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Introduction

The number of studies in the field of adipose tissue biology has increased exponentially over the last
decade. This shift in research focus is primarily driven by the tremendous increase in the prevalence
of obesity and related chronic diseases, including cardiovascular disease and type 2 diabetesmellitus.
Adipose tissue is a fascinating and complex organ, with marked effects on whole-body physiology.
Intriguingly, expansion of adipose tissue does not necessarily translate into increased metabolic
and cardiovascular disease risk. A proportion of obese individuals seems to be relatively protected
against worsening of metabolic health (1), suggesting that adipose tissue dysfunction, rather than
the amount of fat mass, may be a key factor in the pathophysiology of obesity-related metabolic
and cardiovascular diseases (2–4). It is widely accepted that impairments in adipose tissue lipid
metabolism, a decreased adipose tissue blood flow (ATBF) and an increased production of pro-
inflammatory cytokines by hypertrophic adipocytes and infiltrating adaptive and innate immune
cells are characteristics of dysfunctional adipose tissue in obesity (2, 5). These impairments not only
induce insulin resistance locally in the adipose tissue but also have detrimental effects at the whole-
body level, thereby affecting metabolic health. The reason for this is that adipose tissue dysfunction
in obesity is accompanied by lipid spillover in the circulation and subsequent lipid accumulation in
non-adipose tissues (ectopic fat storage), and may contribute to systemic low-grade inflammation,
thereby accelerating the development and progression of obesity-related insulin resistance and
chronic metabolic diseases (Figure 1) (2).

Adipose Tissue Oxygen Tension in Human Obesity

Since adipose tissue dysfunction has been recognized as a key process in the pathophysiology of
obesity-related disorders (2, 5), the number of studies aimed at identifying the trigger of adipose
tissue dysfunction in obesity has increased substantially. A prevailing concept is that an insufficient
amount of oxygen within adipose tissue, commonly referred to as “adipose tissue hypoxia,” may
underlie adipose tissue dysfunction in obesity (6, 7).

Adipose Tissue Hypoxia in Obesity: The Concept
It has been postulated that adipose tissue angiogenesis is insufficient to maintain normoxia in the
entire fat depot during the progressive development of obesity (8). In other words, a reduced supply
of oxygen to the tissue has been proposed to instigate adipose tissue dysfunction. Indeed, a lower
expression of angiogenic genes (e.g., VEGF) and lower capillary density have been found in abdom-
inal subcutaneous adipose tissue of obese as compared to lean individuals (9, 10). The net result of
structural and functional properties of the adipose tissue vasculature determines tissue blood flow.
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FIGURE 1 | Adipose tissue dysfunction in obesity is related to impaired
metabolic health. A long-term positive energy balance, leading to body weight
gain, will increase adipocyte size. Adipocyte hypertrophy in obesity is
accompanied by disturbances in lipid metabolism and alterations in adipokine
secretion, which a shift toward a pro-inflammatory phenotype. The secretion of
pro-inflammatory factors, which also impair adipocyte differentiation, is further
boosted by the infiltration of several adaptive and innate immune cells into the
adipose tissue in obesity. Together, the impairments in lipid metabolism and the

secretory function of adipose tissue not only induce insulin resistance locally
within the tissue (via autocrine/paracrine effects) but also have detrimental
effects at the whole-body level. The reason for this is that adipose tissue
dysfunction in obesity is accompanied by lipid spillover in the circulation and
subsequent lipid accumulation in non-adipose tissues (ectopic fat storage), and
may contribute to systemic low-grade inflammation, thereby accelerating the
development and progression of obesity-related insulin resistance and chronic
diseases.

A consistent observationmade by our lab and others is that fasting
and postprandial ATBF is decreased in obese insulin resistant
versus lean insulin sensitive subjects (9, 11–13), indicating that
oxygen delivery to adipose tissue is indeed impaired in obesity.We
have recently demonstrated, for the first time, that both pharma-
cological (local administration of vasoactive agents into adipose
tissue) and physiological (oral glucose drink) manipulation of
ATBF induce concomitant alterations in adipose tissue oxygen
partial pressure (AT PO2) in humans (9), indicating that adipose
tissue oxygen supply indeed affects AT PO2. A second argument
that has been put forward to develop the concept of adipose tissue
hypoxia in obesity is that the diameter of hypertrophic adipocytes
in obesity exceeds the normal diffusion distance of oxygen across
tissues (100–200 µm) (14). However, in human adipose tissue,
there seems to be only a very small proportion of adipocytes with
a diameter >100 µm (9, 15, 16). Therefore, the significance of
reduced oxygen diffusion from the capillaries to hypertrophic fat
cells in obese humans can be questioned.

