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Oxytocin (Oxt) is a neurohormone known for its physiological roles associated with
lactation and parturition in mammals. Oxt can also profoundly influence mammalian social
behaviors such as affiliative, parental, and aggressive behaviors. While the acute effects of
Oxt signaling on adult behavior have been heavily researched in many species, including
humans, the developmental effects of Oxt on the brain and behavior are just beginning to
be explored. There is evidence that Oxt in early postnatal and peripubertal development,
and perhaps during prenatal life, affects adult behavior by altering neural structure and
function. However, the specific mechanisms by which this occurs remain unknown. Thus,
this review will detail what is known about how developmental Oxt impacts behavior as
well as explore the specific neurochemicals and neural substrates that are important to
these behaviors.

Keywords: affiliative behavior, aggressive behavior, estrogen receptor alpha, maternal behavior, oxytocin receptor,
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Introduction

In the landmark paper by Phoenix et al. (1), the organizational effects of gonadal steroids on sexual
behavior in guinea pigs (Cavia porcellus) were established and resulted in the formulation of the
“organizational/activational hypothesis of sexual differentiation.” This hypothesis, which states that
perinatal exposure to gonadal steroids is important for the sexual differentiation of the brain and
behavior, is part of the foundation on which the field of behavioral neuroendocrinology has been
built. Given the importance of this concept, it is perhaps not surprising that in the last 55 years this
hypothesis has been extended to include another critical time period – puberty – as well as other
hormones and behaviors, with one of these hormones being oxytocin (Oxt) (2–4).

Oxytocin is a mammalian neurohormone composed of nine amino acids, known for its periph-
eral effects on parturition and lactation (5–7), as well as its central neuromodulatory effects on
social behaviors such as affiliative, aggressive, and parental behaviors (8, 9). While much of the
work on Oxt has focused on its involvement in the acute modulation of behavior, there is also
evidence that exposure to Oxt during early life is important for the proper development of neural
pathways and subsequent sex-specific behaviors. These latter observations have led researchers
to hypothesize that Oxt has organizational effects on the brain (3, 10). This is an exciting pos-
sibility as developmental exposure to Oxt appears to impact many of the species-specific and
sex-specific social behaviors it is known to modulate in adulthood – thus, a reevaluation and
broadening of our understanding of Oxt’s effects seems warranted. To encourage this shift in
paradigm, in this review we will highlight recent research on how developmental exposure to Oxt
affects behavior as well as the specific neurochemicals and neural substrates that underlie these
behaviors.
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Oxytocin’s Postnatal and Peripubertal
Effects on Behavior

Noonan and colleagues (10) were the first to hypothesize that
Oxt might have organizational effects on the brain and behav-
ior. Their work demonstrated that a single intracisternal injec-
tion of Oxt in postnatal day (PND) 3 rats (Rattus norvegicus)
significantly increases novelty-induced grooming at 4months of
age (10) [grooming is known to be directly enhanced by Oxt
administration in adults (11)]. However, when a study by Boer and
colleagues failed to replicate the aforementioned findings in an
open-field test (12), investigations into the organizational effects
of Oxt largely fell by the wayside. Yet, in the last 12 years, there
has been a resurgence of research in this area, with studies in
numerous species providing converging evidence that Oxt during
development can have permanent effects on the brain and behav-
ior (3, 13–29) (seeTable 1). The implications are profound, as they
are changing the way that we think about how Oxt works – no
longer as just a neuromodulator, but rather as a neurohormone
that contributes to the development of behaviors that are essential
for survival.

Sexual, Affiliative, and Aggressive Behaviors
Work in prairie voles (Microtus ochrogaster) has shown that there
are clear behavioral consequences when Oxt is manipulated dur-
ing early postnatal development, and that these effects are sex spe-
cific; this latter observation is perhaps not surprising since it is well
known that Oxt expression is sexually dimorphic in numerous
species, including prairie voles (30–34). In female prairie voles, a
single injection of Oxt on PND1 results in increases in intrasexual
aggression in adults, suggesting strengthened pair bond formation
(18), whereas an injection of both Oxt and an Oxt receptor antag-
onist (OTA), also on PND1, decreases the frequency of mating
bouts in both adult males and females (20). A single postnatal
injection of Oxt also increases intrasexual aggression in adult
female mandarin voles (Lasiopodomys mandarinus) after expo-
sure to a male (35). In male prairie voles, an injection of Oxt at
both low (1mg/kg) and high (4mg/kg) doses on PND0 increases
partner preference and social contact in adults compared to con-
trols (19, 36); however, a dose of 2mg/kg does not (36). Male
mandarin voles that receive a single postnatal injection of Oxt
increase their mounting behavior at PND60 (37). So, at least in
voles, developmental Oxt appears to increase pair bond formation
in females, and increase affiliative behaviors in males, whereas the
effects on sexual behavior appear to be stimulatory in both males
and females; though theymay be dose dependent in amanner that
is not linear.

In mice (Mus musculus), there are sex differences in the effects
of neonatal Oxt manipulation on affiliative behaviors, though
the findings differ from observations in prairie voles. Female
mice administered an OTA (3 µg/20 µL) on the day of birth have
decreases in social approach when tested at 8–15weeks (29) as
measured in a three chambered apparatus based on that developed
by Crawley (38). On the other hand, male mice administered an
OTA on PND0 display social approach behaviors similar to what
is observed in the control conditions (29). So, in mice it appears
that Oxt exposure in neonate females may promote affiliative

behaviors, while having no effect in males. Exploration of why
there may be no effect in male mice can be found in the section
titled “Potential Effects of Oxytocin During Fetal Development.”

The aforementioned impact of developmental Oxt on behavior
is not limited to rodents. Postnatal intranasal Oxt administration
in 2.5- to 8-week-old pigs (Sus scrofa) increases intrasexual aggres-
sive behavior and decreases social contact (39), which is similar to
what is observed in female prairie voles (18). [Pigs were selected
as an experimental model because their neuroanatomy, as well as
their physiology and development, ismore similar to humans than
rodent models (40).] This particular study is unusual in that it is
the only one to use an ungulate animal model, as well as one of
only a few studies to use intranasal Oxt administration. Because
of the uniqueness of this species, it is not known if these findings
are broadly applicable to other species.

