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Osteosarcoma (OS) is the most common primary bone tumor in children and young
adults. Several studies have confirmed the involvement of the insulin-like growth factor
(IGF) system in the regulation of OS cell proliferation and differentiation as well as in
the protection of cells from chemotherapy. Insulin receptor substrate (IRS)-1 is a critical
mediator of IGF-1R signaling, and we recently reported that its overexpression in OS
cells increases proliferation, migration, and metastasis both in vitro and in vivo. In this
study, we evaluated the efficacy of NT157, a selective inhibitor of IRS-1/2, in a panel
of OS cells. A strong dose-dependent inhibition of growth was observed in the MG-
63, OS-19, and U-2OS OS cell lines, displaying IC50 values at sub-micromolar doses
after 72 h of treatment. Exposure to NT157 elicited dose- and time-dependent decreases
in IRS-1 levels. Moreover, a protein analysis showed that the degradation of IRS-1
inhibited the activation of principal downstream mediators of the IGF pathway. NT157
significantly affected the cells’ migratory ability, as confirmed by a wound-healing assay.
The inhibitor induced cytostatic effects, as evidenced by G2/M cell cycle arrest, and
did not affect apoptosis. Consequently, NT157 was combined with drugs used to treat
OS in order to capitalize on its therapeutic potential. Simultaneous treatments were
made in association with chemotherapeutic agents in a fixed ratio for 72 h and cell
proliferation was determined by MTT assay. Synergistic or addictive effects with respect
to single agents are expressed as the combination index. Significant synergistic effects
were obtained with several targeted drugs, such as Everolimus, a mammalian target of
rapamycin (mTOR) inhibitor, and NVP-BEZ235, a dual inhibitor of PI-3K/mTOR. Overall,
these findings provide evidence for the effectiveness of a selected inhibitor of IRS-1/2
NT157 in OS cells, displaying a promising approach based on the targeting of IRS-1
combined with other therapies for the treatment of this pediatric solid tumor.
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Introduction

The activation of the insulin-like growth factor (IGF) system regulates several aspects of the
malignant phenotype, including the development and progression of cancer and metastasis (1, 2).
The IGF family consists of circulating ligands (IGF-1, IGF-II, insulin), at least four receptors [IGF-
1R, M6P/IGF-IIR, insulin receptor (IR), and hybrid receptors], and six binding proteins (IGF-BPs).
Although multiple proteins are involved in IGF signal transduction, the insulin receptor substrate
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(IRS) molecules are the primary family of adaptor proteins that
function as intermediates of IR and IGF-IR (3). Six IRS pro-
teins have been identified, but only IRS-1 and IRS-2 are widely
expressed in normal tissue (4). A number of different physiologic
pathways involved in both mitogenic and metabolic responses,
such as steroids, hormones, cytokines, and integrins, can regulate
IRS protein expression (5–8). Importantly, many of these effector-
signaling pathways have been implicated in tumorigenesis and
cancer progression. Although IRS-1 is most often related to tumor
growth and proliferation, IRS-2 is most frequently associated
with tumor motility and invasion. The tyrosine phosphoryla-
tion of IRS proteins induces the phosphorylation of mitogen-
activated protein kinase (MAPK) and subsequently increases
proliferation. This tyrosine phosphorylation also activates the
p110 subunit of phosphatidylinositol 3-kinase (PI-3K), leading to
a decreased apoptosis, and modulates the mammalian target of
rapamycin (mTOR), resulting in translational adaptation (4). IRS-
1 is constitutively activated in a variety of solid tumors, including
breast cancers, leiomyomas,Wilms’ tumors, rhabdomyosarcomas,
liposarcomas, leiomyosarcomas, and adrenal cortical carcinomas
(9). In addition to their canonical function as cytosolic sig-
nal transduction molecules, IRS proteins can be shuttled to the
nucleus and may contribute to the process of malignant transfor-
mation. In 3T3 fibroblasts, IGF-1R, the known oncogene SV40T
and v-src caused IRS-1 nuclear translocation (10, 11), while other
authors demonstrated growth in soft agar and tumorigenicity in
nude mice induced by nuclear IRS-1, independently of the onco-
gene SV40 T-antigen (12). Similarly, the overexpression of nuclear
IRS-1 was observed in 32D cells that express either human IGF-
IR or SV40T (13). Once in the nucleus, IRS-1 can interact with
transcription factors, such as β-catenin, ER-α, and the androgen
receptor (AR), to modulate the promoter activity of several genes
involved in malignant transformation (14–17).

