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Adipocyte differentiation and its impact on restriction or expansion of particular adipose tis-
sue depots have physiological and pathophysiological significance in view of the different
functions of these depots. Brown or “beige” fat [brown adipose tissue (BAT)] expansion
can enhance thermogenesis, lipid oxidation, insulin sensitivity, and glucose tolerance; con-
versely expanded visceral fat [visceral white adipose tissue (VAT)] is associated with insulin
resistance, low grade inflammation, dyslipidemia, and cardiometabolic risk. The largest
depot, subcutaneous white fat [subcutaneous white adipose tissue (SAT)], has important
beneficial characteristics including storage of lipid “out of harms way” and secretion of
adipokines, especially leptin and adiponectin, with positive metabolic effects including lipid
oxidation, energy utilization, enhanced insulin action, and an anti-inflammatory role. The
absence of these functions in lipodystrophies leads to major metabolic disturbances. An
ability to expand white adipose tissue adipocyte differentiation would seem an important
defense mechanism against the detrimental effects of energy excess and limit harmful
accumulation of lipid in “ectopic” sites, such as liver and muscle. Adipocyte differentiation
involves a transcriptional cascade with PPARγ being most important in SAT but less so in
VAT, with increased angiogenesis also critical. The transcription factor, Islet1, is fairly spe-
cific to VAT and in vitro inhibits adipocyte differentiation. The physiological importance of
Islet1 requires further study. Basic control of differentiation is similar in BAT but important
differences include the effect of PGC-1α on mitochondrial biosynthesis and upregulation of
UCP1; also PRDM16 plays a pivotal role in expression of the BAT phenotype. Modulation
of the capacity or function of these different adipose tissue depots, by altering adipocyte
differentiation or other means, holds promise for interventions that can be helpful in human
disease, particularly cardiometabolic disorders associated with the world wide explosion
of obesity.

Keywords: adipogenesis, adipocyte, subcutaneous white adipose tissue, visceral white adipose tissue, brown
adipose tissue, fat depot, adipocyte differentiation, adipose tissue

INTRODUCTION
Subcutaneous adipose tissue accounts for about 85% of all
body fat in people of a wide range of adiposity (1). Differ-
ent human fat depots play contrasting physiological and patho-
physiological metabolic roles with brown adipose tissue (BAT)
being beneficial, subcutaneous white adipose tissue (SAT) poten-
tially favorable, and visceral white adipose tissue (VAT), together

Abbreviations: ASC-1, Asc-type amino acid transporter 1; AT, adipose
tissue; BAT, brown adipose tissue; BMPs, bone morphogenetic proteins; CRP, C-
reactive protein, pentraxin-related; Dpt, dermatopontin; Ebf1, early B-cell factor
1; FGF21, fibroblast growth factor 21; Hoxc8, homeobox C8; Hoxc9, homeobox
C9; IL-6, interleukin 6; IL-8, interleukin 8; Inhbb, inhibin, beta B; Lhx8, LIM
homeobox 8; MCP-1, chemokine (C–C motif) ligand 2; MSCs, mesenchymal
stem cells; Myf5, myogenic factor 5; MyoD, myogenic differentiation 1; NEFA,
non-esterified fatty acids; P2RX5, purinergic receptor P2X, ligand-gated ion chan-
nel, 5; PAT2, solute carrier family 36 (proton/amino acid symporter), member 2;
PGC-1α, PPARγ coactivator-1α; PRDM16, PRD1-BF-1-RIZ1 homologous domain

with “ectopic” tissue lipid, potentially harmful (2). Variation in
these different lipid depots may therefore impact significantly on
metabolic health. Defining the nature of these variations may
improve our understanding of and, hopefully in the future, lead to
enhanced therapy or prevention of cardiometabolic disease. Here,
we focus particularly on the role of adipocyte differentiation in this
regard.