There is also evidence that Oxt’s developmental effects on
sociabilitymay not be limited to the perinatal period, butmay also
extend into peripubertal development (2). Bowen and colleagues
administered daily Oxt injections to male rats from PND33 to
PND42 and then tested them in a social interaction test on
PND55. Oxt-treated males spent more time in close proximity to
conspecifics and made more active social contacts than controls
(41). Researchers from this same research group later conducted
an experiment in which male rats were given Oxt injections every
3 days from PND28 to PND55. When tested in a social interac-
tion test at PND70, their behavior appeared similar to what was
described above, with their spendingmore time in close proximity
to conspecifics than control animals (42). There have also been
studies investigating the effects of peripubertal intranasal Oxt on
behavior in rodents.Male prairie voles administered low,medium,
and high doses of intranasal Oxt daily during the approximate
time between weaning and sexual maturity, from PND21 until 42,
display increases in social contact during the treatment window,
and those given low and medium doses increase their preference
for strangers when tested from PND43–60 (43). In female BTBR
mice (a model of autism spectrum disorders), daily intranasal
Oxt treatment from PND21 to 50, followed by testing on PND55,
increases time spent sniffing a novel mouse over a novel object,
essentially rescuing “sociability” to levels observed in wild-type
mice (44). Another study found that chronic intranasal Oxt from
12 to 23weeks reduced social behavior in adult male mice when
they were tested 1 h after Oxt administration (45).While the stud-
ies described above may differ somewhat in terms of the details
of their findings, it does appear that intranasal Oxt treatment
during peripubertal development facilitates social interactions in
both males and females. However, it is not clear how long lasting
these effects are. Given that the peripubertal period is another
critical developmental window for the organizational effects of
hormones (2), more work focused on these types of questions
is needed, especially as intranasal Oxt is being considered as a
treatment for various neurodevelopmental conditions (46–48),
in particular children and adolescents diagnosed with autism
spectrum disorders (49–52).

Parental Behavior
Inmale prairie voles, treatmentwith anOTA inneonates decreases
alloparental behaviors. Specifically, males injected with an OTA
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TABLE 1 | A summary of the design and findings of studies investigating how developmental manipulation of oxytocin activity affects long-term behavioral
expression.

Species Treatment Age at
treatment

Age at assay Behavioral outcomes
in females

Behavioral outcomes in males Reference

Prairie vole 3.0µg Oxt i.p. PND0 PND60–90 ND Rescued social behavior diminished
by saline, ↑ partner preference

(19)

Prairie vole 0.3µg OTA i.p. PND0 PND60–90 ND Rescued social behavior diminished
by saline

(19)

Prairie vole 3.0µg Oxt i.p. PND0 Adult ↑ Aggression, ↓ social behavior
after exposure to male

↔ (18)

Prairie vole 0.3µg OTA i.p. PND0 Adult ↔ ↔ (18)

Prairie vole 3.0µg Oxt i.p. PND0 PND8 ↔ ↔ (23)

Prairie vole 0.3µg OTA i.p. PND0 PND8 ↓ Ultrasonic vocalizations after
isolation

↔ (23)

Prairie vole 3.0µg Oxt i.p. PND0–7 PND8 ↔ ↔ (23)

Prairie vole 0.3µg OTA i.p. PND0–7 PND8 ↑ Ultrasonic vocalizations after
isolation

↔ (23)

Prairie vole 3.0µg Oxt i.p. PND0 PND21 ↔ ↔ (14)

Prairie vole 0.3µg OTA i.p. PND0 PND21 ↔ ↓ Parental behavior, ↑ pup-directed
aggression

(14)

Prairie vole 3.0µg Oxt i.p. PND0 PND60 ↔ ↔ (14)

Prairie vole 0.3µg OTA i.p. PND0 PND60 ↔ ↔ (14)

Prairie vole 3.0µg Oxt i.p. PND0 PND75 ↓ Mating bout frequency ND (20)

Prairie vole 0.3µg OTA i.p. PND0 PND75 ↓ Mating bout frequency, ↑ litter
production success

ND (20)

Prairie vole 1.0mg/kg Oxt i.p. PND0 PND55–69 ↔ ND (16)

Prairie vole 2.0mg/kg Oxt i.p. PND0 PND55–69 ↔ ND (16)

Prairie vole 4.0mg/kg Oxt i.p. PND0 PND55–69 ↑ Pup retrievals ND (16)

Prairie vole 8.0mg/kg Oxt i.p. PND0 PND55–69 ↑ Preference for stranger ND (16)

Prairie vole 750 nL CMV-Oxtr
NAcc-specific

PND21 PND60–88 ↑ Parental behavior, ↑ preference
for partner

ND (57)

Prairie vole 0.08 IU/kg Oxt
intranasally

PND21–42 PND43–60 ↔ ↑ Preference for stranger (43)

Prairie vole 0.80 IU/kg Oxt
intranasally

PND21–42 PND43–60 ↔ ↑ Preference for stranger (43)

Prairie vole 8.00 IU/kg Oxt
intranasally

PND21–42 PND43–60 ↔ ↔ (43)

Mandarin vole 3.0µg Oxt s.c. PND0 PND60–90 ↑ Aggression after exposure to
male

↑ Social contact (35)

Mandarin vole 3.0µg Oxt s.c. PND0 PND60–90 ↑ Preference for partner,
suppressed maintenance of
preference, ↓ aggression toward
stranger

↑ Mounting of partner, ↓ aggression
toward stranger

(37)

Rat 1.0µg/2.0µL Oxt
intracisternally

PND3–4 PND120 ↑ Novelty-induced grooming ↑ Novelty-induced grooming (10)

Rat 1.0mg/kg Oxt s.c. PND10–14 PND60–94 ↑ Weight gain, ↑ tail-flick
withdrawal latency

↑ Weight gain, ↑ tail-flick withdrawal
latency

(63)

Rat 1.0mg/kg Oxt i.p.,
0.5µg EB

PND0–7 PND75 ↓ Sexual receptivity ND (28)