Osteosarcoma (OS) is the most frequent primary malig-
nant tumor of bone and predominately affects adolescents and
young adults (18). The estimated incidence rate is two to three
cases/million/year, and it is most common between 10 and
20 years of age. Although modern treatment protocols combine
chemotherapy, surgery, and radiotherapy, the 5-year survival rate
for non-metastasizing patients remains 60–70%, and this rate
decreases to less than 30% for OS patients with metastases or
relapsed disease (19, 20). Thus, novel clinical strategies are needed
to improve the survival of these patients. IGFs are important
regulator of growth and development in normal bone and play an
important role in basal bone – cell proliferation. Because IGF-1
mediates the regulation ofmany growth hormone (GH) functions,
the dysregulation of the GH/IGFs axis may favor the pathogenesis
of OS (21). Although the expression levels of IGF-1 and IGF-
II increased during normal osteoblastic terminal differentiation
in vitro, the expression of IGF-1R progressively decreased (22),
suggesting that the upregulation of the receptor but not the lig-
ands is the aberrant condition in OS. Despite several in vitro
and in vivo studies that have demonstrated the effectiveness of
therapies against IGF-1R in enhancing the antitumor response
in OS (23, 24), this targeted therapy has been of limited bene-
fit to patients with recurrent or refractory bone and soft tissue
sarcomas, including OS (25). This failure may be attributed to

changes in other signaling pathways of downstream components
that are independent of the expression of the receptor, such as
Akt, mTOR, and IRS-1. Recently, Contaldo et al. (26) showed
the influence of IRS-1 to sustain tumorigenicity of OS; indeed,
in vitro and in vivo data showed that the overexpression of IRS-
1 in OS increased tumor proliferation, motility capacity, and
anchorage-independent growth compared with parental cells.

Thus, we herein investigated the preclinical efficacy of NT157,
a novel small-molecule that specifically targets IRS protein, in
OS cells. NT157 is a small-molecule inhibitor that induces Ser-
phosphorylation and consequently the degradation of IRS-1 and
IRS-2. The destruction of IRS-1/2 lead to the long-term dysreg-
ulation of IGF-1R signaling, which is responsible for the anti-
proliferative activity in several cancers (27, 28). Here, we demon-
strated that this compound inhibits tumor growth, cell cycle, and
the motility of OS cells via the downregulation of IRS-1/IRS-2
proteins and their downstream mediators. In addition, in vitro
combination studies were conducted to identify the best drug
interaction between NT157 and therapies that are currently used
to treat this tumor.

Materials and Methods

Drugs
The small-molecule inhibitor of IRS-1/2, NT157, was kindly pro-
vided by TyrNovo Ltd. (Israel) (27). Briefly, NT157 was dissolved
in dimethyl sulfoxide (DMSO) to generate a 10-mM stock solu-
tion, which was stored at −80°C. Doxorubicin was purchased
from Sigma (St. Louis, MO, USA), cisplatin was obtained from
TEVA (Italy), and methotrexate was obtained from Pfizer (Italy).
The signal transduction inhibitor that targets mTOR, Everolimus,
was purchased from Sequoia Research Products (Pangbourne,
UK). The PI-3K/mTOR dual inhibitor NVP-BEZ235 was kindly
provided by Novartis (Basel, Switzerland). Working dilutions of
all drugs were prepared immediately before use.

