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Accumulating evidence suggests that O-GlcNAc transferase, an enzyme responsible for
O-GlcNAc post-translational modification acts as a nutrient sensor that links glucose and
the hexosamine biosynthetic pathway to the regulation of transcriptional factors involved
in energy homeostasis. In liver, glucose signaling is mediated by carbohydrate response
element-binding protein (ChREBP), which stimulates glycolytic and lipogenic gene expres-
sion through its binding on a specific ChoRE DNA sequence. Modulation of ChREBP by
O-GlcNAcylation increases its DNA binding affinity and its activity. ChREBP transcriptional
activity also depends on the presence of several other co-factors and transcriptional fac-
tors. Among them, the nuclear Farnesoid X Receptor (FXR), a key transcription factor of bile
acid metabolism involved in the gut–liver axis homeostasis was recently shown to directly
interact with ChREBP, acting as a repressor on the ChoRE of glycolytic genes. Interestingly,
similarly to ChREBP, FXR is O-GlcNAcylated in response to glucose.This review discusses
the importance of ChREBP and FXR modifications through O-GlcNAcylation in liver and
how glucose can modify their mutual affinity and transcriptional activity.
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INTRODUCTION
The liver plays a central role in the control of energy homeosta-
sis. In the liver, glucose does not only serve as an energy source
but also acts as a signaling molecule to control the expression
of key genes of glucose, fatty acid, and bile acid metabolism.
Once in the hepatocyte, glucose is converted into glucose 6-
phosphate (G6P) by the glucokinase enzyme (GK) leading, in
turn, to the activation of glycolytic and lipogenic enzymes includ-
ing l-pyruvate kinase (l-PK), acetyl-CoA carboxylase (ACC), and
fatty-acid synthase (FAS). The positive effects of glucose on gene
expression are mediated by the transcription factor carbohydrate-
responsive element-binding protein (ChREBP). ChREBP, which
belongs to the Mondo family of bHLH/Zip transcription fac-
tors, is a large protein (864 a.a) that contains several regulatory

Abbreviations: ACC, acetyl-CoA carboxylase; AF-1, activation function-1; ChIP,
chromatin immunoprecipitation; CBP, CREB-binding protein; ChoRE, carbohy-
drate response element; ChREBP, carbohydrate-responsive element-binding pro-
tein; FAS, fatty-acid synthase; FXR, farnesoid X receptor; FXRE, FXR response
element; G6P, glucose-6-phosphate; GSM, glucose-sensing module; GK, glucok-
inase; G6PDH, glucose 6-phosphate dehydrogenase; GRACE, glucose-response
activated conserved element; HBP, hexosamine biosynthetic pathway; LID, low
glucose inhibitory domain; l-PK, l-pyruvate kinase; Mlx, max-like protein X;
NAFLD, non-alcoholic fatty liver disease; NRB, nuclear receptor box; OGT, β-N -
acetylglucosaminyltransferase; p300, histone acetyl transferase p300; PPP, pentose
phosphate pathway; PEPCK, phosphoenolpyruvate carboxykinase; PTM, post-
translational modification; UDP-GlcNAc, N -acetyl-glucosamine; NLS, nuclear
localization signal; RXR, retinoid X receptor; X5P; xylulose-5-phosphate.