Rat 1.0mg/kg Oxt i.p.,
5.0µg EB

PND0–7 PND75 ↓ Sexual receptivity ND (28)

Rat 1.0mg/kg Oxt i.p.,
10.0µg EB

PND0–7 PND75 ↔ ND (28)

Rat 0.1mg/kg OTA i.p.,
0.5µg EB

PND0–7 PND75 ↓ Sexual receptivity ND (28)

Rat 0.1mg/kg OTA i.p.,
5.0µg EB

PND0–7 PND75 ↔ ND (28)

(Continued)
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TABLE 1 | Continued

Species Treatment Age at
treatment

Age at assay Behavioral outcomes
in females

Behavioral outcomes in males Reference

Rat 0.1mg/kg OTA i.p.,
10.0µg EB

PND0–7 PND75 ↔ ND (28)

Rat 1.0mg/kg Oxt i.p. PND33–42 PND50–72 ND ↑ Open-field exploration, ↑ social
interaction, ↓ ethanol consumption

(41)

Rat 0.5mg/kg Oxt i.p. PND28–55 PND70–72 ND ↑ Social proximity (42)

Rat 1.0mg/kg Oxt i.p. PND28–55 PND70–72 ND ↑ Social proximity (42)

Rat 0.5mg/kg TGOT i.p. PND28–55 PND70–72 ND ↔ (42)

Rat 1.0mg/kg TGOT i.p. PND28–55 PND70–72 ND ↔ (42)

Mouse 2.0µg Oxt s.c. PND0 PND1–3 Rescued feeding behavior in
Magel2−/− mice

Rescued feeding behavior in
Magel2−/− mice

(64)

Mouse 3.0µg OTA s.c. PND0 PND1–3 Lethal feeding deficiency Lethal feeding deficiency (64)

Mouse 3.0µg Oxt i.p. PND0 8–15weeks ↔ ↔ (29)

Mouse 0.3µg Oxt i.p. PND0 8–15weeks ↔ ↔ (29)

Mouse 3.0µg OTA i.p. PND0 8–15weeks ↓ Parental care ↓ Parental care (29)

Mouse 0.3µg OTA i.p. PND0 8–15weeks ↔ ↔ (29)

Mouse 0.15 IU Oxt
intranasally

12–23weeks 1 h post ND ↓ Social behavior (45)

Mouse 0.30 IU Oxt
intranasally

12–23weeks 1 h post ND ↓ Social behavior (45)

Mouse 0.80 IU Oxt
intranasally

PND21–50 PND55 Rescued diminished social
sniffing in BTBR mouse

↔ (44)

Pig 50.0µg Oxt
intranasally

PND1–3 2–8weeks ↑ Aggression ↑ Aggression (39)

ND, no data; EB, estradiol benzoate.

within 24 h of birth and later tested on PND21 decrease their
parental care, as measured by fewer retrievals, less time spent
huddling over pups, and increases in pup-directed attacks. These
effects also appear to be transient, as they are not observed when
the same animals are tested again on PND60 (14). In laboratory
mice, treatment with an OTA also reduces alloparental care, but
in both sexes. Specifically, treatment with an OTA on PND0
decreases the total number of pups retrieved by females and
increases pup retrieval latencies in males (29). Oxt treatment also
increases the responsiveness of females to pups, as measured by
approach times, although this effect is dose dependent, with the
lowest dose of Oxt resulting in longer approach times compared to
saline controls (16). Thus, it appears that Oxt signaling is impor-
tant for normal displays of alloparental care, which is consistent
with its role in lowering the threshold for maternal care in rodents
(53–56).

Work by Keebaugh and Young has utilized viral vectors to
overexpress the Oxtr and study the organizational effects of Oxt
on behavior during puberty. By injecting an adeno-associated
viral vector into the nucleus accumbens (NAcc) shell of female
prairie voles at PND21 they were able to facilitate alloparental
care, as measured by reductions in approach times and increases
in time spent licking and grooming pups compared to con-
trols (57). This gene delivery approach has helped to identify
a specific neural substrate – the NAcc – on which Oxt may
act. The NAcc, which is a part of the brain’s reward circuit, is
known to be important in numerous motivated behaviors – it
not only expresses the Oxtr but is also one of the regions in
which the Oxtr is more highly expressed in biparental prairie

voles compared to non-monogamous species that do not exhibit
biparental care (58–62).

Other Behaviors
While only a few studies have investigated Oxt’s organizational
effects on other behaviors, these studies confirm that Oxt’s devel-
opmental effects are not limited to its impact on social behavior. In
rats, repeated administration of Oxt between PND10 and PND14
results in weight gain in both males and females, increases in
the gut hormone cholecystokinin, and longer withdrawal laten-
cies in the tail-flick test at PND60, which suggests an increase
in pain threshold (63). Male and female mice with a genetic
disruption that models Prader–Willi syndrome usually exhibit a
lethal feeding deficiency. This feeding deficiency can be rescued
with an injection of Oxt on PND0, or induced in wild-type mice
by injecting an OTA 1–1.5 h after birth (64). These observations
are consistent with what is observed in Oxt and Oxtr knockout
(−/−) mice. These mice develop late-onset obesity in the absence
of hyperphagia (65, 66). However, these developmental effects of
Oxt differ from what is observed in adults, where Oxt is hypoth-
esized to have anorexigenic effects (67). Since developmental Oxt
appears to impact aspects of energy homeostasis, which in turn
can affect behavior, additional work in this area is warranted.

Finally, in the study by Bowen and colleagues (41)mentioned in
the previous section, peripubertal Oxt administration also affects
anxiety-like behavior and ethanol consumption later in life. Male
rats given daily Oxt injections from PND33 to PND42 and tested
in an emergence test on PND50 traveled further and spent more
time in the open-field compared to controls, which would suggest
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thatOxt had an anxiolytic effect.When tested on PND72 and later,
Oxt-treated males consumed significantly less alcohol (i.e., beer)
than controls, while water consumption remained unaffected (41).