Cell Lines
The human OS cell lines U-2OS and MG-63 were provided by
the American Type Culture Collection (ATCC). The IOR/OS-19
cell line was obtained from the Experimental Oncology Lab at
the Rizzoli Institute (Bologna, Italy) and was previously described
(29). All cell lines have recently been authenticated by STR
analysis using genRESVR MPX-2 and genRESVR MPX-3 kits
(serac, Bad Homburg, Germany). The following loci were veri-
fied: D16S539, D18S51, D19S433, D21S11, D2S1338, D3S1358,
D5S818, D8S1179, FGA, SE33, TH01, and TPOX VWA. The last
control was performed in November 2012. These cell lines were
all tested for mycoplasma contamination every 3months (last
control, December 2014) using a MycoAlert mycoplasma detec-
tion set (Lonza, Nottingham, Ltd.). The cultures were maintained
in Iscove’s modified Dulbecco’s medium (IMDM) supplemented
with penicillin (20U/ml), streptomycin (100µg/ml) (Sigma), and
10%heat-inactivated FBS (Lonza) at 37°C in a humidified 5%CO2
atmosphere.

Cell Proliferation Assay
To assess cellular growth, cells were seeded on 6-well plates
(2× 105 cells/well) in IMDM plus 10% FBS. After 24 h, various
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concentration of NT157 (0.3–3µM) were added, and the cells
were exposed to this drug for up to 72 h. A dose–response pro-
liferation was evaluated on harvested cells by Trypan Blue vital
cell count.

For the combined treatment, cells were plated into 96-well
plates (range 2,500–5,000 cells/well) and treated for 72 h with
NT157 alone (control) or combined with fixed ratios of DXR
(10:1), CDDP (1:10), MTX (100:1), NVP-BEZ235 (10:1), or
Everolimus (1:10). Cell proliferation was determined with an
MTT assay (Roche, Indianapolis, IN, USA) according to manu-
facturer’s instructions.

Cell Cycle Analysis
After 48 h of treatment with NT157 alone (1–3µM) or in com-
bination with NVP-BEZ235 (50 nM), the cell cultures were incu-
bated with 10µmol/L bromodeoxyuridine (Sigma) for 1 h in a 5%
CO2 atmosphere at 37°C. The harvested cells were fixed in 70%
ethanol for 30min. AfterDNAdenaturationwith 2NHCl, 1× 106
cells were processed for indirect immunofluorescence staining
using a-bromodeoxyuridine monoclonal antibody diluted 1:8 as
a primary antibody (Becton Dickinson, San Jose, CA, USA). The
cells were then analyzed by flow cytometry (FACSCalibur, Becton
Dickinson). To analyze theDNAcontent, cells were fixedwith cold
70% ethanol, treated with 0.5mg/mL RNAse, and stained with
20µg/mL propidium iodide.

Cell Motility Assay
The motility assay was conducted using Transwell cham-
bers (Costar, Cambridge, MA, USA) with an 8-µm pore
size, polyvinylpyrrolidone-free, polycarbonate filters (Nucleo-
pore, Pleasanton, CA, USA). IMDM plus 10% FBS was placed
in the lower compartment of the chamber. MG-63 and U-2OS
OS cells (105) were re-suspended in IMDM plus 10% FBS with
or without NT157 (range 1–3µM) and then seeded in the upper
compartment. The chambers were incubated at 37°C in a humid-
ified atmosphere containing 5% CO2 for 18 h. The cells that
migrated toward the filter to reach the lower chamber base were
counted after Giemsa staining. All experiments were performed
in triplicate.

Wound-Healing Assay
The cell motility was also assessed with a wound-healing assay.
Briefly, MG-63 and U-2OS OS cells were plated into 60-mm cell
culture plates and allowed to grow to confluence in 10% FBS
containing IMDM medium. A 1-mm wide scratch was made
across the cell layer using a sterile pipette tip. The medium was
changed to remove floating or damaged cells. After 5, 8, and 24 h
of treatment with or without NT157 (1–3µM), the cells that had
migrated over the denuded area were observed, and pictures were
taken at specific time points.

