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There is now an impressive body of literature implicating insulin and insulin signaling in
successful aging and longevity. New information from in vivo and in vitro studies concern-
ing insulin and insulin receptors has extended our understanding of the physiological role
of insulin in the brain. However, the relevance of these to aging and longevity remains to
be elucidated. Here, we review advances in our understanding of the physiological role of
insulin in the brain, how insulin gets into the brain, and its relevance to aging and longevity.
Furthermore, we examine possible future therapeutic applications and implications of
insulin in the context of available models of delayed and accelerated aging.

Keywords: insulin, insulin receptors, brain, inflammation, delayed aging, accelerated aging, longevity

INTRODUCTION
Pathways that orchestrate the responses of the organism to changes
in its environment have been implicated in the genetic regulation
of lifespan across different species. One of the key pathways iden-
tified by genetic analysis of long-lived Caenorhabditis elegans (C.
elegans) mutants is insulin/insulin-like growth factor-1 (IGF-1)
signaling (IIS) (1, 2). In invertebrates, multiple insulin/IGF-1-like
ligands signal via a common receptor, which shows homology
to the mammalian insulin and IGF-1 receptors. Also in mam-
mals, insulin/IGF-1 signaling has been linked to aging, lifespan,
and longevity (3). Although in mammals, insulin and IGF-1 act
predominantly via distinct receptors, there is extensive overlap
and interaction in their downstream signaling cascades, making
it difficult to separate effects of insulin signaling from those of
IGF-1 signaling. The long-lived phenotype of FIRKO mice, which
were made by selective disruption of the insulin receptor (IR) in
adipose tissue, supports a role of insulin signaling in longevity
(4). Moreover, many of the long-lived mouse mutants with dis-
rupted GH/IGF-1 signaling display enhanced insulin sensitivity.
In humans, a hallmark phenotype of healthy longevity is main-
tenance of insulin sensitivity (5, 6), which has been observed
in familial human longevity (7, 8), as well as in centenarians
(9–11). Insulin influences all aspects of human physiology (12,
13). Besides regulating peripheral glucose homeostasis, insulin is
an important neuromodulator that contributes to neurobiolog-
ical processes (14), with growing evidence that insulin supports
behavioral, cellular, biochemical, and molecular functions (15).
In literature, evidence linking aging and insulin signaling includes
prolongation of life span in rodents via genetic mutations affecting
insulin signaling pathways or via interventions that down-regulate
nutrient sensing pathways such as caloric restriction. Further evi-
dence includes data on the role of type 2 diabetes in accelerated
aging syndromes, and the increased incidence of insulin resistance
with age (16). In model organisms (nematodes and fruit flies),
specific neural manipulations of insulin signaling have also been
linked to aging and lifespan (17, 18). Insulin is produced in the

brain of these organisms, making it undoubtedly a neuropeptide.
In mammals and humans, IRs are highly abundant in many brain
areas and nuclei, but it remains unclear if insulin is produced in
the brain. Furthermore, the physiological and pathophysiological
mechanisms of insulin action in the brain in relation to aging and
longevity remain to be elucidated.

With the global population aging, there has been an astonish-
ing increase in the prevalence of obesity (19), metabolic syndrome
(20), type 2 diabetes (21), and neurodegenerative diseases (22).
Insulin resistance is a shared feature in these diverse pathologies
(13, 23–26). It therefore becomes critical to understand the role of
insulin in healthy longevity, as this may be relevant to combatting
age-related disorders that have been linked to disturbances in glu-
cose metabolism. The aim of this article is to review advances in
our knowledge about insulin, insulin signaling, and the brain, and
to present these in the context of available models of delayed and
accelerated aging. Furthermore, we will examine the links between
inflammation, metabolic health, and brain health, and their effect
on aging. Finally, we will review therapeutic options to enhance
brain insulin action, including measures to enhance local brain
insulin levels as well as measures to enhance the brain responses
to insulin.

INSULIN AND THE BRAIN: A CENTURY OF DISCOVERIES
Insulin, after discovery in 1921, was initially considered a periph-
eral hormone and thus unable to cross the blood–brain barrier
(BBB) (27). However, in 1967, Margolis and Altszuler demon-
strated in dogs that the concentration of cerebrospinal fluid (CSF)
insulin increased after an increase in plasma insulin (28), thus
showing that insulin is able to cross the blood–CSF barrier. In
1978, Havrankova et al. demonstrated the widespread presence of
IRs in the central nervous system (CNS) of the rat (29). Later that
year, they further demonstrated that high levels of insulin were
present in rat brain extracts, and found that the concentration of
insulin in the CNS was considerably higher than its concentration
in the circulation (30). They thus proposed a physiological role
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for insulin in the CNS. In the 1980s, further evidence that insulin
from peripheral circulation crosses the BBB thus gaining access to
the brain was provided. In 1983, Dorn et al. demonstrated that
the human brain contains insulin in concentrations much higher
than the blood, the highest being in the hypothalamus (31). Fur-
thermore, they showed the presence of high concentrations of
insulin in the brains and spinal cords of human cadavers, mice,
and rats (32). Baskin et al. demonstrated uptake in the hypo-
thalamus of [125I]iodoinsulin after the insulin had been stereo-
taxically injected into a lateral cerebral ventricle. Furthermore,
they detected insulin-like immunoreactivity in the periventricu-
lar, supraoptic, suprachiasmatic, arcuate, and lateral hypothalamic
nuclei of the rat hypothalamus (33, 34). In 1992, Schechter et al.
delineated the ontogeny of rabbit brain insulin concentration and
demonstrated that insulin availability is developmentally regulated
(35). In the past decade, studies of the effects of insulin in the brain
have been enhanced after development of non-invasive methods
of selective delivery of insulin into the brain, via the intranasal
route, circumventing peripheral effects of systemic hypoglycemia
(36). This has advanced our understanding of potentially thera-
peutic effects of enhancing insulin concentrations in the brain.
Furthermore, studies in recent years have brought forward the
role of insulin signaling in the hypothalamus, as a key player in
regulation of hepatic glucose production and food intake (37).