Summary
It is apparent that Oxt in early postnatal development and during
puberty can result in long-lasting changes in behavior, including
behaviors that have traditionally been associated with Oxt’s acute
neuromodulatory effects, such as affiliative and sexual behaviors,
as well as non-social behaviors, such as nociception and ethanol
consumption. While there is a lack of consensus in the data, this
is in part a reflection of the difficulty of these types of studies, as
there are many experimental possibilities that could result in very
different outcomes. Particularly crucial is the timing window for
Oxt administration, the dose of Oxt, and the behavioral endpoints
measured. It is also important to note that Oxt’s organizational
effects appear to be sex- and species-specific, which is consistent
with the complexity of its neuromodulatory role in adulthood.
Thus, future behavioral work will need to continue to take a broad
approach to identify Oxt’s potential organizational effects, as some
of these behavioral changes, such as energy metabolism and anx-
iety, could affect a variety of other behaviors. In the meantime,
rigorous investigation of Oxt’s organizational effects on neural
structure and functionmay help clarifymechanisms by whichOxt
affects brain development and ultimately behavior.

Oxytocin’s Developmental Effects on
Neurochemicals and Neural Substrates

The behavioral effects of postnatal and peripubertal Oxt must be
rooted in structural and functionalmodifications to neurons, such
as changes in gene expression, axonal guidance, or cell morphol-
ogy. Therefore, in this section, we review what is known about
how Oxt may be impacting these systems.

Effects on Estrogen Receptor Alpha
It is well established that gonadal steroids play a significant role
in regulating Oxt activity (68–71). While androgens and proges-
terone modulate Oxt and Oxtr expression (72–75), it is the estro-
gens that seem to have the greatest impact on the Oxt system (68,
70, 74, 76–78). Further, these effects are not unidirectional, with
the Oxt system altering gonadal steroid systems, specifically the
expression of estrogen receptor α (ERα). Neonatal injections of
Oxt increase ERα expression in the ventromedial hypothalamus
(VMH) of adult females and Oxt treatment on PND0 increases
the number of ERα-immunoreactive (ERα-ir) cells in the VMH
of 3-week-old prairie voles (26). These effects appear to be rapid
since neonatal prairie voles treated with Oxt also have increases
in ERα-ir (24, 79) and ERα mRNA expressions (79). Similar
to prairie voles, rats that are repeatedly administered Oxt from
PND0 until PND7 have increases in ERα-ir at PND75 (28) and
neonatal Oxt manipulation increases the expression of ERα in
the hippocampus (79), ventral lateral septum (LS), and central
nucleus of the amygdala (24). These results differ from reports in
females where a single injection of an OTA on PND1 decreases
expression of ERα in the medial preoptic area (MPOA) of adult
female prairie voles, as well as increases ERα expression in the

BNST, and possibly decreases expression in the medial amygdala
(MeA) (26) and repeated administration of an OTA from PND0
to PND7 decreases the expression of ERα in the MPOA of adult
female rats (28).

Effects on the Oxytocin and Vasopressin Systems
Early exposure to relevant stimuli is known to permanently alter
the responsiveness of a hormone receptor; this phenomenon is
known as hormonal imprinting (80). Based on this observation,
it is reasonable to suspect that early Oxt exposure could affect the
development of the Oxt system itself. Data from several species
clearly support this idea; however, the findings are not consistent
between sexes and species – in keeping with Oxt’s known inter-
sexual and interspecific variation. In female prairie voles, neonates
treated with Oxt and an OTA have increases in Oxt immunoreac-
tivity (Oxt-ir) within the PVN by 3weeks of age. Yet, inmales, Oxt
has no effect on Oxt-ir, but treatment with an OTA does decrease
arginine vasopressin (Avp) immunoreactivity in the PVN (27).

In addition to changes in peptide expression, neonatal manip-
ulation of Oxt impacts Avp 1a receptor (Avpr1a) binding in a
sexually dimorphic manner. Specifically, in female prairie voles,
Oxt treatment on PND0 decreases Avpr1a binding in the MPOA,
BNST, LS, cingulate cortex (CgCtx), and medial thalamus on
PND60, but in males it increases Avpr1a binding in the CgCtx.
OTA treatment in females decreases Avpr1a binding only in the
BNST and CgCtx, while in males it decreases Avpr1a binding in
the MPOA, BNST, and LS (15). Taken together, the delivery of
Oxt or an OTA during early postnatal life appears to have nearly
opposite effects on adult Avpr1a expression in females and males.
Similar to what was discussed in terms of behavioral effects, there
does appear to be a “critical period” of organization that extends
into peripubertal development, with peripubertal Oxt administra-
tion increasing Oxtr mRNA expression in the hypothalamus (41)
and plasma Oxt levels (42) in adult male rats.

Other Effects
While studies on the organizational effects of Oxt on other neuro-
chemical systems are few and far between, there is evidence that
perinatal exposure to Oxt can influence the functioning of the
stress axis. Female prairie voles administered Oxt on PND1 have
reductions in baseline plasma corticosterone by PND8 compared
to animals treated with saline or an OTA (23). In neonatal pigs,
repeated Oxt treatment increases adrenocorticotropic hormone
(ACTH) at 8weeks of age and decreases responsiveness in the
dexamethasone suppression test at 11weeks; indicative of dysreg-
ulation of the glucocorticoid response. However, pigs that receive
Oxt have less blunting of the cortisol response than controls (39).
So, not only is Oxt able to acutely regulate stress responses (81, 82)
but appears to also be involved in the development of long-term
responsiveness to stress.