Western Blotting
Cells were treated with NT157 (0.3–1.3µM) for 48 h or left
untreated, and cell lysates were prepared and processed as previ-
ously described (30). The membranes were incubated overnight
with the following primary antibodies: anti-Shc clone PG-797,
anti GAPDH, anti-β-actin (Santa Cruz Biotechnology, San Diego,

CA, USA), anti-phospho-Akt (Ser473) clone 736E11, anti-Akt,
anti-ERK (Cell Signaling Technology, Beverly, MA, USA), anti-
phospho-ERK (Tyr202/Tyr204) (Covance, Princeton, NJ, USA),
anti-IRS-1 (Upstate Biotechnology, Temecula, CA, USA), anti-
IRS-2 (Abcam, Cambridge, UK), and phospho-IRS-1 (Tyr612)
(Invitrogen, USA); anti-rabbit or anti-mouse antibodies conju-
gated to horseradish peroxidase (GE Healthcare, Piscataway, NJ,
USA) were used as secondary antibodies.

Statistical Analysis
IC50 values were calculated from the linear transformations of the
dose–response curves. To define drug–drug interactions (in terms
of synergism, additivity, or antagonism), the combination index
(CI) of each two-drug treatment was calculated with the isobolo-
gram equation (31) using the CalcuSyn software (Biososoft, Fer-
guson, MO, USA).

Results

In vitro Activity of NT157 in OS Cells
We previously demonstrated that the IGF system, including its
critical mediator IRS-1, is involved in the regulation of OS cell
proliferation (26). Thus, the efficacy of the selective inhibitor of
IRS-1/2 NT157 was investigated in three representative OS cell
lines. Growing MG-63, OS-19, and U-2OS cells were treated with
different concentrations of the compound (0.3–3µM) for up to
72 h (Figure 1A), and a dose–response proliferation was assessed
by Trypan Blue cell counting assay. A strong dose-dependent inhi-
bition of growth was observed in all cell lines tested, showing IC50
values at sub-micromolar doses (ranging from 0.3 to 0.8µM) after
72 h of treatment. NT157 reportedly acts via the downregulation
of IRS-1 (27). Our cellular models expressed high basal levels
of IRS-1 protein. The exposure of three OS cell lines to NT157
elicited dose- and time-dependent decreases in the IRS-1 protein
levels. The maximal activity was reached already after 24 h of
treatment (Figure 1B), confirming that the inhibitory effects on
tumor growth in OS were related to destruction of IRS-1.

NT157 Efficiently Affects Migration Ability of
MG-63 and U-2OS OS Cells
Because OS is a highly metastatic tumor, the effect of NT157 on
cellular migration was also evaluated. MG-63 and U-2OS cells
were pre-incubated with inhibitor (1–3µM) for 24 h, and a motil-
ity assay was performed using Transwell chambers. Both cell lines
displayed a significant reduction in motility (p< 0.05) compared
with the control in response to 3µM NT157 (Figure 2A); this
effect was also confirmedwith awound-healing assay (Figure 2B).
This effect could be attributed to the inhibition of IRS-2 protein
(27), which is known to be essential for tumor metastasis (32), by
NT157 (Figure 2C).

NT157 Treatment Induces Cell Cycle Arrest and
Inhibits IGF System Signaling
The effect on proliferation was related to amodification of the cel-
lular content. Treatmentwith 1–3µMNT157 for 48 h substantially
increased the percentage of cells in the G2/M phase (Figure 3A),
which inhibited cell cycle progression, in keeping with observed
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FIGURE 1 | (A) The in vitro sensitivity to a selected inhibitor of IRS-1/2, NT157,
for a panel of OS cell lines. Cell growth was assessed by staining cells with
Trypan Blue and counting viable cells after up to 72 h of exposure to NT157
(0.3–3µM) in MG-63, OS-19, and U-2OS cells. Points indicate three
independent experiments; bars indicate the SE. (B) Downregulation of IRS-1

protein level in OS cells in response to NT157. Growing MG-63, OS-19, and
U-2OS cells were treated with or without NT157 (0.3–3µM) for 3–48 h. The
expression of IRS-1 was determined by western blotting using 40µg of total
protein cell lysate. GAPDH was used as a loading control. The figure shows
data representative of two independent experiments.

in other cancer cell lines (28). In addition, the manual counting
of viable cells revealed that NT157 significantly decreased the
number of viable cells without inducing apoptotic cell death (data
not shown). This finding demonstrated the cytostatic rather than
cytotoxic activity of NT157 in this tumor histotype.