containing protein-16; RBP4, retinol binding protein 4, plasma; SAT, subcu-
taneous white adipose tissue; Shox2, short stature homeobox 2; SNS, sympa-
thetic nervous system; SRC-1, v-src avian sarcoma (Schmidt-Ruppin A-2) viral
oncogene homolog; Tbx15, T-box 15; Tcf2, HNF1 homeobox B; Tcf7l1, tran-
scription factor 7-like 1; TIF2, nuclear receptor coactivator 2; TNF-α, tumor
necrosis factor; Twist-1, twist family bHLH transcription factor 1; UCP1,
uncoupling protein 1; VAT, visceral white adipose tissue; WAT, white adi-
pose tissue; Wisp2, WNT1 inducible signaling pathway protein 2; Zfp423,
zinc finger protein 423; Zfp521, zinc finger protein 521; Zic1, Zic family
member 1.
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TRANSCRIPTIONAL REGULATION OF ADIPOCYTE
DIFFERENTIATION IN DIFFERENT FAT DEPOTS
CHARACTERISTICS OF WHITE ADIPOSE TISSUE AND WHITE
ADIPOGENESIS
White adipose tissue
The primary metabolic role of white adipose tissue (WAT) is to
store nutrients in the form of triglycerides so that it can be released
during times of energy demand such as starvation or exercise. Adi-
pose tissue is also recognized as an important endocrine organ
and produces and secretes a number of peptides and other factors,
which are known as adipokines. WAT is composed primarily of
tightly packed, large spherical adipocytes (also called unilocular
fat cells as opposed to multilocular adipocytes present in BAT),
supported by a richly vascularized loose connective tissue. Adi-
pogenesis, the differentiation of fibroblast-like mesenchymal stem
cells (MSCs) into adipocytes, plays a central role in regulation
of whole body energy metabolism. At the cellular level, adipoge-
nesis is generally described as a two-step process: a commitment
step, wherein committed adipocyte progenitors (or preadipocytes)
are generated from multipotent MSCs, and a differentiation step,
wherein pre-adipocytes acquire the features of mature, functional
adipocytes (3).

Recruitment of new fat progenitor cells
Expansion and renewal of the white adipocyte pool in WAT is
believed to rely on proliferation and self-renewal of mesenchy-
mal precursor cells (4) that we term white adipocyte progenitors
(WAPs). WAPs reside within the population of adipose stromal
cells (ASCs) (5). Several studies have demonstrated that perivas-
cular cells isolated from adipose tissue may harbor white fat
progenitors (6–8). A study using PPARγ as a preadipocyte marker
found that WAPs reside in the mural cell compartment of the adi-
pose vasculature (9). Similarly, genetic labeling of a transcription
factor that is enriched in fat cell precursors Zfp423 demonstrates a
perivascular origin of pre-adipocytes, and this transcription factor
is both necessary and sufficient for the development of a common
precursor of white and brown adipocytes (10, 11). VE-cadherin
(vascular endothelial) promoter-driven lineage-tracing experi-
ments provide an independent line of evidence that both pericytes
and murine endothelial cells can differentiate into pre-adipocytes
and adipocytes (12).

Commitment
More light has been shed on adipocyte commitment studies in
recent years. Several important transcription factors have been
identified as regulators of preadipocyte determination, including
Zfp423, Tcf7l1, and Ebf1 as positive transcription factors; and
Zfp521, Wisp2 as negative transcription factors. Zfp423 induces
adipose lineage commitment by amplifying the effects of the
bone morphogenetic proteins (BMPs) signaling pathway, which
is required for adipocyte lineage commitment (10, 13). Ebf1,
a Zfp423 interactor (14, 15), is required for the generation of
adipocyte progenitors (16, 17). However, the role of the interaction
between Ebf1 and Zfp423 in preadipocyte commitment remains
unknown. Zfp521 is a factor related to Zfp423, which represses
preadipocyte commitment at least in part through direct inhibi-
tion of Ebf1 and subsequent repression of Zfp423 expression (17).