There are also reported effects of neonatal Oxt on adren-
ergic and serotonergic receptors, which may contribute to the
aforementioned effects of Oxt on feeding and social behaviors
(see Other Behaviors). In rats, chronic neonatal Oxt treatment
alters α2 adrenergic receptor (α2r) kinetics in PND130 male rats;
these changes are dependent upon the nutrition of the dam to
which the pups were born. Specifically, Oxt treatment rescues

Frontiers in Endocrinology | www.frontiersin.org May 2015 | Volume 6 | Article 765

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Miller and Caldwell Organizational effects of oxytocin

the affinity (described by the dissociation constant Kd), which
is decreased in placebo treated neonates of food-restricted dams
compared to offspring of dams fed ad libitum, of the α2r for
its ligand within the nucleus of the solitary tract (NTS) and
increases the number of α2r binding sites (described by Bmax)
in the hypothalamus and amygdala of offspring born to food-
restricted dams compared to controls. In pups born to dams
fed ad libitum Oxt treatment decreases the affinity of the α2r
for its ligand in the hypothalamus, and increases the number of
binding sites in the hypothalamus and NTS (83). In male prairie
voles, neonatal Oxt administration also results in increases in
serotonergic axon density in the anterior hypothalamus, corti-
cal amygdala, and VMH at PND21 (21), as well as decreases
dopamine turnover in the hypothalamus as well as serotonin
turnover in the hypothalamus,medulla oblongata, and striatum of
4-month-old female rats (84). Thus, not only does developmental
Oxt exposure affect many different neural circuits, these effects
can also be highly dependent on the state of the dam. This is
in keeping with a large body of research showing that maternal
physiology, particularly stress (85–87) and nutrition (88–90), can
greatly impact the neural and behavioral development of off-
spring. The previously described studies have opened the door
to exploring what role developmental Oxt might play in these
effects.

Summary
The organizational effects of Oxt extend to many different neu-
rochemical systems including the gonadal steroids, the Oxt and
Avp systems, and the stress axis, which suggests that Oxt’s effects
are widespread and complex (Figure 1). The brain regions most
commonly affected by developmental Oxt exposure are the VMH,
MPOA, BNST, LS, PVN, and several nuclei of the amygdala. Oxt
or the Oxtr is expressed in some of these regions (68, 91), though
their expression in these brain areas often varies depending on
species, age, and sex. What is particularly interesting about the
aforementioned brain nuclei is that many of them are a part
of the “social behavioral network,” which is comprised of neu-
roanatomical areas or “nodes” that are interconnected, express
gonadal hormone receptors, appear to be influenced by Oxt, and
are important in the regulation of many types of social behaviors
(92, 93). Work from Bruce Cushing’s laboratory suggests that the
BNST and MeA are particularly important for the developmental

effects of Oxt and ERα on social behavior (24, 26, 94) but further
investigation into the entire social behavioral network is needed.

Potential Effects of Oxytocin During Fetal
Development

While research into the neonatal and peripubertal developmental
effects of Oxt has been ever increasing, an area that remains
largely unexplored is the potential for Oxt to have organizational
effects during embryonic development. These potential effects are
relevant, in part, because of the increased use of Oxtr agonists,
such as Pitocin, and antagonists, such as Atosiban, during human
pregnancy in order to manage labor timing (95, 96). While the
developmental consequences of these interventions have been
reviewed elsewhere (95), the possible behavioral implications of
exposing human fetuses to exogenous Oxt or Oxtr antagonists
should not be ignored. Because of the complexity and ethical
considerations in humans our best hope for elucidating the role
of fetal Oxt is the use of animal models.

In mice, there is evidence that in utero exposure to Oxt is
important for normal intermale aggressive behavior in adulthood.
Specifically, male Oxt−/− mice that are born to null mutant dams
show heightened aggressive behavior in adulthood (97, 98).While
this phenotype cannot be rescued if the pups are cross-fostered to
wild-type dams (99), it is not observed when male mice are born
to heterozygous dams. One of the key differences between pups
born to null mutant dams versus those born to heterozygous dams
is the absence or presence of maternal Oxt. The hypothesis that
the maternal Oxt may be signaling in the fetal brain is supported
by studies using male Oxtr knockout (Oxtr−/−) mice, which lack
Oxtr signaling throughout development. These mice also have
heightened aggressive behavior in adulthood (99, 100). However,
male forebrain Oxtr knockout (Oxtr Fb/Fb) mice (101, 102), in
which theOxtr gene is excised 21–28 days after birth, have normal
aggressive behavior in adulthood (100). These data suggest that
Oxt signaling via the Oxtr during fetal development might be
important for displays of aggressive behavior, and perhaps other
behaviors in adulthood.

Unfortunately, very little is known about the developmental
time course of the Oxt system in rodents. In rats, Oxt mRNA
is observed as early as embryonic day (E) 15.5 in the PVN and
E18.5 in the SON (103). The mRNA for the Oxt carrier protein
neurophysin-I is available as early as E16 in the PVN and SON,

FIGURE 1 | Developmental exposure to oxytocin is known to affect many
behaviors (left) and neurotransmitter and neurohormone systems (right).
These behavioral effects are often species and sex specific, which is consistent

with oxytocin’s neuromodulatory role in adults. However, how these behavioral
changes are rooted in the observed alterations in neurochemistry remains
unknown.
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and theOxt peptide is seen by PND7 in the SONandPVNandE21
in the pituitary (104). Prairie voles also have a postnatal increase
in Oxt peptide expression, with the number of Oxt expressing
neurons significantly increasing from PND1 to PND21 in both
males and females (27). While less is known about the develop-
ment of the Oxtr, in rats, Oxtr binding has been identified as
early as E14 in undifferentiated neurons (104). In mice, a study
by Hammock and Levitt (105), which focused primarily on Oxtr
binding during postnatal development, found Oxtr binding in
the brains of E18.5 C57BL/6J mice. However, this was the only
embryonic time point that was examined. It is plausible that the
“critical window” for themanipulation of theOxt system is not the
same in males as in females, since there could be sex differences
in its development. Therefore, future research in this area should
consider the potential for sex differences in the development of
the Oxt system, as it may help to inform the conclusions that are
drawn from the data.

Conclusion

Compared to what we understand about Oxt in adulthood,
research into its role in development is still in its early stages and
there is much to do before we really have a handle on its effects
on the brain and behavior. For instance, what other behaviors are
affected? How conserved are Oxt’s effects across species, or within
a particular sex? How are these organizational changes grounded
in alterations of neuronal structure and function? How broad is
the “critical window” for Oxt’s effects? What are the implications
for human offspring? Therefore, examination of the mechanisms
that may underlie behavioral changes, including the identification
of specific neural substrates, is of the utmost importance.