To assess if the effect on cell cycle was mediated by the inhi-
bition of principal pathways downstream of IRS-1, cells were
treated with different concentrations of NT157 for 48 h. A dose-
dependent experiment showed that NT157 could downregulate
the Tyr-phosphorylation of IRS-1 and, in turn, phosphorylation
of Akt and ERK in the MG-63 and U-2OS cell lines (Figure 3B).
The shc protein level was only weakly downregulated in MG-63
cells and remained unchanged in U-2OS cells, suggesting that the
inhibition of IRS-1 by NT157 did not elicit significant compen-
satory effects on other signaling adaptors. Interestingly, blocking
the PI-3K/Akt pathways resulted in significant S6K phosphory-
lation following treatment with the IRS-1 inhibitor. A number
of works showed that p70S6K, which is downstream of mTOR,
could phosphorylate serine residues on IRS-1 to result in proteaso-
mal degradation (33, 34). Because NT compounds induce strong
Ser-phosphorylation of the IRS protein, their inhibitory activity
could be amplified by feedback that involves p70S6K.

NT157 Effects in Combination Therapy
Several studies indicated that the pharmacologic inhibition of
mTOR, which leads to the downregulation of IRS-1, results in
the compensatory upregulation of AKT activity via increased
levels of IGF-1R and IRS-1 (35). Thus, NT157 administration in
associationwith therapies that targetmTORmay be advantageous,
which agrees with our findings. In particular, the combination
of Everolimus and NVP-BEZ235 has been studied in OS cell
lines. Everolimus is an mTOR inhibitor, while NVP-BEZ235 is a
dual inhibitor of PI-3K/mTOR signaling. Both drugs have been
reported to be active in OS models (36, 37). Simultaneous treat-
mentsweremade in associationwith chemotherapeutic agents in a
fixed ratio for 72 h and cell viability was determined byMTT assay.
Synergistic or addictive effects with respect to single agents are
expressed as the CI [Synergism: CI<0.9; additive: 0.9≤CI≥ 1.10
according to Chou et al. (31)]. The effectiveness of Everolimus and
NVP-BEZ235 significantly increased in the combination regimens
compared to treatment with these drugs alone, demonstrating
a synergistic effect [synergism CI≤ 0.9 (Table 1)]. Conversely,
combined treatment with methotrexate, cisplatin, and doxoru-
bicin, the main drugs used to treat sarcoma patients, showed
that NT157 produced only modest additive effects, except for
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FIGURE 2 | NT157 inhibits migration ability of OS cell lines. (A) Cell
migration of MG-63 and U-2OS cells after treatment with NT157 for 18 h.
Columns show the mean of three independent experiments: bars indicate the
SE. *p<0.05, Student’s t-test. (B) Wound-healing assay in MG-63 and U-2OS

cells. Representative pictures were taken after 24 h of treatment with NT157
(1–3µM). Magnification 100×. (C) Inhibition of cell motility is mediated by
downregulation of IRS-2 and IRS-1 in MG-63 and U-2OS cells after 24 h of
treatment with NT157 (1–3µM). β-actin was used as loading control.

FIGURE 3 | (A) Analysis of NT157 effects on cell cycle after 48 h of
treatment (1–3µM) in MG-63 and U-2OS OS cell lines. Columns show
the mean percentage of cells in different cell cycle phases as measured
by flow cytometry. (B) Analysis of major downstream signaling of IRS-1

after treatment with or without NT157 (1–3µM) by western blotting
using 40µg of total protein cell lysate. GAPDH was used as a loading
control. The figure shows data representative of two independent
experiments.
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TABLE 1 | In vitro combination study of NT157 with conventional and
targeted drugs in OS cells.