domains including a nuclear localization signal (NLS, amino acids
158–173) near the N-terminus, polyproline domains, a bHLH/LZ
domain (amino acids 660–737), and a leucine zipper-like (Zip-
like) domain (amino acids 807–847) (1). A conserved consensus
sequence, named carbohydrate response element (ChoRE), the
ChREBP-binding site, is required for glucose responsiveness. Mod-
ulation of ChREBP expression and/or activity by glucose occurs
at multiple levels. In the presence of high glucose concentra-
tions, ChREBP mRNA levels are increased (2, 3). ChREBP is also
regulated at the post-translational level: in response to high glu-
cose concentrations, ChREBP translocates into the nucleus (4)
where the protein undergoes several post-translational modifica-
tions (PTMs), including acetylation and O-GlcNAcylation, which
stimulates ChREBP activity and affinity for ChoRE sequences
(5–7). The O-GlcNAc modification requires the hexosamine
biosynthetic pathway (HBP): in response to high glucose concen-
trations, HBP synthesizes N -acetyl-glucosamine (UDP-GlcNAc),
an obligatory substrate for β-N -acetylglucosaminyltransferase
(OGT), a key enzyme allowing O-GlcNAcylation of proteins (8).
This modification is reversible and is able to alter several pro-
tein properties such as stability, degradation, and/or modula-
tion of transcriptional activity. Recently, key transcription factors
involved in energy homeostasis, including ChREBP, have been
reported to be modified by O-GlcNAc in liver. Among them,
the nuclear receptor Farnesoid X receptor (FXR) (9) is a reg-
ulator of gene expression involved in bile acid synthesis and
transport in the liver and the intestine (10). Interestingly, FXR
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was also recently reported to be involved in the control of glu-
cose homeostasis via its direct interaction with ChREBP (9, 11).
This review will discuss how ChREBP and FXR, both regulated by
O-GlcNAcylation, modulate the signaling pathway that controls
glucose homeostasis.

ChREBP: A KEY REGULATOR OF GLUCOSE HOMEOSTASIS
The discovery of ChREBP as key regulator of glycolysis and lipo-
genesis has shed light on the mechanism by which glucose tran-
scriptionally regulates gene expression. ChREBP stimulates the
expression of several genes involved in glucose and lipid metabo-
lism such as l-PK, FAS, and ACC not only in the liver (3, 12) and
also in adipose tissue (13) and in pancreatic β cells (14). ChREBP
directly binds a conserved consensus sequence, ChoRE, present
on the promoter region of its target genes (15, 16). The ChoRE
sequence is composed of a tandem E box element separated by 5
nucleotides (5’-CACGTGnnnnnCACGTG-3’). ChREBP interacts
with Max-like protein X (Mlx), its functional partner to form a
heterodimer. The association of two heterodimers is necessary to
bind the ChoRE motif and to provide a transcriptional complex
regulated by glucose (17).

SEVERAL KEY GLUCOSE METABOLITES ACTIVATE ChREBP IN
RESPONSE TO GLUCOSE
The regulation of ChREBP activity by glucose is complex and
brings in different steps [see Ref. (18) for review]. The laboratory
of K. Uyeda was the first to describe a mechanism of activation
dependent on a glucose metabolite. Kabashima et al. (19) demon-
strated that xylulose-5-phosphate (X5P), a metabolite of the pen-
tose phosphate pathway (PPP), is central for ChREBP transloca-
tion and DNA binding activity in response to glucose. Under high
glucose concentrations, X5P activates the protein phosphatase
PP2A, which dephosphorylates ChREBP on the serine residue 196
(Ser196), allowing its translocation to the nucleus. In a second step
also occurring in a X5P and PP2A-dependent manner, ChREBP
is dephosphorylated on the threonine residue 666 (Thr666) lead-
ing to its binding to DNA and to transactivation (19). However,
this mechanism is controversial as several distinct hypotheses were
proposed to explain the glucose-mediated activation of ChREBP
[see Ref. (18) for review]. For instance, a structure–function analy-
sis of the ChREBP protein identified an N-terminal domain,
named the glucose-sensing module (GSM), a highly conserved
sequence through evolution (20). The GSM contains two domains,
the low glucose inhibitory domain (LID, residues 1–197) and
the glucose-response activated conserved element, residues 197–
298 (GRACE), both implicated in the regulation of ChREBP in
response to glucose (21). Under low glucose concentrations, the
GRACE domain is inhibited by the LID domain, leading to a
lack of induction of ChREBP activity. Under high glucose con-
centrations, the inhibitory effect of the LID is relieved, thereby
allowing the GRACE domain to stimulate ChREBP activity. In
agreement with this hypothesis, deletion of the 196 first amino
acids encompassing most of the LID yields a constitutive active
form of ChREBP, independent of glucose concentrations (21).
Interestingly, McFerrin and Atshley (22) identified a G6P bind-
ing pocket using structure prediction of the ChREBP protein.
G6P, produced by the GK enzyme, after binding onto the GSM