This is an exciting time in behavioral neuroendocrine research
due to increased interest inOxt and the social brain as well as great
advancements in the foundational work, which has methodically
examined the neuromodulatory effects of Oxt in animal models.
However, there is still much we do not understand about the Oxt

system, and filling this “knowledge gap” becomes more vital as
the interest in using Oxt in clinical settings continues to increase.
For the last several years, intranasal Oxt has been marketed as
the “cuddle” or “love” hormone, and is being used in a variety of
contexts as a therapeutic agent to promote prosocial behaviors in
humans. Much of this work has been performed in the absence of
dose response studies, without serious consideration of the poten-
tial developmental or long-term effects, and with little attention
paid to where in the brain these effects might be mediated. Thus,
it is perhaps not surprising that more recent studies in humans
suggest that Oxt’s effects are nuanced (as the data from animal
models would suggest) and that intranasal Oxt treatment can have
undesirable effects (106–108). In light of this, basic research on
the Oxt system becomes ever more critical, particularly since our
understanding of the developmental role of Oxt is expanding. An
important first step is to home in on specific circuits, focusing on
studies that will shed light on the interactions between numerous
brain regions and behaviors. This approach will allow scientists to
elucidate the specific mechanisms of Oxt’s organizational effects
on behavior – be they genetic, epigenetic, or neuroanatomical –
which can then be used not only to inform human studies but also
identify any conserved mechanisms between sexes and species.

Author Contributions

Both TM and HC conceived of and drafted the work.

Acknowledgments

The authors are thankful to Dr. Colleen Novak and Dr. Wilson
Chung for their comments on the manuscript. This work was
supported in part by the Department of Biological Sciences and
the School of Biomedical Sciences at Kent State University as
well as funding to HC from the National Science Foundation
(IOS353859).

References
1. Phoenix CH, Goy RW, Gerall AA, Young WC. Organizing action of prenatally

administered testosterone propionate on the tissues mediating mating behav-
ior in the female guinea pig. Endocrinology (1959) 65:369–82. doi:10.1210/
endo-65-3-369

2. Schulz KM, Molenda-Figueira HA, Sisk CL. Back to the future: the
organizational-activational hypothesis adapted to puberty and adolescence.
Horm Behav (2009) 55(5):597–604. doi:10.1016/j.yhbeh.2009.03.010

3. Cushing BS. The organizational effects of oxytocin and vasopressin. In: Cho-
leris E, Pfaff DW, Kavaliers M, editors. Oxytocin, Vasopressin and Related
Peptides in the Regulation of Behavior. Cambridge: CambridgeUniversity Press
(2013). p. 56–72.

4. Bouret SG. Organizational actions of metabolic hormones. Front Neuroen-
docrinol (2013) 34(1):18–26. doi:10.1016/j.yfrne.2013.01.001

5. Blanks AM, Thornton S. The role of oxytocin in parturition. BJOG (2003)
110(s20):46–51. doi:10.1016/S1470-0328(03)00024-7

6. Wakerley J, Lincoln D. The milk-ejection reflex of the rat: a 20-to 40-fold
acceleration in the firing of paraventricular neurones during oxytocin release.
J Endocrinol (1973) 57(3):477–93. doi:10.1677/joe.0.0570477

7. Frayne J, Townsend D, Nicholson H. Effects of oxytocin on sperm transport
in the pubertal rat. J Reprod Fertil (1996) 107(2):299–306. doi:10.1530/jrf.0.
1070299

8. Insel TR, Young LJ. Neuropeptides and the evolution of social behavior. Curr
Opin Neurobiol (2000) 10(6):784–9. doi:10.1016/S0959-4388(00)00146-X

9. Caldwell HK. Neurobiology of sociability. In: Lopez-Larrea C, editor. Sensing
in Nature. New York: Springer (2012). p. 187–205.

10. Noonan LR, Continella G, Pedersen CA. Neonatal administration of oxytocin
increases novelty-induced grooming in the adult rat. Pharmacol Biochem
Behav (1989) 33(3):555–8. doi:10.1016/0091-3057(89)90386-9

11. Drago F, Pedersen CA, Caldwell JD, Prange AJ Jr. Oxytocin potently
enhances novelty-induced grooming behavior in the rat. Brain Res (1986)
368(2):287–95. doi:10.1016/0006-8993(86)90573-1

12. Boer GJ, Quak J, De Vries MC, Heinsbroek RP. Mild sustained effects of
neonatal vasopressin and oxytocin treatment on brain growth and behavior
of the rat. Peptides (1994) 15(2):229–36. doi:10.1016/0196-9781(94)90007-8

13. Bales KL, Kim AJ, Lewis-Reese AD, Sue Carter C. Both oxytocin and vaso-
pressin may influence alloparental behavior in male prairie voles.Horm Behav
(2004) 45(5):354–61. doi:10.1016/j.yhbeh.2004.01.004

14. Bales KL, Pfeifer LA, Carter CS. Sex differences and developmental effects of
manipulations of oxytocin on alloparenting and anxiety in prairie voles. Dev
Psychobiol (2004) 44(2):123–31. doi:10.1002/dev.10165

15. Bales KL, Plotsky PM, Young LJ, Lim MM, Grotte N, Ferrer E, et al.
Neonatal oxytocinmanipulations have long-lasting, sexually dimorphic effects
on vasopressin receptors. Neuroscience (2007) 144(1):38–45. doi:10.1016/j.
neuroscience.2006.09.009

Frontiers in Endocrinology | www.frontiersin.org May 2015 | Volume 6 | Article 767

http://dx.doi.org/10.1210/endo-65-3-369
http://dx.doi.org/10.1210/endo-65-3-369
http://dx.doi.org/10.1016/j.yhbeh.2009.03.010
http://dx.doi.org/10.1016/j.yfrne.2013.01.001
http://dx.doi.org/10.1016/S1470-0328(03)00024-7
http://dx.doi.org/10.1677/joe.0.0570477
http://dx.doi.org/10.1530/jrf.0.1070299
http://dx.doi.org/10.1530/jrf.0.1070299
http://dx.doi.org/10.1016/S0959-4388(00)00146-X
http://dx.doi.org/10.1016/0091-3057(89)90386-9
http://dx.doi.org/10.1016/0006-8993(86)90573-1
http://dx.doi.org/10.1016/0196-9781(94)90007-8
http://dx.doi.org/10.1016/j.yhbeh.2004.01.004
http://dx.doi.org/10.1002/dev.10165
http://dx.doi.org/10.1016/j.neuroscience.2006.09.009
http://dx.doi.org/10.1016/j.neuroscience.2006.09.009
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Miller and Caldwell Organizational effects of oxytocin