Wisp2 binds directly to Zfp423 in the cytosol to inhibit its activity
and negatively regulates preadipocyte commitment in mesenchy-
mal precursor cells (18). In addition, extracellular WNT/WISP2
also regulates differentiation by preventing PPARγ activation via
an unknown mechanism. Tcf7l1 acts in a different manner by
responding to the confluence of the cells, mediating changes in
structural proteins that regulate differentiation and in turn influ-
ence adipose commitment (19). What is interesting is that PPARγ

activation is involved in mediating the effect of all currently iden-
tified commitment factors, which suggests that PPARγ is essential
for preadipocyte determination in addition to its well known role
as a “master regulator” of terminal adipocyte differentiation (20).

Differentiation
The transcriptional cascade that promotes differentiation has been
well studied. Terminal differentiation is controlled by a tightly
regulated transcriptional cascade where the transcription factors
activate or repress the expression of each other in a sequential man-
ner or by positive or negative feedback loops. Key players in this
transcriptional cascade include CCAAT/enhancer-binding protein
(C/EBP) family members (i.e., C/EBPα, C/EBPβ, and C/EBPδ),
KLFs, CREB, Krox20, and PPARγ (20–22). C/EBPβ and δ act early
in the terminal differentiation to induce the expression of PPARγ

and C/EBPα. Differentiation is “locked in” by a positive feedback
loop between PPARγ and C/EBPα (23, 24); a second positive feed-
back loop between PPARγ and C/EBPβ reinforces the decision
toward differentiation (25).

CHARACTERISTICS OF BROWN ADIPOSE TISSUE AND BROWN
ADIPOGENESIS
Brown adipose tissue
Recent studies have revisited the role of BAT in adults (26). Unlike
WAT, BAT expresses the mitochondrial protein uncoupling protein
1 (UCP1) that enables dissociation of cellular respiration from ATP
utilization, resulting in the release of stored electrochemical energy
as heat, thereby fulfilling its role as a thermogenic organ. Con-
trary to the traditional view that BAT and WAT share a common
developmental origin, recent studies revealed several unexpected
developmental lineages giving rise to BAT and “brown fat-like”
cells, orchestrated by novel transcriptional regulators.

PGC-1α and PRDM16
Brown adipocyte differentiation begins with commitment to adi-
pogenesis by a cascade of transcriptional factor interactions similar
to white adipocytes (see Characteristics of White Adipose Tis-
sue and White Adipogenesis). However, PPARγ coactivator-1alpha
(PGC-1α), the master regulator of mitochondrial biogenesis, is
crucial in brown adipogenesis. PGC-1α drives the synthesis of
UCP1 by stimulating its promoter (27). Recent studies have iden-
tified an array of nuclear receptor co-regulators that also stimulate
brown adipogenesis, including SRC-1, TIF2, and Twist-1, which
have been reviewed in detail (28).

A pivotal regulator of brown adipogenesis is PRD1-BF-1-RIZ1
homologous domain containing protein-16 (PRDM16). Ectopic
expression of PRDM16 in fibroblasts, myoblasts, or pre-adipocytes
is sufficient to induce the full brown fat transcriptome, includ-
ing PPARγ, UCP1, and PGC-1α (29), with the emergence of
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a brown fat phenotype and function, including mitochondrial
biogenesis and respiratory uncoupling. In contrast, depletion of
PRDM16 in brown fat cells causes a near total loss of the brown
characteristics (30).

Developmental origins
Ablation of PRDM16 increases the expression of MyoD, myogenin,
myosin light chain, and muscle creatine kinase, together with mor-
phological transformation of pre-adipocytes into myoblasts (31).
These results are concordant with the identification of Myf5, a
gene previously assumed to be expressed almost exclusively in
committed skeletal muscle precursors, in interscapular BAT (29).
Muscle-specific microRNAs are also expressed in brown but not
in white adipocytes (32). Collectively, these results have under-
scored distinct origins of BAT and WAT, and consolidated the
currently accepted view that classic brown adipocytes are more
closely related to skeletal muscle than white adipocytes.