BRAIN INSULIN: IS INSULIN A NEUROPEPTIDE IN HUMANS?
In the rabbit, discordance was observed between insulin con-
centrations in serum and CSF (35). Insulin was found to be

present in high concentrations in brain micro-vessels (38), brain
extracts (39), and immature nerve cell bodies (35, 40), despite
that only 0.046% of peripheral insulin crosses the BBB in mice
(12, 41). Moreover, brain insulin concentrations were observed to
vary according to developmental stages, with peak amounts being
observed during the critical phases of brain growth and develop-
ment (42). Taken together, these results suggest that brain insulin
availability is strictly regulated and can reach high levels in the
CNS. This raises the question as to the source of brain insulin,
does all of brain insulin derive from the periphery or is insulin
also synthesized in the brain (Figure 1)?

There is unequivocal evidence for selective, regulated, time
dependent, temperature sensitive, carrier mediated, and saturable
insulin transport to the brain (43–50). In mice, human insulin
was shown to access the CNS after crossing the BBB (51). In
rabbits, insulin infused into the carotid artery was shown to
have crossed the BBB into the peri-capillary space and brain
parenchyma with preservation of the peptide’s integrity (45).
In dogs, studies using a three component mathematical model
(plasma, intermediate component, and CSF) have shown that
insulin delivery to the CNS fits a receptor-mediated saturable
process (43). In healthy humans, during hyperinsulinemic, eug-
lycemic clamp studies, increase in circulating insulin was demon-
strated to rapidly affect brain activity, alongside rapid cerebral
insulin signal transduction, independent of the systemic effects of
the insulin (48).

Apart from passage through the BBB, direct access of insulin to
the CSF has also been demonstrated (Figure 1). This alternative

FIGURE 1 | Sources of brain insulin. Schematic diagram showing the
possible sources of brain insulin. First, peripheral insulin can access the brain
through the blood brain barrier (BBB) via a selective, carrier-mediated transport

system. Second, insulin may diffuse through the blood–CSF barrier in
circumventricular regions, which are lacking in BBB.Third, there is some limited
evidence suggesting the possibility of de novo insulin synthesis in the brain.
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route occurs through circumventricular regions, such as the area
postrema, which lack a BBB (34, 52–54). Unlike the BBB that
contains tight junctions, the capillaries in the circumventricular
regions are porous, thereby allowing plasma solubles to diffuse
freely and directly into these areas (55). The route through which
insulin accesses the brain has implications for the rate of convec-
tion and diffusion in the brain, and distribution of the insulin into
the brain parenchyma. Following intraventricular administration
of insulin, insulin becomes distributed through the ventricular
compartments and to the surface of the brain bathed by the sub-
arachnoid space, with relatively slow rate of diffusion into the
brain parenchyma, and is minimal at distances more than 1–2 mm
removed from the CSF surface (55, 56). In addition, insulin deliv-
ered into the CSF undergoes relatively rapid bulk flow through
the CSF flow tracks. For example, the entire CSF volume is turned
over every 4–5 h following production at the choroid plexus in the
human brain (55).

In model organisms, insulin is biosynthesized by neurons in the
brain and it exerts both local and remote actions, including reg-
ulation of homeostasis; making it undoubtedly a neuropeptide.
In humans, however, insulin is mainly produced in the pancreas,
which raises the question as to whether insulin can be considered
a neuropeptide in humans. Neuropeptides have been defined as
“small proteinaceous substances produced and released by neu-
rons through the regulated secretory route and acting on neural
substrates”(57). Neuropeptides have been shown to have strict, cell
specific expression patterns, on which the physiological or behav-
ioral role of the peptides is based. Criteria for classification as a
neuropeptide include gene expression and biosynthesis by neu-
rons; storage, and regulated release upon demand and ability to
modulate or mediate neural functioning directly through recep-
tors (57). Although IRs are highly abundant in many brain areas
and nuclei, it remains unclear if insulin is produced in the brain.
Therefore, following the strict criteria for neuropeptide definition,
it becomes debatable if mammalian insulin is a true neuropeptide.