16. Bales KL, vanWesterhuyzen JA, Lewis-ReeseAD,GrotteND, Lanter JA, Carter
CS. Oxytocin has dose-dependent developmental effects on pair-bonding and
alloparental care in female prairie voles. Horm Behav (2007) 52(2):274–9.
doi:10.1016/j.yhbeh.2007.05.004

17. Bales KL, Abdelnabi M, Cushing BS, Ottinger MA, Carter CS. Effects of
neonatal oxytocin manipulations on male reproductive potential in prairie
voles. Physiol Behav (2004) 81:519–26. doi:10.1016/j.physbeh.2004.02.016

18. Bales KL, Carter CS. Sex differences and developmental effects of oxytocin on
aggression and social behavior in prairie voles (Microtus ochrogaster). Horm
Behav (2003) 44(3):178–84. doi:10.1016/S0018-506X(03)00154-5

19. Bales KL, Carter CS. Developmental exposure to oxytocin facilitates partner
preferences in male prarie voles (Microtus ochrogaster). Behav Neurosci (2003)
117(4):854–9. doi:10.1037/0735-7044.117.4.854

20. Cushing BS, Levine K, Cushing NL. Neonatal manipulation of oxytocin
influences female reproductive behavior and success. Horm Behav (2005)
47(1):22–8. doi:10.1016/j.yhbeh.2004.08.004

21. Eaton JL, Roache L, NguyenKN, Cushing BS, Troyer E, Papademetriou E, et al.
Organizational effects of oxytocin on serotonin innervation. Dev Psychobiol
(2012) 54(1):92–7. doi:10.1002/dev.20566

22. Kramer KM, Choe C, Carter CS, Cushing BS. Developmental effects of oxy-
tocin on neural activation and neuropeptide release in response to social
stimuli. Horm Behav (2006) 49(2):206–14. doi:10.1016/j.yhbeh.2005.07.001

23. Kramer KM, Cushing BS, Carter CS. Developmental effects of oxytocin
on stress response: single versus repeated exposure. Physiol Behav (2003)
79(4–5):775–82. doi:10.1016/S0031-9384(03)00175-6

24. Kramer KM, Yoshida S, Papademetriou E, Cushing BS. The organizational
effects of oxytocin on the central expression of estrogen receptor alpha
and oxytocin in adulthood. BMC Neurosci (2007) 8(1):71. doi:10.1186/
1471-2202-8-71

25. Withuhn TF, Kramer KM, Cushing BS. Early exposure to oxytocin affects the
age of vaginal opening and first estrus in female rats. Physiol Behav (2003)
80(1):135–8. doi:10.1016/S0031-9384(03)00222-1

26. Yamamoto Y, Carter CS, Cushing BS. Neonatal manipulation of oxy-
tocin affects expression of estrogen receptor alpha. Neuroscience (2006)
137(1):157–64. doi:10.1016/j.neuroscience.2005.08.065

27. Yamamoto Y, Cushing BS, Kramer KM, Epperson PD, Hoffman GE, Carter
CS. Neonatal manipulations of oxytocin alter expression of oxytocin and vaso-
pressin immunoreactive cells in the paraventricular nucleus of the hypothala-
mus in a gender-specific manner. Neuroscience (2004) 125(4):947–55. doi:10.
1016/j.neuroscience.2004.02.028

28. Perry AN, Paramadilok A, Cushing BS. Neonatal oxytocin alters subse-
quent estrogen receptor alpha protein expression and estrogen sensitivity in
the female rat. Behav Brain Res (2009) 205(1):154–61. doi:10.1016/j.bbr.2009.
08.021

29. Mogi K, Ooyama R, Nagasawa M, Kikusui T. Effects of neonatal oxytocin
manipulation on development of social behaviors in mice. Physiol Behav
(2014) 133:68–75. doi:10.1016/j.physbeh.2014.05.010

30. Uhl-Bronner S, Waltisperger E, Martinez-Lorenzana G, Condes Lara M,
Freund-Mercier MJ. Sexually dimorphic expression of oxytocin binding sites
in forebrain and spinal cord of the rat. Neuroscience (2005) 135(1):147–54.
doi:10.1016/j.neuroscience.2005.05.025

31. de Vries GJ. Sex differences in vasopressin and oxytocin innervation of the
brain. Prog Brain Res (2008) 170:17–27. doi:10.1016/S0079-6123(08)00402-0

32. Coirini H, Johnson A, Schumacher M, McEwen B. Sex differences in the
regulation of oxytocin receptors by ovarian steroids in the ventromedial
hypothalamus of the rat. Neuroendocrinology (1992) 55(3):269–75. doi:10.
1159/000126125

33. Szot P, Dorsa DM. Differential timing and sexual dimorphism in the expres-
sion of the vasopressin gene in the developing rat brain. Dev Brain Res (1993)
73(2):177–83. doi:10.1016/0165-3806(93)90136-X

34. De Vries G, Panzica G. Sexual differentiation of central vasopressin and
vasotocin systems in vertebrates: different mechanisms, similar endpoints.
Neuroscience (2006) 138(3):947–55. doi:10.1016/j.neuroscience.2005.07.050

35. Jia R, Tai F, An S, Broders H, Ding X, KongQ, et al. Effects of neonatal oxytocin
treatment on aggression and neural activities in mandarin voles. Physiol Behav
(2008) 95(1):56–62. doi:10.1016/j.physbeh.2008.04.015

36. Carter C, Boone EM, Bales KL. Early experience and the developmental pro-
gramming of oxytocin and vasopressin. In: Bridges RS, editor.Neurobiology of
the Parental Brain. San Diego, CA: Elsevier (2008). p. 417–33.