In addition to skeletal muscle, increasing evidence suggests that
brown adipocytes may also be derived from other sources. Upon
cold exposure, brown fat-like cells emerge within WAT in rodents
(33, 34). These cells express UCP1 at levels indistinguishable from
classic brown adipocytes. These brown fat-like cells within WAT
are referred to as“brite”(brown-in-white) (33) or beige adipocytes
(35). The developmental origin of brite/beige cells is a subject of
ongoing debate. Based on the absence of an increase in cell number
upon cold acclimatization, some argue that brite/beige cells arise
from direct transformation or transdifferentiation from white
adipocytes (36). Conversely, other studies support the presence of
distinct inducible brite/beige precursors within WAT, which may
also be Myf5 positive (37).

Markers of different fat depots
A panel of molecular markers has been identified that delineate
brown, white, and brite/beige adipocytes: Lhx8 and Zic1 for brown,
Tbx15 for brown/brite, Hoxc9 and Shox2 for brite/beige, Hoxc8,
Inhbb, and Dpt for brite/white, and Tcf21 for white adipocytes
(38). Very recently, surface markers of each adipocyte type have
been discovered; ASC-1, PAT2, and P2RX5, for white, beige/brite,
and brown adipocytes, respectively (39).

In summary, brown adipocytes display a stronger myogenic sig-
nature than beige/brite adipocytes, while myogenic-related genes
are absent in white adipocytes, implying a non-myogenic origin
of brite adipocytes. This paradigm continues to evolve and is an
area of intense research, with new evidence pointing to yet more
diverse origins, such as brown adipocytes arising from hematopoi-
etic stem cells within bone marrow (40) and brite/beige adipocytes
differentiating from smooth muscle-like cells surrounding blood
vessels (41).

REGULATION OF ADIPOSE TISSUE EXPANSION IN
DIFFERENT FAT DEPOTS
GENETIC INFLUENCE
There is a strong genetic contribution to overall adiposity (42),
which is largely determined by SAT, so there are likely to be
genes, which have a strong influence on adipose tissue differen-
tiation/expansion as well as appetite regulation, though human
monogenic forms of obesity of which the MC4R mutations are

the commonest, appear mainly related to appetite and energy
balance (2, 43). PPARγ mutations are an exception. The impor-
tance of PPARγ in regulating SAT is demonstrated by the
effect of PPARγ agonists in causing expansion of the subcuta-
neous, but not visceral, fat compartment (44), and rare loss-of-
function PPARγ mutations cause reduced subcutaneous (par-
ticularly gluteal) fat (45). VAT adipocytes express the PPARγ

receptor in reasonable abundance but PPARγ is less able to pro-
mote adipocyte differentiation in vitro in adipose tissue from this
compartment (46).

In fact, some ethnic groups, including Southern Indians and
Australian aboriginals, seem to have a reduced ability to expand
their peripheral subcutaneous fat in the face of energy surplus (47–
50). The genetic control of this expansion, or lack thereof, is poorly
understood although Lamin A must have a role as mutations in
some regions of this gene cause reduced adipocyte differentiation
in vitro and congenital lipodystrophy (51).

Again there is evidence from twin and other studies for strong
genetic control over central abdominal (including visceral) fat (52,
53) independent of overall adiposity but without a clear under-
standing of the molecular mechanisms. We have reported the
presence of the transcription factor Islet1 (important for develop-
ment of islets, cardiac tissue, and neurons) in the stromovascular
(preadipocyte-containing) fraction of VAT but not SAT and its
expression is correlated in animals and humans with leanness
(54). We have also recently demonstrated the ability of Islet1 to
inhibit 3T3-L1 preadipocyte differentiation in vitro at least in
part via downregulation of bone morphogenic protein 4 (BMP4)
(55). Further work will be needed to determine whether Islet1 is a
significant regulator of visceral adiposity in humans.

In contrast to the well-defined interscapular location of BAT
in rodents, human BAT/beige fat is located in a fascial plane
extending from the cervical to the supraclavicular/axillary regions,
with smaller depots around the mediastinum, as well as pericar-
dial, paravertebral, and suprarenal regions (56). In other words,
both SAT (i.e., supraclavicular BAT) and VAT (i.e., suprarenal
BAT) could harbor adipocytes with BAT-like features. Interest-
ingly, adipose-specific ablation of PRDM16 inhibits formation
of beige adipocytes in SAT of cold-exposed rodents (57). These
animals rapidly gained SAT upon high fat feeding yet the excess
“SAT” displayed a gene signature typical of VAT, characterized by
inflammation and macrophage infiltration. These findings suggest
complex interplay between adipose composition and location, and
brown/beige/white adipogenesis may regulate adipose function in
depot-specific manner.