Evidence in favor of insulin synthesis in the brain mostly derives
from in vitro studies, including the study by Clarke et al. in 1986,
which demonstrated the synthesis of insulin by cultured rat brain
neuronal and astrocyte glial cells and their release of insulin in pri-
mary culture. The insulin release after membrane depolarization
of the neurons was biphasic, in a manner similar to that of pancre-
atic beta cells (58). In 1990s, Schechter et al. provided both in vivo
and in vitro evidence from mammalian brains supporting the de
novo synthesis of insulin. In vitro evidence included the demon-
stration of preproinsulin I and II mRNA in neuron cell cultures of
fetal rat brains (59). From in vivo studies,presence of preproinsulin
I and II mRNAs and insulin immunoreaction was detected within
the rough endoplasmic reticulum, the Golgi apparatus, cytoplasm,
axon, synapsis, and dendrites of the rat fetal brain (40).

Summarily, as can be seen in Figure 1,whether insulin is derived
from the periphery, local sources or both, insulin is present in
the CNS, where it subserves many functions and contributes to
neurobiological processes.

ACTIVATION OF INSULIN RECEPTORS IN THE BRAIN
As in peripheral tissues, insulin signaling in the brain occurs
mainly via the IR pathway (Figure 2), which contains several

FIGURE 2 | Insulin–IRS–P13K–AKT signaling cascade and its crosstalk
with other signaling pathways. Figure denotes three critical nodes in
insulin signaling that are important for the interaction of insulin signaling
with other pathways relevant to this review.

critical nodes of interaction with other signaling pathways (60).
Activation of the insulin signaling cascade starts with binding of
the insulin ligand to the IR, which belongs to the family of tyro-
sine kinase receptors, auto phosphorylation of which is essential
for their activation. Upon activation, the IR phosphorylates insulin
receptor substrate (IRS) proteins. IRS proteins are also activated
upon binding of the IGF-1 ligand to its cognate receptor. Thus,
IRS proteins represent a critical node of conversion of the insulin
and IGF-1 signaling cascades, and their crosstalk with other path-
ways, such as cytokine signaling. In addition to its activation of
the Ras–mitogen-activated protein kinase (MAPK) pathway, acti-
vated IRS proteins serve as docking sites for the assembly and
activation of, among others, phospho-inositol-3 kinase (PI3K),
which generates the lipid second messenger phosphatidylinositol
3,4,5-triphosphate (PIP3). PI3K represents another critical node
of crosstalk with other signaling pathways, including the c-Jun-N-
terminal kinase (JNK) stress signaling pathway. Elevated levels
of PIP3 activate phosphoinositide-dependent protein kinase-1
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(PDK1) and AKT. AKT represents yet another critical node of
interaction with the mammalian target of rapamycin (mTOR)
nutrient signaling pathway. AKT targets include glycogen synthase
kinase 3 (GSK3), Akt substrate of 160 kDa (AS160, phospho-
rylation of which is required for translocation of the glucose
transporter GLUT4 to the plasma membrane) and forkhead tran-
scription factors (FOXOs) (Figure 2). Phosphorylation of FOXOs
induces their translocation from the nucleus, which causes pro-
found changes in the transcription of key factors implicated in
metabolism, cell cycle regulation, apoptosis, and resistance to
oxidative stress (61).

DISTRIBUTION OF INSULIN RECEPTORS IN THE BRAIN
In higher mammals and humans, IRs are widely distributed
throughout peripheral tissues, with their main function being
to transport glucose into cells, inhibit glucose production and
increase glucose uptake by triggering signaling pathways in the
liver, muscle, and fat (62). The IR consists of a tetramer, with two
alpha subunits and two beta subunits. Brain IR subunits differ
structurally from peripheral IR subunits in that they have a lower
molecular weight (63) and can withstand exposure to high con-
centrations of insulin without undergoing down-regulation (64,
65). The mammalian brain has specific IRs (29, 66), which are
of two types. One is the neuronal/neuron-specific type, which is
abundant in the neuron (67), while the second type is the non-
neuronal/peripheral-like type, with lower density in glial cells
(38, 66, 68). Insulin receptors are highly abundant in the neu-
rons, with high protein concentrations in cell bodies and synapses,
and less abundant in the glia. Brain IRs are abundant in the
brain, but are highly enriched in the olfactory bulb, hypothalamus,
hippocampus, cerebellum, amygdala, and cerebral cortex (12).

Growing but controversial evidence suggests that the specific
regional concentrations of IR reflect different IR functions associ-
ated with particular brain regions. IR enrichment in the hypothal-
amus and limbic system including the hippocampus, pyriform
cortex, and amygdala, areas that reciprocally connect and com-
municate with each other, has been proposed to be suggestive of a
role in emotion and higher cognitive functions, particularly learn-
ing and memory (69, 70). Higher IR concentrations are found in
the hippocampus, which is critically involved in spatial memory
processing, suggesting insulin’s role in learning and declarative
memory (69). Evidence that synthesis of IR may be increased in
these hippocampal areas as a result of learning is supported by
the up-regulation and the changes in distribution patterns of IR
mRNA in the hippocampus and dentate gyrus following water
maze training in rats (70). Insulin is involved in the regulation
of food intake, which is consistent with the high concentrations
of IR in the olfactory bulb and the hypothalamus. Furthermore,
the high concentration of IR in the choroid plexus suggests that
it may be required for transport of peripheral insulin across the
blood–CSF barrier (70).

