination occurred through Lys-
48 chains. In addition, c-Cbl-mediated IGF-IR ubiquitination
was only detectable after cell stimulation with high concentra-
tions of IGF-I (50–100 ng/ml) whereas Mdm2-induced ubiqui-
tination was detectable at physiological concentrations of lig-
and (37). Importantly, while Mdm2 promoted internalization of
the ubiquitinated-IGF-IR through clathrin-dependent endocyto-
sis, cCbl induced receptor internalization via a caveolar route
(37). While it has been clearly established that ligand-induced
Mdm-2-mediated ubiquitination of the IGF-IR targets the recep-
tor for proteosomal degradation (33, 38), whether Cbl-mediated

ubiquitination of the IGF-IR modulates receptor sorting for
degradation or recycling has not been clearly defined.

More recent data have shown that an engineered ubiquitin lig-
ase PTBU-box can promote the ubiquitination and degradation
of IGF-IR and IR, and thus effectively inhibit in vitro and in vivo
tumorigenesis of liver cancer HepG2 and cervical cancer HeLa cells
that over-express IGF-IR and IR (39).

Because different ubiquitin ligase proteins have been impli-
cated in mediating the ubiquitination of the IGF-IR (28, 33, 37,
39) we can speculate that different complexes may have different
abilities in promoting either polyubiquitination or multiubiqui-
tination of the receptor depending on either cell background or
tumor model thus differentially affecting receptor sorting, stability,
and biological activity (Figure 1).

The effects of ligand-mediated IGF-IR internalization on recep-
tor signaling are quite complex. While IGF-IR endocytosis and
subsequent receptor degradation negatively regulates downstream
biological responses (26, 29), early events of IGF-IR internaliza-
tion might play instead an important role in modulating receptor
signaling. Indeed, IGF-IR internalization was required for Shc acti-
vation but not for IRS-1 phosphorylation, which was mediated
by both cell surface and endosomal IGF-IR (32). Inhibition of
clathrin and caveolin-dependent endocytosis impairs IGF-IR sig-
naling in Ewing’s sarcoma cells, while caveolin-1 down-regulation
inhibits IGF-IR internalization and receptor signal transduction
in H9C2 rat cardiomyoblasts and HaCat cells (40–42). In addi-
tion, MDM2 and β-arrestin1 modulates IGF-IR-dependent ERK
activation (38).

While IGF-I-induced IGF-IR activation is a critical step for
receptor ubiquitination and endocytosis, there is also evidence of
ligand-independent IGF-IR ubiquitination mediated by anti-IGF-
IR neutralizing antibodies, which promote very efficient inter-
nalization and target the receptor for degradation (43). H10H5
antibody induced robust IGF-IR ubiquitination, which consisted
of polyubiquitin chains (Lys-48 and Lys-29) mapped to tyrosine
1138 and tyrosine 1141 in the activation loop of the IGF-IR (43).
The same tyrosine residues are ubiquitinated after IGF-I stimula-
tion albeit to a lesser extent (43). Significantly, the identification
of a breast cancer cell line defective in IGF-IR ubiquitination
suggested a possible tumor resistance mechanism to overcome
targeted IGF-IR down-regulation in cancer (43).

IR LIGANDS DIFFERENTIALLY MODULATE RECEPTOR
UBIQUITINATION, ENDOCYTOSIS, AND TRAFFICKING
Early studies established that the IR, similarly to other RTKs, is
internalized from the cell surface upon ligand stimulation (44).
The majority of work has been focused on endocytosis of the IR
through clathrin-dependent pathways (44, 45), but other reports
have also pointed out that additional pathways may contribute
in modulating IR internalization (46). More recent data have in
fact demonstrated a role of caveolae in mediating rapid insulin-
dependent internalization of the IR (47, 48). The majority of these
experiments was performed in adipocytes, which preferentially
express the IR-B isoform (11, 14) and exclusively upon insulin
stimulation.

The mechanisms and proteins regulating IR endocytosis are
still poorly understood. The nine putative transmembrane protein
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LMBD1, encoded by the limb region 1 (LMBR1) domain contain-
ing one gene (lmbrd1), has been show to play an important role in
regulating the endocytosis of the IR (49). LMBD1 co-internalized
with the IR in clathrin-containing vesicles and LMBD1 depletion
attenuated IR endocytosis, resulting in the perturbation of the
IR recycling pathway and consequential enhancement of the IR
signaling cascade (49).

Using mouse embryonic fibroblasts (MEFs) derived from wild
type (WT) and PKCε-deficient [PKCε(−/−)] mice Pedersen et al.
(50) demonstrated that PKCε modulated IR localization and
trafficking by regulating CEACAM1 (50), a receptor substrate
previously shown to modulate insulin clearance (51).

Recent work has pointed out a central role of the muscle-
specific E3 ubiquitin ligase mitsugumin 53 (MG53; also called
TRIM72) in promoting ubiquitin-dependent IR and IRS-1 degra-
dation, which is associated with reduced IR signaling, insulin
resistance, and metabolic disorders (52).