could induce a conformation change, dissociating the LID from
the GRACE domain and therefore supporting ChREBP trans-
activation. More importantly, G6P could “open/derepress” the
ChREBP protein structure allowing interaction with co-activators
such as CBP and p300 (22). Arguments in favor of a role for G6P
in activating ChREBP in hepatocytes and other cell types were
reported. Overexpression of glucose-6-phosphate dehydrogenase
(G6PDH), a rate limiting enzyme of the PPP in the pancreatic
β cell line INS1 deprives cells from G6P and inhibits ChREBP
transcriptional activity. In contrast, G6P accumulation driven
by the specific inhibition of G6PDH activity increases ChREBP
transcriptional activity in these cells (23). Using G6PDH overex-
pression and silencing approaches in hepatocytes, our laboratory
showed that G6P, but not X5P, is required for ChREBP translo-
cation to the nucleus and transactivation, suggesting that G6P
is necessary and sufficient to induce ChREBP activity (24). The
glucose-mediated activation of ChREBP remains complex and
additional studies will be required to elucidate the exact contri-
bution of the proposed metabolites. A step forward concerning
ChREBP regulation was recently made when Herman and col-
leagues identified a novel variant of ChREBP named ChREBP-β
(13). This variant arises from an alternative promoter located in
exon1b of the ChREBP gene. This new transcript, which results
from the splicing of exon 1b to exon 2, is translated at the next
start-site located in exon 4 and produces a shorter protein of
687 amino acids (ChREBP-β) compared to the full-length protein
ChREBP, re-named ChREBP-α (13). According to the hypothesis
raised by Herman and co-workers, glucose metabolism (poten-
tially G6P) would first induce the transcription of ChREBP-α.
ChREBP-α would in turn bind the ChoRE identified in exon1b
to enhance ChREBP-β transcription. In adipose tissue, ChREBP-
β was described as a much more potent transcriptional regulator
than ChREBP-α. In the liver, ChREBP-β expression seems to be less
sensitive than that of ChREBP-α to nutritional regulations (fast-
ing versus refeeding). However, the physiological contribution of
ChREBP-β to the glucose-induced transcriptional response in the
liver remains to be determined.

A CENTRAL ROLE FOR ChREBP IN REGULATING HEPATIC GLYCOLYSIS
AND LIPOGENESIS
Convincing in vitro and in vivo evidences revealed that ChREBP
is required for the induction of glycolytic and lipogenic genes in
response to glucose (3, 12). Stimulation of primary cultured hepa-
tocytes with high glucose concentrations (25 mM) leads to the
induction of ChREBP expression and activity allowing stimula-
tion of its target genes (25). In contrast, inhibition of ChREBP
expression by a siRNA approach prevents this induction and
blunts the accumulation of lipids in response to glucose (3).
Importantly, global inactivation or liver-specific inhibition of
ChREBP leads to a decrease in glycolytic and lipogenic gene
expression associated with a significant decrease in triglyceride
synthesis under both physiological and pathophysiological con-
ditions (12, 26). The mirror experiment in which the ChREBP
protein was overexpressed through an adenoviral approach in
liver of mice led to an exacerbation of the glycolysis and lipo-
genesis pathways associated with the development of hepatic
steatosis (27).
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FXR: A NEW MODULATOR OF GLUCOSE HOMEOSTASIS
Once activated by its ligands such as natural bile acids, FXR binds,
alone or with its partner Retinoid X receptor (RXR), onto its
response elements (FXRE) to regulate its target genes. While largely
implicated in the transcriptional control of genes controlling bile
acid metabolism, FXR also recently emerged as a novel modulator
of glucose homeostasis (28, 29). FXR is necessary for the con-
trol of blood glucose concentrations in response to starvation in
mice. FXR knockout mice (FXR−/−,whole body inactivation) were
reported to be hypoglycemic in response to a short time (6 h) fast-
ing. This phenotype can be, in part, explained by an alteration of
the expression of phosphoenolpyruvate carboxykinase (PEPCK),
a key enzyme of gluconeogenesis. Interestingly, the response to
longer fasting (24–48 h) was not affected in the absence of FXR,
suggesting a defective adaptative response in FXR−/− mice. Sur-
prisingly, activation of FXR by GW4064, a specific synthetic ligand,
did not increase PEPCK expression in primary mouse hepatocytes
(30). However, primary human and rat hepatocytes stimulated
with GW4064 displayed an increase in PEPCK expression that was
correlated with enhanced glucose output (31) suggesting either
species differences or dependence on changes such as nutritional
or environmental stimuli.