FUNCTIONAL SIGNIFICANCE OF INSULIN IN THE BRAIN
As the most potent anabolic hormone yet identified, insulin has
both metabolic and non-metabolic functions. Insulin regulates
food intake, as well as glucose, lipid, and energy homeostasis
and stimulates synthesis (as well as inhibition of breakdown) of

glycogen, triglycerides, and most proteins. It is also involved in
regulation of hedonic behavior and non-homeostatic control of
intake of food and other substances via reward processing.

NON-METABOLIC FUNCTIONS
The presence of insulin and IRs in the brain indicates that the
brain is a target organ for insulin. Insulin plays a key role in
synaptic plasticity, apoptosis, mood, learning, reproduction, and
growth (37, 71–74). Insulin and IR expression in the brain has
been suggested to exert neurotrophic effects on CNS neurons
(75). Insulin has been considered to support neuronal protein
synthesis and cytoskeletal protein expression (75), neurite out-
growth (76, 77), migration, and differentiation in the absence of
other growth factors (78, 79), and nascent synapse formation (75,
80). It promotes growth and regeneration of axonal sprouts, espe-
cially small sized sensory neurons (81), neuronal survival, circuit
development, synaptic plasticity (82), and postsynaptic neuro-
transmitter receptor trafficking (80). Evidence in favor of insulin’s
role as a neurotransmitter in the CNS includes the observations
that (i) insulin is present in neurons (67), (ii) neurons contain
specific IRs (64), and (iii) insulin affects neuronal firing and cat-
echolamine metabolism (83–85). Insulin also has effects on BBB
function, including ability to affect the transport of other sub-
stances. Binding sites for insulin have been described at both the
choroid plexus and on brain endothelial cells (86, 87). Insulin also
has neuro-protective properties (88–90). Central insulin plays a
role in cognitive processes such as attention, executive function-
ing, learning, and memory (91), and direct application of insulin
to the CNS in humans has been shown to improve memory and
cognition (92, 93). Thus, insulin is involved in attributes that are
essential for healthy aging.

METABOLIC FUNCTIONS
The brain plays a key role in maintenance of homeostasis, or
the ability to maintain vital parameters of the internal environ-
ment within narrow limits, despite fluctuations in the external
environment. Metabolic homeostasis requires the integration of
numerous cues reflecting energy availability by the hypothalamus
and nearby brain structures, to mount a coordinated response to
adapt fuel flux so as to maintain energy homeostasis. Insulin is
one of the many cues informing the brain about energy status.
Research on insulin signaling has primarily focused on insulin-
mediated processes in the classical insulin target organs. These
include glucose uptake into skeletal muscle, inhibition of glucose
production by the liver, and inhibition of lipolysis in adipose tis-
sue. However, in 1979, a role for insulin in the central regulation
of energy homeostasis was suggested based on the observations
that insulin levels circulate in proportion to fat mass in most
mammals and that intra-cerebroventricular insulin administra-
tion results in a dose dependent reduction in food intake and
body weight in monkeys (94). In line, IRs are expressed through-
out the mammalian brain (29). Metabolic syndrome and diabetes
have traditionally been considered as peripheral metabolic dis-
eases. Recently, various non-invasive brain-imaging techniques
have revealed structural and functional abnormalities that are
associated with diabetes. Critical autonomic regulatory neurons
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in the hypothalamus and brainstem are responsible for main-
tenance of energy homeostasis and functional changes in these
areas are associated with the development of diabetes (95). It
was also shown that after hepatic branch vagotomy the suppres-
sion of hepatic gluconeogenesis induced by increasing circulating
insulin levels was reduced by half (96). Mechanistically, bind-
ing of insulin to the IR and activation of the PI3K pathway
in hypothalamic glucose-responsive neurons, which was shown
to induce their hyperpolarization by opening of ATP-dependent
potassium channels (97), has been implicated in the central effects
of insulin on hepatic glucose production (96). Recently, it was
shown that ingestion of a glucose solution resulted in a prolonged
and significant blood oxygen dependent decrease in activity in
the hypothalamus of healthy subjects, but not in type 2 diabetic
patients (98). Insulin is also involved in regulation of energy
homeostasis via IR in the ventromedial hypothalamus and acts
on the brain to suppress feeding (99). Thus, insulin acts as a
satiety factor, a finding supported by the observation that the
response of glucose-excited neurons in the ventrolateral and ven-
tromedial hypothalamic nucleus to decreased glucose is blunted
by insulin (100).