Our laboratories have recently focused on the mechanisms of
action of the IR-A and the ability of different IR-A ligands to
regulate IR-A-dependent signaling and mitogenesis.

Because IGF-II is mitogenic through the IR-A at a comparable
rate if not even higher than insulin, in spite of an affinity for the
IR-A 3–5-fold lower than insulin and a reduced ability to promote
receptor phosphorylation and activation of downstream effectors
(11, 12), we undertook studies to test the hypothesis that insulin
and IGF-II could affect biological responses by differentially reg-
ulating IR-A endocytosis and trafficking. Taking advantage of the
unique model of R−/IR-A cells, which lack the IGF-IR (53) and
were engineered to express solely the IR-A (54), we demonstrated

that insulin and IGF-II considerably differ in their ability to regu-
late IR-A and downstream effectors trafficking and stability (55).
Indeed, insulin stimulation of R−/IR-A cells promoted IR-A inter-
nalization, which was instead only modestly affected by IGF-II
stimulation. Significantly, the difference in internalization was
not due to IR-A ubiquitination, which was comparable in IGF-
II and insulin-stimulated R−/IR-A cells (55). As control, we used
the insulin analog NMeTyrB26-insulin, which has lower affinity
than insulin for IR-A, and demonstrated that it promoted IR-A
phosphorylation, internalization, and proliferation at a rate com-
parable to IGF-II. More importantly, we discovered that prolonged
stimulation of R−/IR-A cells with insulin, but not with IGF-II or
NMeTyrB26-insulin, targeted the IR-A and IRS-1 for degradation
(55). We also elucidated the pathways of IR-A endocytosis and
sorting and showed that upon insulin or IGF-II stimulation, the
IR-A was internalized through clathrin-dependent and indepen-
dent pathways, but only the clathrin-dependent internalization
was required for IR-A degradation (55) (Figure 2). These findings
provide a mechanistic explanation to previous studies showing
that, in cells expressing only the IR-A isoform, insulin, and IGF-
II induce partially different gene expression (56), downstream
signaling (57), and involvement of different substrates (58).

A more recent study has identified proinsulin as a novel IR-
A ligand (59). Similarly to IGF-II, proinsulin was equipotent as
insulin in inducing cell proliferation in R− cells expressing var-
ious levels of the IR-A, in spite of lower affinity for the IR-A
and low metabolic activity (59). Degradation of both IR-A and
IRS-1 was reduced after prolonged proinsulin stimulation com-
pared to insulin action (59). If our previously described model

FIGURE 2 | Schematic diagram of pathways regulating endocytosis. The IGF-IR and the IR are internalized in ligand-dependent manner through both
clathrin-dependent and -independent pathways, sorted into early endosomes and either targeted for degradation in the lysosomes or recycled to the cell surface.
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was correct, we would expect that proinsulin and insulin would
differ in their ability to promote IR-A internalization. Indeed, our
preliminary data (not shown) appear to support this model by
indicating that proinsulin very modestly affected IR-A internal-
ization. Interestingly, the level of IR-A phosphorylation induced
by different ligands is likely to play a more relevant role than ubiq-
uitin in regulating receptor internalization and sorting of the IR-A
for degradation (55). This is in contrast with the IGF-IR, whose
ubiquitination actually enhances receptor internalization (28, 29).

Collectively, these results support the hypothesis that the lower
affinity of IGF-II and proinsulin for the IR-A promotes lower IR-
A phosphorylation and reduced activation of early downstream
effectors compared to insulin but, at the same time, protects
IR-A and IRS-1 from negative feed-back mechanisms, thereby
mediating sustained and powerful mitogenic stimuli.

As we mentioned above, Grb10 binds Nedd4 (60) and pro-
motes IGF-IR ubiquitination and internalization (28, 29). Grb10
also interacts with the IR in an insulin-dependent fashion (61–64)
and Grb10 depletion by shRNA in HeLa cells inhibits insulin-
dependent IR ubiquitination and degradation (65). However,
whether insulin, IGF-II or proinsulin may differentially affect
Grb10 and Nedd4 recruitment to the IR-A and whether Grb10
and Nedd4 may regulate IR-A internalization and sorting remains
to be established. Because IGF-II and proinsulin induce lower lev-
els of IR-A phosphorylation compared to insulin, we can speculate
that the stronger mitogenic activity induced by IGF-II and proin-
sulin over insulin may not only be attributed to a reduced capacity
to induce receptor internalization and degradation but also to a
decreased ability of putative negative regulators of IR signaling,
such as Grb10, Nedd4, and possibly Eps15 to bind the IR-A after
IGF-II or proinsulin stimulation. Work is, therefore, ongoing in
our laboratories aiming at testing this hypothesis.