Adipose Tissue Hypoxia in Obesity: What is the
Evidence in Rodents and Humans?
Several rodent studies have been performed to investigate whether
adipose tissue hypoxia is present in obesity. These experiments
have shown that massive and rapid weight gain in ob/ob, KKAy,
and dietary-induced obese mice was accompanied by increased
expression of hypoxia-responsive genes, more hypoxic areas
(assessed using pimonidazole hydrochloride) and lower PO2 in
white adipose tissue (17–19). Thus, multiple lines of evidence
suggest that AT PO2 is lower in rodent models of obesity as
compared to lean control animals. Importantly, impaired angio-
genesis might be a more important determinant of AT PO2 in

animal models of obesity than in human obesity, since the rate
and extent of fat mass gain is much higher in mouse models
of obesity (20). Intriguingly, there is only marginal evidence to
substantiate the view that a relative oxygen deficit is present
in adipose tissue in human obesity. So far, three studies have
addressed whether abdominal subcutaneous adipose tissue of
obese humans is “hypoxic” (9, 10, 21), of which two have directly
measured AT PO2 (9, 10). First, Pasarica and colleagues (10)
have found that AT PO2 (measured using polarographic Clark
electrodes) was significantly lower in overweight/obese versus
lean subjects. In this study however, groups were not matched for
age, gender, ethnicity, and the presence of type 2 diabetes, which
may have influenced the results. In contrast, we have recently
demonstrated, using continuous optochemical PO2 monitoring,
that obese insulin resistant subjects had significantly higher AT
PO2 compared to lean insulin sensitive individuals, matched for
age, gender, and ethnicity, despite significantly lower ATBF in
the obese (9). Finally, Hodson and co-workers (21) have recently
assessed a metabolic signature of abdominal subcutaneous adi-
pose tissue by arterio-venous difference methodology. If large
areas of adipose tissue would be “hypoxic” in obesity, this is likely
reflected by a switch to anaerobic metabolism, i.e., an increased
secretion of lactate and pyruvate from adipose tissue into the
venous blood draining adipose tissue. However, the authors did
not find any evidence for a metabolic signature typical for adipose
tissue hypoxia in obese humans. Currently, we are investigating
for the first time whether diet-induced weight loss will alter AT
PO2 in overweight and obese individuals. This study will provide
further insight into AT PO2 in human obesity.

What could explain a higher AT PO2, if indeed present, in
human obesity? Since AT PO2 is the result of the balance between
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oxygen supply (ATBF) and the metabolic rate of the tissue (20),
it may be that adipose tissue oxygen consumption is substantially
lower in obesity. Indeed, animal studies have shown that mito-
chondrialmorphology is abnormal, thatmitochondrial biogenesis
and mass are reduced, and that oxygen consumption is lower
in both white and brown adipose tissue of obese Zucker rats
(22), ob/ob mice (23), db/db, and high-fat diet-fed mice (24).
In line, microarray-based gene expression profiling has demon-
strated that increases in fat mass were paralleled by progressive
downregulation of metabolic pathways, including mitochondrial
energy metabolism, and upregulation of inflammatory pathways
in both visceral and abdominal subcutaneous adipose tissue in
humans (25). In accordance, data from our lab and others seem to
indicate that in vivo adipose tissue oxygen consumption is lower
in obese than lean subjects (9, 21). More recently, it has been
demonstrated that human adipocyte mitochondrial content and
mitochondrial oxygen consumption by white adipocytes is lower
in obese compared to lean subjects (26). Interestingly, the latter
study found that both small and large white adipocytes of obese
individuals have a lower metabolic rate compared to adipocytes
derived from lean donors (26), suggesting that impaired mito-
chondrial oxygen consumption might be a primary factor that
contributes to adipocyte hypertrophy. Taken together, there is
substantial evidence that the metabolic rate of adipose tissue is
lower in obese humans, which may underlie the higher AT PO2
that we have previously found in obese humans (9). Clearly,
it is the balance between oxygen supply and consumption that
determines AT PO2 (20).

Consequences of Altered Oxygen Tension:
A Matter of Severity, Duration, and
Pattern?

Many in vitro studies have been performed to investigate whether
oxygen tension is involved in the regulation of metabolic and
inflammatory processes in adipose tissue, as extensively reviewed
elsewhere (6, 20). Earlier studies examined the effects of acute,
short-term (1–24 h) exposure to extremely low PO2 (usually 1%
O2) as compared to a ~20-fold higher O2 concentration (ambient
air, 21% O2) on the expression and/or secretion of key adipokines
involved in inflammation and metabolism. Most of these stud-
ies have demonstrated that extremely low PO2 induces a pro-
inflammatory response in 3T3-L1 adipocytes (18, 27–31), human
adipocytes (32), stromal–vascular cells (33, 34), and macrophages
(18, 35), although conflicting results have also been reported (36,
37). On the other hand, 95% O2 also increased pro-inflammatory
gene expression and reactive oxygen species (ROS) content, and
reduced glucose uptake in 3T3-L1 adipocytes (38). These in vitro
studies should be interpreted with some caution, because these
cells were acutely exposed to extremely low (or high) PO2. In addi-
tion, two independent laboratories, including ours, have recently
provided evidence that human abdominal subcutaneous AT PO2
ranges between ~3 and 11% O2 (~23–84mmHg) (9, 10). There-
fore, cell culture experiments investigating the effects of chronic
exposure to more physiological PO2 are urgently warranted.