Taken together, these data indicate that, beside peripheral
insulin resistance, reduced brain insulin action may also contribute
to loss of maintenance of metabolic control. Indeed, brain specific
deletion of the IR was shown to result in enhanced food intake in
female mice; and in mild obesity, hyperleptinemia, insulin resis-
tance, and hypertriglyceridemia in both male and female mice
(101). In line with these findings, in rats, decreasing hypothalamic
IRs caused overeating and insulin resistance and hypothalamic
insulin signaling was shown to be required for inhibition of glu-
cose production (102). High-fat diet-induced obesity is associated
with reduced brain insulin transport and an impairment of insulin
action when given directly into the CNS, suggesting a loss of the
effectiveness of insulin in the CNS to provide feedback signal-
ing in circumstances of chronic hyperinsulinemia (103). Upon
aging, peripheral insulin resistance progressively increases, induc-
ing compensatory chronic elevations in circulating insulin levels.
Therefore, central insulin action will be discussed in the context
of models of delayed and accelerated aging.

INSULIN AND THE BRAIN: MODELS OF DELAYED AGING
NEMATODE MODELS OF DELAYED AGING
There is an impressive body of literature implicating insulin/IGF-
1 like ligands and insulin/IGF-1 signaling in the regulation of
metabolism, development, and longevity in the roundworm C.
elegans (104). In response to unfavorable stressful environmen-
tal conditions, C. elegans larvae can transiently exit the cycle of
growth and development to sexual maturity by transformation
into developmentally arrested, non-feeding, stress resistant, and
long-lived dauer larvae (105, 106). It was found that several dauer
formation defective (daf) mutants are also long-lived, possibly
because these mutants display specific key features of the dauer
stage while developing in sexually mature adults, such as enhanced
resistance to multiple stresses due to induction of cytoprotective
pathways (107). Of the many long-lived daf mutants in nema-
todes, the ones that are best characterized comprise the daf-2, age-1
(daf 23), daf-16, and daf-18 mutants. Cloning and sequencing of

the loci affected in long-lived daf mutants has revealed that these
show strong sequence homology with evolutionarily conserved
components of the mammalian insulin/insulin-like growth factor-
1 signal transduction cascade (108–110). For example, the daf-2
gene that has been shown to regulate lifespan in C. elegans, and the
related tyrosine kinase receptors InR in Drosophila melanogaster
(D. melanogaster) encode components that are homologous to the
mammalian insulin and insulin-like growth factor-1 receptors.
In response to food or the perception of food, multiple insulin-
like ligands are secreted from neurosecretory cells in the brain
of C. elegans (111) and D. melanogaster (112), indicating that in
these invertebrates, the CNS plays a key role in insulin signal-
ing mediated regulation of physiology and lifespan in response to
environmental cues. Moreover, more than 10 years ago, Wolkow
et al. (17) demonstrated that restoration of the daf-2 pathway
of insulin-like signaling in neurons alone was sufficient to restore
wildtype lifespan in C. elegans, and thus provided further evidence
as to the role of insulin in the nervous system as a central regulator
of animal longevity.

MOUSE MODELS OF DELAYED AGING
In mammals, the insulin/insulin-like growth factor-1 signal-
ing cascade exhibits some striking differences compared to the
insulin/insulin-like growth factor-1 signaling cascade in inverte-
brates (113). These differences include the acquisition of GH as a
main regulator of IGF-1 production by the liver, and the acquisi-
tion of separate receptors for insulin and IGF-1. Again, several
of the existing long-lived mammalian mutants with defects in
insulin/IGF-1 signaling point to a role of the CNS in the regu-
lation of mammalian longevity. The mutations that have thus far
been most consistently and most strongly associated with increases
in lifespan in mice comprise the Prop-1 mutation displayed by
Ames dwarf mice (114) and the Pit-1 mutation displayed by Snell
dwarf mice (115). These two mutations confer a defect in the
development of the anterior pituitary gland, which causes a life-
long combined hormonal deficiency in growth hormone, thyroid
stimulating hormone, and prolactin. In these as well as other long-
lived mice, longevity has been strongly correlated with enhanced
insulin sensitivity (116). In addition to the Ames and Snell dwarf
mice, many other mouse mutants with defects in insulin/IGF-1
signaling have been described to display a longevity phenotype,
which strongly implicates the insulin/IGF-1 signaling pathway in
the regulation of rodent longevity. Involvement of both insulin
signaling and IGF-1 signaling in mouse longevity was suggested
by the long-lived phenotypes displayed by mice with selective dis-
ruption of the IR in adipose tissue (4) and mice heterozygous
for mutation of IGF-1R (1). Summarily, improved insulin control
(of carbohydrate homeostasis) has been identified as one of the
pathways implicated in the remarkable extension of longevity in
long-lived mouse mutants (117).