Drug combination MG-63 U-2OS

CI±SE Effects CI±SE Effects

NT157+Everolimus 0.66±0.2 Synergistic 0.47±0.08 Synergistic
NT157+NVP-BEZ235 0.59±0.06 Synergistic 0.82±0.02 Synergistic
NT157+Doxorubicin 0.79±0.06 Synergistic 1.55±0.7 Additive
NT157+CDDP 0.92±0.08 Sub-additive 1.22±0.05 Additive
NT157+MTX 1.11±0.05 Additive >100 Additive

FIGURE 4 | Inhibition MG-63 (A) and U-2OS (B) cell cycle by NT157
(1µM) in association with PI-3K/mTOR inhibitor NVP-BEZ235 (50nM).
Columns show the mean percentage of cells in different cell cycle phases as
measured by flow cytometry.

the association with doxorubicin in MG-63 cells, which also
demonstrated a synergistic increase in efficacy (Table 1).

The advantageous effect of the NT157 and NVP-BEZ235 com-
bination treatment was also confirmed with a cell cycle analy-
sis. Both the percentages of G2/M phase cells and G0/G1 cells
increased in response to NT157/NVP-BEZ235 combination treat-
ment in the MG-63 and U-2OS cell lines (Figure 4).

Discussion

The prognosis of patients with recurrent and metastatic OS
remains poor. Thus, developing new strategies to block pathways
that are essential for tumor growth and metastasis provide possi-
ble alternatives to improve the outcomes for these patients. IGF
signaling is a central player in the induction/maintenance of the
epithelial mesenchymal transition (EMT) and cell stemness, two
strictly related programs that play a key role in metastatic spread
and resistance to cancer treatments (2). Accumulating evidence

has indicated that the IGF-1 signaling pathway is dysregulated
in OS (38). A recent study of genome-wide gene expression and
subsequent gene set analysis in OS cell lines and biopsies demon-
strated increased IGF signaling in high-grade OS compared with
OSprogenitors (39). Several reports demonstrated that the expres-
sion levels of adaptor protein IRSs, which signaling fromupstream
activators, like IGF-IR and IR, to multiple downstream effectors
to modulate normal growth, metabolism, survival, and differen-
tiation (4), are increased and hyper-activated in many human
tumors (40). In OS, altered IRS-1 expression inhibits osteoblastic
differentiation and enhances tumor malignancy (26).

In this study, we reported the preclinical antitumor activity of
NT157, a selective inhibitor of IRS-1/IRS-2 inOS. The in vitro and
in vivo efficacy of NT157 was recently reported in several tumors
(27, 28). Treatment with NT compounds in vivo significantly
inhibited the growth of vemurafenib-resistant melanoma and
displayed potent antitumor effects in ovarian and prostate can-
cer (28). In particular, in androgen-dependent and -independent
prostate carcinoma, NT157 decreases the expression of IRS pro-
teins and downregulates IGF-1R-mediated AKT activation, lead-
ing to cell cycle arrest, apoptosis, and a delay of castrate-resistant
prostate cancer progression in xenografts (28). We have demon-
strated that in vitro NT157 can inhibit proliferation, cell cycle
progression, and motility in different OS cell lines. Importantly,
short-term exposure to NT compounds has been demonstrated
to be sufficient to gain long-lasting antitumoral effects (27).
From a clinical point of view, this attribute allows for treat-
ment relatively infrequent treatments, which should reduce side
effects.