HORMONAL INFLUENCE
Hormonal influences (2) are important as indicated by the effect
of estrogen increasing SAT (especially gluteal). Cortisol in excess
increases central fat (both SAT and VAT) and growth hormone
reduces subcutaneous adiposity. Again the mechanisms for these
effects are not fully understood although increased lipolysis may
be the predominant effect of growth hormone (58).

Estrogen not only favors expansion of SAT but also limits
VAT (59) and the effect is therefore lost post-menopause (59).
To what extent this action is related to modulation of adipocyte
differentiation in the VAT compartment is unclear.
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Numerous hormones modulate BAT activity. For example,
thyroid hormone (60) and estradiol (61) stimulate mitochon-
drial biogenesis and brown adipogenesis, while testosterone
(62) and cortisol (63) inhibit BAT proliferation and differen-
tiation. Intriguingly, eosinophils through atypical macrophages
also stimulate brite/beige adipogenesis in rodents (64). Recently,
novel cytokines including irisin (65), fibroblast growth factor 21
(FGF21) (66), BMPs (67), and Meterorin-like (68) have been dis-
covered, which independently regulate BAT and/or beige/brite
fat function beyond classic SNS and/or pituitary–thyroid–adrenal
axes, thereby opening new directions in BAT-based therapeutics
(see Brown Adipose Tissue).

ENVIRONMENTAL INFLUENCE
Exercise training (particularly aerobic) also reduces VAT and
hepatic steatosis (69) to a greater extent than SAT (70, 71), pre-
sumably related to the greater lipolytic response of VAT adipocytes
and simple depletion of triglyceride; however, an effect on limiting
adipocyte differentiation/expansion is an additional possibility.

Studies have confirmed the presence of BAT and brown fat-like
cells in humans (56) (see Brown Adipose Tissue). Whole body BAT
function can therefore be expanded either through recruitment of
classic BAT and/or brite/beige fat induction (i.e., fat browning).
Cold exposure is the best-established mechanism for expand-
ing BAT and beige depots: acute cold exposure elevates UCP1
mRNA expression in both interscapular BAT and beige/brite fat
within WAT, while prolonged cold exposure induces BAT hyper-
trophy and hyperplasia, and induces beige/brite adipogenesis (72).
Although classically viewed as the mediator of cold exposure, the
sympathetic nervous system (SNS) may not be the sole driver of
cold-induced BAT recruitment.

Pharmacological studies have demonstrated remarkable pro-
liferation/expansion of interscapular BAT during chronic beta-
agonist exposure (73), and beige/brite adipogenesis can be induced
within WAT following β3-agonist treatment, similar to results
observed in cold exposure studies, thus supporting the role of
SNS as a cold-mediator. However, cold may have a direct stimu-
latory effect on BAT, independent of SNS. Cold exposure, but not
non-selective β-agonists in therapeutic dosage, activates BAT in
humans, suggesting probable presence of non-SNS BAT-activating
factors exerting effects during cold exposure. UCP1 expression
is also increased in adipocytes exposed to cold temperature
in vitro (74). The cell-autonomous response to cold further sup-
ports the presence of direct cold-mediated BAT expansion and/or
fat-browning mechanisms.

IMPLICATIONS FOR PATHOPHYSIOLOGY/THERAPY
Studies by our own and other groups have shown that abdom-
inal obesity is associated with several negative effects including
insulin resistance, cardiovascular disease, inflammation, and vari-
ous cancers (75–78), which indicates that expansion of visceral fat
is adverse, and conversely reduction of visceral fat mass should be
beneficial.