HUMAN MODELS OF DELAYED AGING
Also in humans, preserved insulin sensitivity has been associ-
ated with longevity. Insulin resistance has been shown to predict
the development of age-related diseases, including hypertension,
coronary heart disease, stroke, cancer, and type 2 diabetes (118).
In the general population, the association between aging and
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decline in insulin sensitivity (119–123) has been demonstrated in
several studies (Figure 3). Mechanisms suggested to contribute to
decreased insulin sensitivity in the elderly include (i) age-related
receptor and post-receptor defects in insulin action (124, 125),
(ii) an age-related decrease in insulin stimulated whole body glu-
cose oxidation (126), (iii) an age-related reduction in beta cell
response to glucose (126), and (iv) impaired insulin-mediated
glucose uptake, and inability to suppress hepatic glucose output
(127, 128). In contrast, centenarians, which exhibit exceptional
longevity, seem protected against the age-related decline in insulin
sensitivity when compared to a group of advanced middle-aged
individuals. (11) Of note, a methodological difficulty that is asso-
ciated with the comparison of groups that differ in calendar age is
potential confounding by the changes that occur in body composi-
tion and endocrine function with advancing age. Moreover, differ-
ences may exist between different birth cohorts in environmental
impacts, including differences in the availability vaccinations or
medications (e.g., antibiotics).

The relationship between longevity and preserved insulin
action has also been observed in studies of familial longevity. In the
Leiden longevity study, offspring of long-lived nonagenarian sib-
lings, having inherited on average 50% of the genetic propensity of
their long-lived parent were included together with the partners of
the offspring (129), with whom they have shared the same socio-
economic and geographical environment for decades and who are
of a similar age. We showed that already at middle age the offspring
from these long-lived siblings displayed a decreased mortality risk
suggesting that there is indeed evidence for genetic enrichment
for longevity (129). Moreover, human offspring of exceptionally
long-lived siblings, when compared to their partners showed a
remarkably lower prevalence of metabolic syndrome (130) and
diabetes (131). After exclusion of diabetic patients, the offspring of

exceptionally long-lived siblings displayed lower circulating levels
of glucose and slightly lower circulating insulin levels (7). Using
hyperinsulinemic euglycemic clamps studies, we could show that
the offspring of long-lived siblings specifically displayed enhanced
peripheral insulin sensitivity compared to age matched controls
(8). A study using high field (7-T) MR spectroscopy of the tibialis
anterior muscle indicated that the enhanced peripheral insulin
sensitivity of offspring is associated with lower intramyocellular
lipid content, which may be indicative of better mitochondrial
capacity (132).

The mechanisms underlying the preserved insulin action in
centenarians as well as in offspring of nonagenarian siblings
remain unclear. However, suggested mechanisms include genetic
enrichment for favorable features related to body fat and lipopro-
tein distribution, reduced plasma free radical concentrations, and
enhanced cellular response to oxidative stress and immune func-
tion (11, 133, 134). Taken together, these results suggest that
maintenance of insulin sensitivity is a key feature of healthy
longevity.

INSULIN AND THE BRAIN: MODELS OF ACCELERATED AGING
OBESITY AS A MODEL FOR ACCELERATED AGING
The most common acquired factors causing insulin resistance
are obesity and a sedentary lifestyle. Obesity and the associated
increase in body fat are the consequences of chronic, long-term
nutrient excess. In Western societies, the prevalence of obesity
continues to increase and numerous studies have demonstrated
an association between obesity and enhanced mortality risk (135).
The relationship between obesity and excess mortality is consis-
tent with evidence that obese individuals are at increased risk
of essential hypertension, type 2 diabetes mellitus (DM2), and
cardiovascular disease (CVD). It has been suggested that insulin

FIGURE 3 | Insulin and the brain: models of accelerated and
delayed aging. Figure showing the putative relationship between
central insulin action and glucose metabolism in models of
accelerated or delayed aging. Obesity as a model for accelerated

aging is associated with peripheral insulin resistance, decreased
adiponectin levels, and enhanced chronic inflammation. Opposite
features are observed in healthy longevity as a model of delayed
aging.
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resistance is the major contributor to clinical outcomes associated
with obesity (136).