Potential inhibitors of the PI-3K–AKT–mTOR pathway, which
is frequently dysregulated in cancer (41), are expected to have
therapeutic utility in many tumors, and several of these inhibitors
are under current investigation as therapeutic agents for cancer
(42). In the last decade, particular attention in sarcoma treat-
ment has been focused on the blockade of mTOR by rapamycin
and derivatives, which were reported to inhibit the growth of
OS cells lines in vitro and in xenografts (43–46). However, a
recent phase I study of pediatric solid cancer demonstrated no
objective response to temsirolimus, an analog of rapamycin, in
OS patients (47). This discrepancy between preclinical and clin-
ical results is explained by the presence of negative feedback
that activates IGF-IR downstream signaling and protects against
mTOR inhibition (43). The inhibition of mTOR results in the
hyperphosphorylation and activation of Akt, leading to resis-
tance to apoptosis and increased cell growth. This effect is abro-
gated by the inhibition of IGF-1R (43). In vitro and in vivo
studies showed that combined anti-IGF-1R antibody and mTOR
inhibitor treatment decreased pAKT activation (24, 43, 48, 49).
Based on these findings, recent clinical trials showed that this
combination was effective in patients with sarcomas (50, 51).
Here, we have demonstrated that NT157 exhibits a strong syn-
ergistic effect in OS cells when combined with Everolimus, an
orally administered rapamycin analog, suggesting that combina-
tion therapy based on mTOR and IRS-1 inhibitors may be an
appropriate strategy to enhance mTOR-targeted anticancer ther-
apy in this tumor. Pignochino et al. recently reported that the
combination of Everolimus and sorafenib, a multikinase inhibitor,
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inhibited OS cell lines (52), showing that the mTORC2 upregula-
tion observed in sorafenib-treated OS may represent the escape
mechanism from this targeted therapy. Combining sorafenib
with the mTOR inhibitor Everolimus, fully blocked both mTOR
complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which
enhanced the antitumor, antimetastatic, and antiangiogenic activ-
ities of this treatment. Although the combination of sorafenib
and Everolimus was efficacious for patients with advanced or
unresectable OS, a phase 2 clinical trial showed that 45% of
patients were free from progression at 6months, suggesting
that this strategy should be further studied, either by modu-
lating the same drugs or improving the inhibitory specificity
with novel targeted therapies (53). In this context, combined
treatment of NT157 with rapamycin analogs will represent an
advantageous therapeutic alternative for OS patients. Interest-
ingly, our combination experiments have also demonstrated
that NT157 exerted synergistic effect with NVP-BEZ235, a dual
class I PI-3K/mTOR inhibitor (54). NVP-BEZ235 has shown
promising therapeutic activity in carcinomas (55, 56) and lym-
phomas (57). Several reports demonstrated its effectiveness for
the treatment of bone sarcoma and more specifically, for OS
(36, 58, 59). Manara et al. (36) reported that the combination
of NVP-BEZ235 with the TK inhibitor NVP-AEW541 synergis-
tically affected the U-2OS cell line. Combined with these find-
ings, our results further support that the combination of IRS-
1/2 inhibitor NT157 with NVP-BEZ235 is applicable for the
treatment of OS.

The NT-mediated suppression of IRS-1 and IRS-2 has an
important clinical implication for overcoming drug resistance.
The inhibition of IRS proteins following NT157 treatment clearly
improves the response of prostate cancer xenografts to doc-
etaxel (28). In addition, recent studies (27, 60) demonstrated that
acquired resistance to the B-RAFV600E/K inhibitor in melanoma
is mediated by increased levels of IGF-1R and IRS-1, and this

resistance can be effectively reversed by treatment with NT157.
Other targeted therapies specifically block IGF-1R and induce a
compensatory activation of IR via IGF-II, which leads to drug
resistance (61–63). In this context, NT157 disrupts signaling
downstream of both IGF-1R and IR and reduces the probability of
drug resistance. Finally, short-term exposure to NT compounds
has been demonstrated to be sufficient to gain long-lasting anti-
tumoral effects. From a clinical point of view, this attribute allows
for relatively infrequent treatments, which should lead to reduced
side effects.

Overall, our data provide evidence that the docking protein
IRS-1 is a potential target for treating OS. Due to the lack of
apoptotic activity, NT157 is a promising adjuvant drug for bone
sarcomas. These results suggest the need for future testing of the
combination therapy ofmTOR inhibitors andNT compounds in a
clinical setting for the treatment of patients with chemorefractory,
advanced OS.
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