Several factors may contribute to the adverse effects of VAT
including a hyperactive secretome, inflammation, lipolysis, and
transmission of fatty acids via the portal vein to the liver. Adi-
pose tissue is an endocrine organ that secretes numerous proteins

(adipokines) and lipids that have potent metabolic effects on other
organs including muscle, liver, and brain (79, 80). The differential
secretion of adipokines may account for the differing metabolic
consequences of visceral vs. subcutaneous adiposity. Compared
with SAT, VAT secretes lower amounts of metabolically beneficial
adipokines including leptin and adiponectin, but higher amounts
of detrimental or proinflammatory adipokines such as RBP4,
TNF-α, MCP-1, IL-8, and IL-6 (81–83). Although adiponectin is
expressed and secreted mainly by subcutaneous adipose tissue,
lower adiponectin concentrations are related to visceral fat accu-
mulation (84, 85). CRP levels are significantly related to waist
circumference (WC), while MCP-1 is more highly associated with
VAT compared with SAT (86, 87). Therefore, abdominal obesity is
associated with reduced levels of adiponectin, and increased levels
of inflammatory adipokines. MCP-1 can induce macrophage infil-
tration and activation in adipose tissue and these adipose tissue
macrophages are postulated to be a major contributor to obesity-
associated chronic low grade inflammation, which may contribute
to the pathogenesis of obesity-induced insulin resistance (88, 89).
Although insulin resistance has also been shown to occur inde-
pendently of changes in AT inflammation (90), in which case it
is possible that AT macrophage infiltration is serving an alter-
nate function such as the clearance of dead adipocytes (91), which
is an initial remodeling event required for AT regeneration and
expansion in response to energy surfeit (92).

Lipolytic regulation also differs between VAT and SAT in that
visceral adipocytes are more metabolically active; they have a
greater lipolytic capacity (93–95) and, compared with subcuta-
neous abdominal or femoral adipose cells, they display greater
catecholamine induced lipolysis and reduced suppression of lipol-
ysis in response to both insulin and α2-adrenergic agonists (96,
97). The increased lipolytic capacity of VAT causes increased
release of FFAs from VAT, potentially increasing hepatic gluco-
neogenesis (98) and contributing to ectopic lipid deposition in a
range of tissues, contributing to insulin resistance (99). Fat accu-
mulation in the liver (100) or muscle (101) is tightly associated
with insulin resistance and type 2 diabetes. However, there is evi-
dence that visceral fat is not as important as subcutaneous fat in
supplying FFAs to the liver in lean or in most obese persons (102,
103). Additional studies are needed to definitively determine the
relationship between individual abdominal fat depots and insulin
resistance.

SUBCUTANEOUS WHITE ADIPOSE TISSUE
Although obesity, with increased SAT, is metabolically harmful,
a lack of adipose tissue, especially SAT, can be as bad or worse.
Various congenital or acquired lipodystrophies are characterized
by hepatic steatosis, dyslipidemia, and insulin resistance with
increased risk of diabetes (2, 104). This appears attributable to
a combination of diversion of lipid away from an inadequate adi-
pose tissue reservoir to “ectopic sites” such as liver and muscle, and
also to a lack of secretion of the “favorable” adipokines leptin and
adiponectin; the low leptin levels explain increased appetite and
inappropriately positive energy balance and reduced levels of both
adipokines contribute to reduced activity of AMP-activated pro-
tein kinase (AMPK), which promotes lipid oxidation (2). Human
lipodystrophies used to be rare but HIV lipodystrophy, strongly
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associated with the earlier HIV antiviral drugs, has been common
in subjects treated for HIV (105); again the molecular mechanisms
involved are not clearly understood but may involve disturbances
of adipocyte PPARγ and GLUT4 activity.

Conversely, PPARγ agonists such as pio- and rosiglitazone
expand SAT, which appears to “sequester” excess lipid and lower
circulating non-esterified fatty acids (NEFA) levels. The result-
ing metabolic improvement is also contributed to by increased
adiponectin secretion; the net result being improved insulin sen-
sitivity and prevention/improvement of type 2 diabetes (106). Of
course the weight gain has negative musculoskeletal and cosmetic
implications and the enhanced adipocyte differentiation may be
at the expense of reduced osteoblast differentiation in bone with
consequent reduction of bone density (107).