However, Grb10 is not the only adaptor protein with a role
in regulating IR endocytosis. Kishi et al. (66) identified APS
(also called SH2B) as mediator of IR multiubiquitination in IR-
overexpressing CHO cells (66). Significantly, APS-mediated IR
ubiquitination enhanced IR internalization but it did not affect
receptor degradation (66), suggesting a more prevalent role of APS
in regulating early events of IR endocytosis than receptor sorting.

The importance of the relative affinity of the various IR lig-
ands in regulating receptor activity has been recently confirmed
by Giudice et al. (67), who showed that IGF-II stimulation of
HELA cells overexpressing the IR-B induced faster receptor inter-
nalization compared to insulin. According to the model proposed,
IGF-II activates proliferative responses through the endosomes,
while insulin-activated IR-B would remain at the plasma mem-
brane, where the IR-B may better interact with key molecules
important for cell metabolism (67). Altogether, these data sup-
port the hypothesis that the affinity of the different ligands for
the IR-A and IR-B has an important role in determining receptor
fate, signaling, and downstream biological responses. However,
receptor trafficking is a very complex and tightly controlled mech-
anism, and it is important to point out that additional mechanisms
may contribute to this process, including differences of occupancy
time, and stability of the different ligand–receptor complexes in
the acidifying endosomal compartments, which may affect IR-A
and IR-B sorting and recycling processes (68).

We have also to consider the intriguing hypothesis that the dif-
ferential effect of various ligands and ubiquitin ligases on receptor
internalization may serve to limit cross talk within the various
receptors of the IGF-I system. However, more studies are required
to further support this scenario.

CELLULAR MICROENVIRONMENT REGULATION ON IGF-IR
AND IR-A ACTION
There is increasing evidence in the literature supporting the role
of the cellular microenvironment and matrix components in
regulating ligand/receptor action.

The stromal-specific proteoglycan decorin has emerged in
recent years as a critical regulator of tumor initiation and pro-
gression (69–71). Decorin regulates the biology of various types of
cancer by modulating the activity of several tyrosine-kinase recep-
tors involved in growth and survival. Decorin binds the EGF-R and
the HGF receptor, Met, and negatively regulates their activity and
signaling (72–76).

Our laboratories demonstrated that the proteoglycan decorin
binds with high affinity the IGF-I, as well as IGF-IR in a region
that does not overlap with the canonical binding site for IGF-I
(77). Decorin exposure of urothelial cancer cells had no effect
on IGF-IR phosphorylation but instead severely decreased ligand-
dependent IGF-IR activation levels in a dose-dependent manner
(77). In addition, prolonged exposure to decorin did not affect
the stability of the IGF-IR in urothelial cancer cells either alone or
in the presence of IGF-I. Significantly, decorin exposure of blad-
der cancer cells considerably reduced IGF-I-induced IGF-IR and
caveolin-1 colocalization, suggesting that decorin may affect either
IGF-IR internalization or divert the receptor into a different endo-
cytic compartment (77). Moreover, we provided the first evidence
for a role of decorin in regulating ligand-dependent stability of
IRS-1 suggesting the novel hypothesis that decorin may regulate
IGF-IR-dependent biological responses in bladder cancer cells not
only by directly affecting receptor activation but also modulating
the stability of downstream signaling proteins (77). However, the
details of a possible role of decorin in modulating IGF-IR internal-
ization have not being defined, as are the mechanisms of decorin
action on IRS-1 stability.

We have more recently shown that decorin binds with high
affinity both the IR-A and IR-A ligands, although the affin-
ity for the IR-A and proinsulin was threefold lower than the
affinity for IGF-II and insulin (78). Decorin did not affect
ligand-mediated IR-A phosphorylation but enhanced IR-A down-
regulation after prolonged IGF-II stimulation without affecting
IR-A stability after insulin or proinsulin stimulation (78). In addi-
tion, decorin regulated cell surface IR-A levels by affecting insulin-
dependent internalization (78). Furthermore, decorin inhib-
ited IGF-II-mediated Akt activation without affecting insulin-
and proinsulin-dependent signaling, and negatively regulated
cell proliferation induced by IGF-II but not by insulin or
proinsulin (78).

These results suggest that decorin effect on IR-A function sub-
stantially differs from its effect on the IGF-IR, where decorin
regulates IGF-IR phosphorylation either positively or negatively
in non-transformed and transformed cellular models, respec-
tively (77, 79).
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CONCLUSION
The role that endocytosis plays in regulating IGF-IR and IR-A sig-
naling has been underappreciated for several years. More recently,
IGF-IR and IR endocytosis has emerged as a key step in regulating
a great variety of receptor-dependent biological responses. How-
ever, much more needs to be done in order to fully appreciate how
endocytosis and trafficking control IGF-IR and IR function.

The detailed knowledge of the molecular mechanisms and pro-
teins modulating IGF-IR and IR endocytosis will greatly help in
understanding how their deregulation contributes to disease.
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