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Animal models provide compelling evidence that gonadal hor-
mones, in particular testosterone, produced in the fetal and
neonatal period, have life-long effects on physical characteris-
tics, physiological functioning, and behavior (1–3). Studies of
individuals with disorders of sex determination or sexual dif-
ferentiation, largely congenital adrenal hyperplasia (4), Turner
syndrome (5), and Klinefelter syndrome (6) strongly suggest that
early gonadal steroid exposure is important in human develop-
ment as well, and effects are not limited to the reproductive
system alone. However, extending this work to the broader human
population has proven challenging due to inherent difficulties
in measuring testosterone exposure in developing fetuses and
neonates.

In addition, the design and interpretation of studies may be
impacted by widespread acceptance of conceptual frameworks that
are not well supported empirically. For example, many researchers
presume that the free hormone hypothesis, which states that
unbound hormones are more readily diffusible into tissues and
thus a better measure of actual exposure, is true. However, this
hypothesis has not been rigorously validated and, indeed, there is
evidence for active cellular uptake of SHBG-bound testosterone
and for SHBG-bound testosterone mediating steroid hormone
signal transduction at the plasma membrane (7). A second exam-
ple: it is generally accepted that masculinization of the human
brain is primarily mediated by the androgen receptor [in con-
trast to rodents where the estrogen receptor plays a major role
(8)], in part because chromosomal males with complete andro-
gen insensitivity (CAIS) generally espouse a female gender iden-
tity (9). However, this is not always the case (10), and other
sexually dimorphic outcomes have not been carefully assessed
in CAIS.

The aim of this research topic is to gather together experimental
and review papers, which address the diverse challenges in assess-
ing prenatal and neonatal gonadal steroid exposure for studies of
human development with the expectation that this will allow more
critical appraisal of existing studies, identify critical research gaps,
and improve the design of future studies.

In terms of matrices used for the determination of testos-
terone exposure, Hollier et al. (11) review umbilical cord blood

and Voegtline and Granger (12) review saliva. A theme run-
ning through both articles is that pre-analytic factors (collection,
transport, storage, and processing) are absolutely critical in mea-
suring testosterone exposure. Assay types and confounding factors
also require careful attention. Also in the realm of measure-
ment, Manning et al. (13) and Honekopp (14) focus on a widely
used anthropometric index of prenatal testosterone exposure, the
relative lengths of the second and fourth digits (2D:4D ratio).
Manning et al. (13) review the evidence in support of 2D:4D and
argue that this index is particularly relevant to“challenging”condi-
tions such as aggressive and sexual encounters, which involve both
organizational and activational hormone effects. Honekopp (14)
carried out a meta-analysis of the relationship between 2D:4D
and a functional polymorphism in the androgen receptor gene,
the number of CAG repeats. He reports no evidence for a rela-
tionship and discusses the implications of this finding. Korsoff
et al. (15) discuss whether prenatal testosterone transfer occurs
in females from opposite sex twin pregnancies and report that
anthropometric, metabolic, and reproductive characteristics rele-
vant to polycystic ovarian syndrome (PCOS) do not differ between
females from same sex and opposite sex twin pairs. Grinspon
et al. (16) discuss the advantages and limitations of old and new
markers used for the functional assessment of the hypothalamic–
pituitary–testicular axis in boys suspected of fetal-onset
hypogonadism.

It is clear that all current means of assessing early gonadal
steroid exposure have unique strengths and notable weaknesses.
We would argue that any results in this field should be treated
with caution until converging evidence is available from multi-
ple methods and replication. New approaches are also urgently
needed. O’Connor and Barrett (17) highlight one promising area:
placental gene expression.

Several papers address conceptual issues in the field. Alexan-
der (18) highlights the potential role of the neonatal testosterone
surge or “minipuberty” in male social behavior. The minipuberty
has been relatively ignored by the field following early research
on non-human primates, which suggested that suppression of
the postnatal surge had minimal effects on a limited range of
male behavioral phenotypes (19, 20). Alexander encourages us
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to re-examine the potential importance of the minipuberty in sex-
ual differentiation of the brain. Xia et al. (21) also focus on the
minipuberty in an experimental article probing genetic and envi-
ronmental contributors to individual variation in salivary testos-
terone during this period. O’Connor and Barrett (17) discuss the
need to consider cross-talk between the hypothalamic–pituitary–
gonadal (HPG) and the hypothalamic–pituitary–adrenal (HPA)
axes. Finally, Grinspon et al. (16) provide a comprehensive review
of fetal-onset hypogonadism. Because these conditions vary with
regard to the level of the HPA axis affected, the testicular cell pop-
ulation initially impaired, and the developmental period when the
condition is established, studying these disorders could produce
a more detailed understanding of the role of the HPG axis in
developmental programing. They also make the important point
that male hypogonadism cannot be limited to hypoandrogenism.
They draw attention to several other testicular secretions includ-
ing insulin-like-3 (INSL3), inhibin B, and anti-Müllerian hor-
mone (AMH). Relatively little research has investigated whether
these hormones impact brain development and other phenotypes
beyond the reproductive system. AMH represents a particularly
interesting case in this regard as it has been observed to support the
survival and differentiation of embryonic motor neurons in vitro
(22) and may regulate the development of sexually dimorphic
brain areas in male mice (23, 24). There is also one report of low-
ered AMH and inhibin B in boys with autism, a condition with a
marked male bias (25).

In conclusion, we hope that this research topic will serve as a
point of reference and source of inspiration for researchers inter-
ested in the role of prenatal and neonatal gonadal steroids in
human development. Ultimately, a better understanding of how
individual variation in the functioning of the HPG axis impacts
later health will help us explain and treat sex-biased medical
conditions.
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