It is not known why some obese individuals develop insulin
resistance while others remain insulin sensitive (137). A poten-
tial mechanism that might explain the association between excess
adiposity and peripheral insulin resistance is impaired adipoge-
nesis and reduced lipogenesis in subcutaneous fat, which would
lead to enhanced deposition of fat in the visceral depots and larger
sizes of visceral adipocytes (137, 138). Increased visceral adiposity
is associated with enhanced secretion of inflammatory cytokines
and induction of insulin resistance (139). Nutrient excess results
in enhanced exposure of cells and tissues to high levels of cir-
culatory glucose and fatty acids. These exposures can activate
various intracellular inflammatory pathways and lead to mito-
chondrial dysfunction, reactive oxygen species (ROS), ER stress,
and the associated unfolded protein response that induce resis-
tance to both leptin and insulin (140). ROS can have both stim-
ulatory and inhibitory effects on insulin signaling. It was shown
that under normal physiological conditions, optimal activation
of the IR requires redox priming by IR mediated activation of
NAD(P)H oxidase (NOX) in many cell types (141). In addition,
mild bursts in intracellular ROS can activate the IR receptor inde-
pendent of insulin, allowing for ROS mediated ligand activation
bypass of IR signaling (142). In contrast, increased levels of ROS
or prolonged exposure to oxidative stress have been shown to
inhibit insulin signaling and to induce insulin resistance (143).
Enhanced exposure of skeletal muscle to high levels of fatty acids
in circulation can result in enhanced levels of intramyocellular
triglyceride storage. Because intramyocellular lipid droplets are
stored in close vicinity to mitochondria, which constitute the
main intracellular source of ROS, intramyocellular triglycerides
are very vulnerable to oxidation. Upon peroxidation of intramy-
ocellular triglycerides toxic lipid species are generated, including
diacylglycerol (DAG), ceramide, and long-chain fatty acyl-CoA,
which impair insulin signaling (143). Both enhanced influx, as
a consequence of nutrient excess, and reduced efflux, as a result
reduced oxidative capacity and mitochondrial dysfunction have
been implicated in the accumulation of toxic intramyocellular
lipids (144, 145). In support of a role of reduced efflux due
to mitochondrial dysfunction, non-obese, insulin sensitive first
degree relatives of patients with type 2 diabetes were shown to
display impaired ability to switch to fat oxidation after high-fat
intake (146), as well as higher levels of intramyocellular lipids
and reduced oxidative capacity (147). These data implicate ROS
and mitochondrial dysfunction in the development of insulin
resistance.

It is unknown via which mechanisms insulin resistance is
associated with a shortening of lifespan. If peripheral organs,
such as skeletal muscle and adipose tissue become less respon-
sive to insulin, euglycemia will be maintained by the capac-
ity of the pancreas to hypersecrete insulin so as to overcome
insulin resistance at peripheral organs. Exposure to continuous
surges of hyperinsulinemia may overstimulate other tissues that
have remained normally responsive to insulin, such as the liver,
resulting in a pro-atherogenic lipid profile (148). Other data
implicate adiponectin in the association between insulin resis-
tance and lifespan. Adiponectin, an anti-inflammatory adipokine

secreted by adipose tissue (149) was found to be negatively corre-
lated with adipocyte size and obesity (150). Interestingly, elevated
adiponectin levels have been observed in long-lived mice, such
as the Ames dwarf mice (151) as well as in long-lived humans,
such as centenarians (152–154). Recently, effects of adiponectin
on peripheral insulin sensitivity also implicate central effects on
reduction of high-fat diet-induced hypothalamic inflammation
and insulin resistance (155).

INFLAMMATION AND THE BRAIN
INFLAMMATION AND AGING: INFLAMMAGING
Inflammaging is characterized by the increase in chronic, low-
grade inflammation in the absence of overt infection that occurs
with aging (156). Inflammaging as well as the circulatory markers
that characterize this state, including C-reactive protein (CRP),
interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and inter-
leukin 1 beta (IL1beta) are strong risk factors for many age-related
diseases and mortality. It is thought that part of these circula-
tory factors are produced locally, after which these leak into the
circulation. Different sources that contribute to the state of inflam-
maging include the accumulation of cellular debris and organelle
components, accumulation of senescent cells, immunosenescence,
changes in the gut microbiome and deregulation of the coagulation
system.

Macromolecules, cells, and tissues are continuously damaged
and repaired. Chronic inflammation is part of regular tissue
remodeling as it facilitates tissue repair and turnover. However,
a persistent inflammatory response can lead to tissue degenera-
tion by activated leukocytes, cytokines, or collagen deposition. In
literature, one key structure where links between inflammation
and aging are emerging is the hypothalamus.

HYPOTHALAMIC INFLAMMATION
The hypothalamus is the seat of control of various metabolic and
non-metabolic processes in the body, and is responsible for main-
tenance of homeostasis from early life through to aging. Besides its
role in the synthesis and secretion of neurohormones, the hypo-
thalamus regulates energy balance, stress responsiveness, as well
as lipid and glucose metabolism. Diet-induced obesity has been
shown to be associated with central leptin and insulin resistance
(157). High-fat feeding has been shown to induce hypothala-
mic inflammation, which has been linked to the development of
insulin resistance and obesity (157–159). In 2005, De Souza et al.
demonstrated that 6 weeks of high-fat feeding induced impaired
functional and molecular activation of the insulin-signaling path-
way, with accompanying expression of several pro-inflammatory
cytokines (IL-1β, TNFα, and IL-6) and inflammatory respon-
sive proteins in the hypothalamus (158). Moreover, hypothalamic
inflammation was shown to decrease the efficacy of central insulin
administration to inhibit lipolysis, even before the onset of periph-
eral insulin resistance in white adipose tissue (160). Recently, a
series of experiments in mice has demonstrated that hypothalamic
inflammation occurs rapidly after high-fat feeding and is mediated
by hyper activation of hypothalamic microglia, which was associ-
ated with gliosis in the ARC nucleus and eventual reduction in
the number of POMC neurons, which are key in the regulation of
energy homeostasis and adiposity (161).
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Microglia are resident macrophages that play an important
role in the clearance of cell debris via phagocytosis and the
release of pro-inflammatory cytokines to recruit other immune
responsive cells to the sites of injury in the CNS, including blood-
borne macrophages. It is pivotal for tissue homeostasis and repair
that the initial inflammatory immune response is followed by
an active phase of resolution of inflammation and scar tissue.
Recently, it has been shown that after insult, monocyte-derived
M2-like macrophages are recruited to the site of injury and that
these have an essential role as inflammation-resolving cells in
recovery from acute CNS injury. The anti-inflammatory activity
displayed by M2-like macrophages, notably their IL10 expres-
sion, is required for regulation of the activated microglia (162,
163). In addition, their expression of matrix degrading enzymes
favors axonal regrowth by degradation of the glial scar (164).
CNS specific T cells facilitate recruitment of blood-borne M2-
like macrophages to the CNS through the choroid plexus within
the blood–CSF barrier (165). Age-related Th2 inflammation is
associated with chronically elevated IL4 levels, which can disrupt
choroid plexus barrier functions and thus prevent the resolu-
tion of pro-inflammatory processes and induce a state of CNS
inflammaging.