In treating ordinary obesity, energy restriction is paramount
but increased exercise assists loss of adipose tissue rather than lean
mass (2). The importance of energy restriction rather than simple
reduction of SAT mass was clearly demonstrated by the complete
lack of metabolic benefit from removal of ~10 kg of subcutaneous
fat in obese subjects by liposuction (108). Thus, simple depletion
of the SAT “reservoir” is of no value and the benefit of energy
restriction by diet, bariatric surgery, or other means would seem
to be dependent on reduction of hepatic, intramyocellular, and vis-
ceral lipid. In regard to the latter, surgical VAT resection in obese
insulin resistant rats generates significant metabolic improvement
(109) but evidence in humans is conflicting (2, 110).

So where do we go in using our knowledge of adipocyte
differentiation to extend therapy beyond energy restriction? As
indicated above, measures to reduce the SAT depot may do more
harm than good; however, some animal models with reduced SAT
do have a favorable phenotype, e.g., the c-Cbl deletion, where there
is increased energy expenditure (111) and some genetic manipu-
lations inhibiting adipose angiogenesis may improve insulin sen-
sitivity/glucose tolerance (112) but some have the reverse effect
(113) for reasons that are not clear but may include effects on
appetite. Thus, with an increased knowledge of the molecular
metabolism of these models – especially feedback effects on orex-
igenic pathways – it may be possible to design pharmacotherapy
to reduce overall or subcutaneous fat, gain a favorable metabolic
outcome, and get the musculoskeletal benefit of reduced weight.

VISCERAL WHITE ADIPOSE TISSUE
It is unclear if pharmacotherapy to specifically reduce VAT would
be possible but VAT has a number of developmental genes, as well
as Islet1, which are different from those in SAT (114, 115) so in
theory such agents could be developed. The metabolic response
would be uncertain but interesting and informative.

BROWN ADIPOSE TISSUE
One exciting prospect in this area is to increase the amount and/or
activity of brown or “beige” fat. Animals with high BAT and/or
beige/brite abundance are protected against obesity, diabetes,
hepatic steatosis, and hyperlipidemia. BAT and/or beige/brite
fat expanding therapeutic strategies are attractive in the combat
against obesity and related disorders in humans.

In this regard, cold acclimation is an effective method of
BAT recruitment in humans. Mild cold exposure at 16–19°C for

2–6 weeks increases BAT volume and activity in adults (116–118),
augmenting cold-induced thermogenesis (116, 117), and resulting
in reduced adiposity (117) as well as enhancement of post-prandial
insulin sensitivity (118). Unfortunately, the natural tendency for
thermal comfort could limit the applicability of cold exposure as
a BAT expanding strategy.

Pharmacological BAT activation is an attractive alternative. The
disappointing results of β3-agonist studies a decade ago on weight
loss (119) could stem from the relatively low expression of β3-
receptors in human BAT. The use of non-selective β-agonists
for BAT expanding purposes is limited by inadvertent cross-
stimulation of cardiac β-receptors. Non-SNS therapeutics based
on newly discovered fat browning and/or BAT-activating cytokines
have strong potential (56). FGF21 and irisin are particularly rele-
vant as they are potent endocrine human BAT activators that are
stimulated by cold exposure in adults (120). Whether FGF21 and
irisin can be transformed into injectable recombinant proteins
for obesity and/or diabetes treatment is under active research at
present. It is important to point out that in all of these studies it is
not possible to exclude non-cell autonomous effects for all of these
perturbations including a central effect to repress food intake.

CONCLUDING REMARKS
In summary, fat distribution (e.g., VAT vs. SAT) and composi-
tion (e.g., WAT vs. BAT) are both metabolic health determinants
with therapeutic implications. Although adipogenesis dictates
mature adipocyte phenotypes, adipogenesis at the tissue level
defines fat distribution, and ultimately modulates organ func-
tion. Pinpointing crossroads in adipogenic checkpoints governing
SAT/VAT expansion and WAT/BAT differentiation may ultimately
open novel avenues in obesity treatment by sculpting a metabol-
ically favorable whole body adipose distributional/compositional
phenotype.
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