Interestingly, FXR−/− mice respond more rapidly to high car-
bohydrate feeding with an accelerated induction of glycolytic
and lipogenic genes without, however, any difference in ChREBP
mRNA levels (29). In addition, nuclear translocation of ChREBP
protein was not affected by FXR activation. FXR was shown to
directly interact with the ChREBP protein in different cell lines.
In vitro GST pulldown experiments showed that FXR interacts
with ChREBP, irrespective of its ligation to GW4064. Analysis of
FXR deletion mutants revealed that FXR interacts with ChREBP
via its N-terminal activation function-1 (AF-1) domain (amino
acids 1–127) and via the N-terminal part of its ligand-binding
domain (amino acids 215–300) (11).

At the functional level, treatment of primary hepatocytes with
the FXR agonist GW4064 decreased the glucose-induced expres-
sion of l-PK, ACC, and FAS. This inhibition was prevented
in FXR−/− hepatocytes. Importantly, using a ChoRE luciferase
promoter construct, the authors reported that FXR transfection
and/or activation prevented the stimulation of ChoRE-driven tar-
get genes. Gel shift analysis revealed that FXR was indeed able to
bind to the L3 site (contained within the ChoRE) but not to the L4
site of l-PK promoter (29). These results were confirmed in the
immortalized human hepatocyte (IHH) cell line: when activated
by either its most potent natural ligand (CDCA: chenodeoxycholic
acid) or synthetic agonists (GW4064; INT747; and WAY362450),
FXR was able to bind the l-PK promoter. Finally, using chromatin
immunoprecipitation (ChIP) assays, Caron et al. (11) were able
to demonstrate the concomitant recruitment of ChREBP, HNF4α,
p300, CBP, and FXR on the genomic L4/L3 region of the l-PK
promoter in the presence of high glucose concentrations. Accord-
ing to this model, agonist-mediated activation of FXR leads to the
release of CBP and p300, while allowing the recruitment of the
co-repressor SMRT (Figure 1). This study reveals that FXR acts as
a transrepressor and provides a novel mechanism by which FXR
directly controls ChREBP-dependent genes, such as the l-PK gene.

The structural base of the repressive activity of FXR on ChREBP
activity may rely on the existence of the LxQLLT motif, called the
nuclear receptor box (NRB) within the ChREBP protein (22). This
NRB matches the consensus LXXLL motif primarily found in co-
activators of nuclear receptors that confers agonist-induced bind-
ing to nuclear receptors suggesting a potential ligand-dependent
interaction between ChREBP and nuclear receptors such as FXR
(22) and recruitment of FXR on ChoRE-bound ChREBP. SMRT
tethering to the FXR–ChREBP complex could then occur through
the second co-activator binding motif specifically found in FXR
(32),although this awaits formal investigation. It would be of inter-
est to mutate this NRB motif and study the modification of inter-
action between ChREBP and FXR as well as the consequences on
the transcriptional regulation of the l-PK gene. One can also spec-
ulate that under appropriate conditions, ChREBP might serve as a
FXR co-regulator,hence conferring glucose responsiveness to FXR.
Such a possibility could be investigated by high resolutive genomic
binding studies such as ChIP-Exo assays. Another hypothesis is
that glucose metabolism could act as a signal that activates FXR
independently of ChREBP via PTMs such as O-GlcNAcylation, as
discussed below.