Studies that have examined the relationship between in vivo
AT PO2 and the inflammatory phenotype of adipose tissue in

humans have yielded conflicting results, showing both positive
(9) and inverse (10) correlations. Interestingly, human primary
adipocytes have recently been exposed to physiological PO2 levels
(5 versus 10 versus 21% O2) during differentiation (14 days) (39).
Of note, 5 and 10% O2 reflect the mean AT PO2 values that
we have previously found in lean insulin sensitive and obese
insulin resistant individuals, respectively (9). The authors were
able to demonstrate that exposure to 10% O2 increased adipocyte
triacylglycerol (TAG) content and boosted the secretion rates of
IL-6 and DPP-4 (39). Interestingly, DPP-4 is involved in cross talk
between adipose tissue and skeletal muscle, and has been shown
to inhibit skeletal muscle insulin signaling (40).

Based on the human data from our laboratory, showing
increased AT PO2 in obese insulin resistant subjects, a positive
correlation between AT PO2 and adipose tissue gene expression
of several pro-inflammatory markers, and an inverse association
between AT PO2 and peripheral insulin sensitivity (9), we ques-
tioned whether chronic hypoxia exposure would have beneficial
effects on the adipose tissue inflammatory and metabolic phe-
notype. Therefore, we exposed 52-week-old C57Bl/6J mice to
chronic hypoxia (8% O2) or normoxia (21% O2) for 21 days, after
which adipose tissue and plasma were collected. Chronic hypoxia
exposure improved adipose tissue function in these mice, evi-
denced by decreased adipocyte size, increased adipose tissue gene
expression of mitochondrial function markers, and decreased
adipose tissue macrophage infiltration and gene expression of
inflammatory markers (41), which may contribute to improved
insulin sensitivity. More recently, the same concept has been
applied to humans. Interestingly, exposure to moderate hypoxia
(15% O2) for 10 subsequent nights significantly increased whole-
body insulin sensitivity in obese men (42). Although not com-
mented upon by the authors, moderate hypoxia exposure also
tended to reduce AT PO2 (42). Therefore, these findings may
imply that the decreased AT PO2 after moderate hypoxia expo-
sure for 10 consecutive nights has contributed or even driven
the improved peripheral insulin sensitivity, as recently postulated
(43). Importantly, obstructive sleep apnea syndrome (OSAS),
which is characterized by cycles of severe intermittent hypoxia
resulting from periodic collapse of the upper airway during sleep,
is an independent risk factor for insulin resistance (44, 45),
and treatment with continuous positive airway pressure (CPAP)
reverses several metabolic abnormalities in OSAS patients (46).
Therefore, it might be that the severity, pattern, and duration of
hypoxia exposure may determine the effects on metabolic and
cardiovascular health.

Conclusion and Future Directions

Adipose tissue dysfunction in obesity is a key factor in the patho-
physiology of obesity-related chronic metabolic and cardiovascu-
lar diseases. Recent studies have indicated that alterations in AT
PO2 may drive adipose tissue dysfunction in obesity, although
many questions remain. Clearly, more clinical observational and
intervention studies in well-phenotyped humans are needed to
further investigate AT PO2 in obesity, as well as the functional
consequences of alteredATPO2. Important aspects that need to be
taken into account in future studies are the severity, duration, and

Frontiers in Endocrinology | www.frontiersin.org April 2015 | Volume 6 | Article 553

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Goossens and Blaak Oxygen and adipose tissue dysfunction

pattern of PO2 exposure, since different experimental conditions
may underlie different study outcomes. Moreover, it is of par-
ticular interest to examine fat depot-differences (e.g., lower-body
versus upper-body) in AT PO2, and to unravel whether metabolic
and inflammatory responses to chronic physiological O2 levels
are related to specific fat depots, cell types [e.g., (pre)adipocyte,
stromal–vascular cells, macrophages], and/or donor characteris-
tics. In addition, it would be important to understand whether AT
PO2 relatesmore strongly to themetabolic phenotype (e.g., insulin
resistance) in obesity than to the increased adipose tissue mass
itself. Finally, human intervention studies need to be undertaken
to determine whether AT PO2 can be modified (e.g., weight
loss, oxygen therapy) and will subsequently evoke alterations
in the metabolic and inflammatory phenotype. These studies
should ideally be of integrative nature, combining in vivo assess-
ment of adipose tissue and whole-body physiology with mea-
surements in tissue biopsies and cell culture experiments. Studies
in this exciting field of research may lead to new opportunities

for therapeutic intervention in obese individuals with dys-
functional adipose tissue, thereby improving cardiometabolic
health.
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