THERAPEUTIC MEASURES AND FUTURE PROSPECTS
Since brain insulin has been linked with aging, two possible
mechanisms can be proffered for enhancing brain insulin action
(Figure 4). Enhanced insulin efficacy might occur through mea-
sures aimed at minimizing inflammation; and enhanced delivery
might be promoted to the brain areas that are crucial for healthy
longevity.

Inflammation, including that occurring in the hypothalamus,
has been linked to age-related decline in insulin sensitivity. It
has been shown that hypothalamic microglia hyperactivation is
regulated by metabolic hormones [leptin, glucagon-like peptide
1 (GLP-1)] and diet but not by body weight per se (166). Inflam-
maging may be treatable and preventable through changes in
lifestyle. Interventions that are currently applied to reduce the

state of low-grade chronic inflammaging include low dosing of
aspirin or statins, weight loss, and exercise. Notably, a lower intake
of calories and food that is rich in saturated fat and carbohydrates
has been shown to reduce inflammaging (167). In mice, it was
shown that hypothalamic inflammation can be resolved by central
administration of omega3 and omega9 fatty acids after which body
weight regulation and food intake were normalized (168). Phys-
ical exercise is known to be protective against numerous diseases
and reduction of inflammation has been implicated in the health
benefits conferred by exercise (169). Recently, in mice, exercise
has also been shown to protect against hypothalamic inflamma-
tion induced by high-fat diet (170). Future research may focus
on hypothalamic microglia as relevant targets for prevention and
treatment of metabolic disorders.

The strong blood glucose lowering effects of intravenously
administered insulin have hampered research on the role of insulin
in the brain. These hypoglycemic effects can be circumvented by
intranasal administration of insulin, which is an innovative way
to enhance insulin concentration in the brain without affecting
insulin concentration in the circulation (171). Intranasal admin-
istration of insulin was shown to be safe and effective in numerous
studies in healthy humans and in patients with metabolic disease or
cognitive impairment (172). Sub-chronic intranasal insulin appli-
cation in humans was shown to decrease food intake and weight
gain (92) in healthy young men, and to improve declarative mem-
ory and mood (173). Moreover, sub-chronic intranasal insulin
application in humans was also shown to decrease HPA activa-
tion in response to a social stress test. It was shown that insulin
may also influence meal-induced thermogenesis and postprandial
insulin levels (174). Future research may focus on unraveling the
effects of intranasal insulin on other aspects of energy and glucose
metabolism in different age groups.

CONCLUSION
Insulin is the most powerful anabolic hormone discovered to
date. Besides the well-established action of insulin in peripheral
organs, such as liver, muscle, and adipose tissue, it is becoming

FIGURE 4 | Insulin and the brain: therapeutic implications.
Hypothetical figure presenting two possibilities of enhancing brain
insulin action. First, a way of increasing insulin concentrations in the
brain is via enhanced delivery, such as delivery via the intranasal route,

which has been shown to have some beneficial effects. Second,
insulin action could probably also be augmented by enhancing its
efficacy, for example, via resolution of brain (hypothalamic)
inflammation.
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increasingly clear that insulin affects important features of glucose
metabolism via central mechanisms. Insulin signaling has been
linked to longevity in organisms ranging from nematodes to mam-
mals. While insulin is clearly a neuropeptide in nematodes, it is
not yet clear how central insulin contributes to the differences
in glucose metabolism that are observed in the context of condi-
tions that are associated with accelerated aging, such as obesity,
and delayed aging, such as healthy human longevity. However,
novel data indicate that obesity is associated with reduced brain
insulin action. Potential mechanisms that contribute to deficits
in brain insulin action are impaired transport of insulin from
the periphery to the brain and reduced brain insulin sensitivity
due to hypothalamic inflammation. In contrast, we speculate that
healthy longevity is associated with preserved brain insulin action,
and discuss potential ways of enhancing brain insulin action in old
age. Given the increasing prevalence of population aging, improv-
ing brain insulin action may represent an important therapeutic
option to facilitate health in old age.
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