ChREBP AND FXR ARE O-GlcNAcylated
O-GLcNAcylation STABILIZES THE ChREBP PROTEIN AND STIMULATES
ITS TRANSCRIPTIONAL ACTIVITY
Approximately 2–5% of total glucose in the cell is used through
the HBP. O-GlcNAcylation is a dynamic reaction catalyzed by
two enzymes: (i) O-GlcNAc transferase (OGT), which adds
a monosaccharide to serine/threonine residues of target pro-
teins; (ii) the O-GlcNAc hydrolase (OGA), which hydrolyzes the
monosaccharide. Sakiyama and co-workers (33) first showed
that when Hepa1–6 hepatoma cells are treated with PUGNAC,
a drug that increases O-GlcNAc, the transcriptional activity of
ChREBP is exacerbated under high glucose concentrations, with-
out any change in protein levels. In contrast, in cells treated
with DON (6-diazo-5-oxo-l-norleucine), a drug that decreases
O-GlcNAc, the stimulatory effect of high glucose on ChREBP
activity is prevented (33). Our laboratory showed that ChREBP
directly interacts with OGT in HEK293 cells and hepatocytes
(6). ChREBP is O-GlcNAcylated in hepatocytes treated with high
concentrations of glucose or glucosamine and in the liver of
refed mice, demonstrating a nutritional regulation of ChREBP
O-GlcNAcylation (ChREBPOG). In mouse hepatocytes, overex-
pression of OGA led to an inhibition of ChREBP-target genes
associated with a decrease of lipid droplets under high glucose
concentrations. In vivo, OGT overexpression in mouse liver was
associated with an increase of ChREBPOG, correlated with the
induction of l-PK expression and with ChREBP recruitment to
the l-PK promoter. OGT overexpression also increased ChREBP
protein content without modifying ChREBP mRNA levels sug-
gesting that the protein may be stabilized by O-GlcNAcylation
(6). Interestingly, in a follow-up study, Ido-Kitamura and co-
workers suggested that ChREBP poly-ubiquitination (ChREBPub)
was reduced when ChREBP is O-GlcNAcylated (7) suggest-
ing that these two PTMs may interfere to regulate ChREBP
stability.
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FIGURE 1 | Activation and transrepression of ChREBP-target genes by
ChREBP and FXR. After a meal, in the presence of high glucose
concentrations, without FXR activation, ChREBP binds together with
HNF4α, to ChoRE region of the L-PK promoter and transactivates gene
expression, in part due to the recruitment of co-activators p300 and CBP.
Due to its direct interaction with ChREBP and HNF4α, FXR interacts with
this complex. The complex formation leads to the stimulation of the
glycolytic and lipogenic pathways. The synergistic presence of high

glucose concentrations and FXR ligands (bile acids, CDCA), activated FXR
recruits the co-repressor SMRT. This recruitment leads to the release of
ChREBP, CBP, and p300 leading to the inhibition of ChREBP-target gene
expression. Tethered to the promoter through its interaction with HNF4α,
FXR recruits the transcriptional co-inhibitor SMRT and represses
transcription through the recruitment of HDACs and deacetylation of H3
histones. This effect leads to inhibition of the glycolytic and lipogenic
pathways.

FXR IS REGULATED BY O-GlcNAcylation
While the impact of nutrients and glucose on bile acid home-
ostasis is not fully understood (10), it was recently shown that
FXR can be modified through O-GlcNAcylation in response to
high glucose concentration level (9). Berrabah et al. revealed that
FXR is modified by O-GlcNAcylation through its interaction with
OGT, which catalyzed this reaction in response to high glucose
level. O-GlcNAcylation leads to an increase of FXR protein sta-
bility, transcriptional activity, and chromatin binding through
SMRT inactivation. O-GlcNAcylation of FXR occurs on serine
62 (Ser62) within the AF-1 domain. In agreement, mutation
of Ser62 decreased FXR O-GlcNAcylation that correlated with
an inhibition of its transcriptional activity. In vivo, nutritional
experiments reveals that FXR is O-GlcNAcylated under fed con-
ditions, which correlates with an induction of its target genes
(Shp, Cyp7A1) and a decrease in hepatic bile acid content. Inter-
estingly, a recent study reported that FXR can also be modified
by SUMOylation (34). Ligand-dependent SUMOylation of FXR
leads to a decrease of FXR transcriptional activity and conse-
quently to a down regulation of its target genes. Interestingly,
O-GlcNAcylation (Ser62) and sumoylation (Lys122) of FXR occur
within the same domain, the A/B-domain known to play gene-
specific role in transactivation and cofactor recruitment (11).

It would be of interest to determine whether O-GlcNAcylation
of FXR prevents and/or interferes with its SUMOylation and
vice versa.

RELEVANCE OF ChREBP AND/OR FXR O-GlcNAcylation TO
PHYSIOPATHOLOGY
Hyperglycemia and diabetes result in an increased flux through
the HBP, which, in turn, increases PTM of Ser/Thr residues of pro-
teins by O-GlcNAcylation. Altered O-GlcNAc signaling has been
implicated in the pathogenesis of diabetes and may play an impor-
tant role in its complications including non-alcoholic fatty liver
disease (NAFLD), diabetic nephropathy, and/or retinopathy (35).
Indeed, we have reported that the hepatic content of ChREBPOG

is increased in liver of diabetic db/db mice, and correlated to the
pathophysiology of hepatic steatosis in this mouse model. OGA
overexpression in the liver of db/db mice reduced ChREBPOG

concentrations leading to an inhibition of its target genes involved
in de novo lipogenesis. Consequently, hepatic steatosis was pre-
vented and correlated to an improvement of several physiological
parameters (improved glucose tolerance and insulin sensitivity).
The improved phenotype in OGA-treated db/db mice was also
associated with a significant decrease in O-GlcNAcylation of the
transcriptional co-activator CRTC2 (6) involved in the control
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FIGURE 2 | Hypothetical model of ChREBP and FXR interaction. In
response to high glucose concentrations, the hexosamine biosynthesis
(HBP) pathway is activated leading to UDP-GlcNAc production. ChREBP
and FXR are in turn O-GlcNAcylated through direct binding with the OGT

enzyme. O-GlcNAcylation of ChREBP and FXR may represent an
important feature of their interaction. The physiological or
pathophysiological consequences of such a modification remains,
however, unknown.

of gluconeogenic genes (36). Recently, the role of ChREBPOG

in diabetic nephropathy was also investigated (37). Treatment
with high glucose concentrations increased cellular O-GlcNAc
and ChREBPOG levels in mesangial cells compared with low
glucose concentrations. PUGNAc treatment increased ChREBP-
target expression in mesangial cells, whereas DON blunted the
stimulatory effect of high glucose. Mechanistically, O-GlcNAc
augmented protein stability, transcriptional activity, and nuclear
translocation of ChREBP in these cells, leading to an exacerbated
lipid accumulation. Importantly, in a pathophysiological context,
ChREBPOG was elevated in mesangial cells from streptozotocin-
induced diabetic rats. Altogether, this study suggests that the
hyperglycemia-mediated induction of ChREBP O-GlcNAcylation
in mesangial cells may drive excess lipid accumulation and fibrosis,
characteristic features of diabetic nephropathy (37). The potential
contribution of FXR O-GlcNAcylation to the pathophysiology of
liver and/or of other organs has not yet been addressed. Interest-
ingly, FXR deficiency was previously reported to improve several
of the metabolic abnormalities observed in ob/ob mice. Indeed,
FXR−/− mice crossed on ob/ob background are less obese, more
tolerant to glucose and more sensitive to insulin than controls (38).
The finding that FXR is modified by O-GlcNAcylation (9) fur-
ther links bile acid metabolism to nutrient availability as observed
in human in physiology (39), but also in a context of metabolic
dysfunctions such as type 2 diabetes (40). In fasting–refeeding
experiments, an FXR-dependent correlation between hepatic bile
acid content, FXR transcriptional activity, and plasma glucose con-
centration has been established, suggesting that O-GlcNAcylation
of FXR might regulate bile acid production (9). However, this

awaits a formal demonstration using O-GlcNAcylation-deficient
FXR in vivo. Importantly, the concomitant regulation of ChREBP
and FXR by O-GlcNAcylation in liver cells in response to hyper-
glycemia may trigger and/or enhance their physical interaction,
modulating in turn the transcriptional regulation of their com-
mon target genes involved in glycolysis, lipogenesis, and/or bile
acid metabolism (Figure 2). Interestingly, FXR was reported to
interact with the ChREBP protein through its AF-1 domain (11),
a domain also shown to be the site of FXR O-GlcNAcylation (9).
Further analysis of this interaction in response to high glucose
concentrations, as well as the identification of O-GlcNAc residues
within the ChREBP protein should provide a better understanding
of the relevance of the coordinated O-GlcNAcylation of ChREBP
and FXR under physiological and pathophysiological conditions
(Figure 2).
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