37. Jia R, Tai F, An S, Broders H, Sun R. Neonatal manipulation of oxytocin
influences the partner preference in mandarin voles (Microtus mandarinus).
Neuropeptides (2008) 42(5):525–33. doi:10.1016/j.npep.2008.06.001

38. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, et al. Socia-
bility and preference for social novelty in five inbred strains: an approach to
assess autistic-like behavior in mice. Genes Brain Behav (2004) 3(5):287–302.
doi:10.1111/j.1601-1848.2004.00076.x

39. Rault J-L, Carter CS, Garner JP, Marchant-Forde JN, Richert BT, Lay DC Jr.
Repeated intranasal oxytocin administration in early life dysregulates the HPA
axis and alters social behavior. Physiol Behav (2013) 112:40–8. doi:10.1016/j.
physbeh.2013.02.007

40. Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK. The
use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev
(2007) 31(5):728–51. doi:10.1016/j.neubiorev.2007.02.003

41. BowenMT, CarsonDS, Spiro A, Arnold JC,McGregor IS. Adolescent oxytocin
exposure causes persistent reductions in anxiety and alcohol consumption
and enhances sociability in rats. PLoS One (2011) 6(11):e27237. doi:10.1371/
journal.pone.0027237

42. Suraev AS, Bowen MT, Ali SO, Hicks C, Ramos L, McGregor IS. Adolescent
exposure to oxytocin, but not the selective oxytocin receptor agonist TGOT,
increases social behavior and plasma oxytocin in adulthood. Horm Behav
(2014) 65(5):488–96. doi:10.1016/j.yhbeh.2014.03.002

43. Bales KL, Perkeybile AM, Conley OG, Lee MH, Guoynes CD, Downing GM,
et al. Chronic intranasal oxytocin causes long-term impairments in partner
preference formation in male prairie voles. Biol Psychiatry (2013) 74(3):180–8.
doi:10.1016/j.biopsych.2012.08.025

44. Bales K, Solomon M, Jacob S, Crawley J, Silverman J, Larke R, et al. Long-term
exposure to intranasal oxytocin in a mouse autism model. Transl Psychiatry
(2014) 4(11):e480. doi:10.1038/tp.2014.117

45. Huang H, Michetti C, Busnelli M, Managò F, Sannino S, Scheggia D, et al.
Chronic and acute intranasal oxytocin produce divergent social effects inmice.
Neuropsychopharmacology (2014) 39(5):1102–14. doi:10.1038/npp.2013.310

46. Wudarczyk OA, Earp BD, Guastella A, Savulescu J. Could intranasal oxytocin
be used to enhance relationships? Research imperatives, clinical policy, and
ethical considerations. Curr Opin Psychiatry (2013) 26(5):474–84. doi:10.
1097/YCO.0b013e3283642e10

47. Tachibana M, Kagitani-Shimono K, Mohri I, Yamamoto T, Sanefuji W, Naka-
mura A, et al. Long-term administration of intranasal oxytocin is a safe and
promising therapy for early adolescent boys with autism spectrum disor-
ders. J Child Adolesc Psychopharmacol (2013) 23(2):123–7. doi:10.1089/cap.
2012.0048

48. Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ, et al.
Intranasal oxytocin improves emotion recognition for youth with autism spec-
trum disorders. Biol Psychiatry (2010) 67(7):692–4. doi:10.1016/j.biopsych.
2009.09.020

49. Fujisawa TX, Tanaka S, Saito DN, Kosaka H, Tomoda A. Visual attention for
social information and salivary oxytocin levels in preschool children with
autism spectrum disorders: an eye-tracking study. Front Neurosci (2014) 8:295.
doi:10.3389/fnins.2014.00295

50. Guastella AJ, Gray KM, Rinehart NJ, Alvares GA, Tonge BJ, Hickie IB, et al.
The effects of a course of intranasal oxytocin on social behaviors in youth
diagnosed with autism spectrum disorders: a randomized controlled trial. J
Child Psychol Psychiatry (2015) 56:444–52. doi:10.1111/jcpp.12305

51. Domes G, Heinrichs M, Kumbier E, Grossmann A, Hauenstein K, Herpertz
SC. Effects of intranasal oxytocin on the neural basis of face processing in
autism spectrum disorder. Biol Psychiatry (2013) 74(3):164–71. doi:10.1016/
j.biopsych.2013.02.007

52. Gordon I, Vander Wyk BC, Bennett RH, Cordeaux C, Lucas MV, Eilbott JA,
et al. Oxytocin enhances brain function in childrenwith autism.ProcNatl Acad
Sci U S A (2013) 110(52):20953–8. doi:10.1073/pnas.1312857110

53. Rich ME, deCardenas EJ, Lee HJ, Caldwell HK. Impairments in the initiation
of maternal behavior in oxytocin receptor knockout mice. PLoS One (2014)
9(6):e98839. doi:10.1371/journal.pone.0098839

54. Macbeth AH, Stepp JE, Lee HJ, Young WS III, Caldwell HK. Normal maternal
behavior, but increased pupmortality, in conditional oxytocin receptor knock-
out females. Behav Neurosci (2010) 124(5):677–85. doi:10.1037/a0020799

55. Pedersen CA. Oxytocin control of maternal behavior. Regulation by sex
steroids and offspring stimuli. Ann N Y Acad Sci (1997) 807:126–45. doi:10.
1111/j.1749-6632.1997.tb51916.x

Frontiers in Endocrinology | www.frontiersin.org May 2015 | Volume 6 | Article 768

http://dx.doi.org/10.1016/j.yhbeh.2007.05.004
http://dx.doi.org/10.1016/j.physbeh.2004.02.016
http://dx.doi.org/10.1016/S0018-506X(03)00154-5
http://dx.doi.org/10.1037/0735-7044.117.4.854
http://dx.doi.org/10.1016/j.yhbeh.2004.08.004
http://dx.doi.org/10.1002/dev.20566
http://dx.doi.org/10.1016/j.yhbeh.2005.07.001
http://dx.doi.org/10.1016/S0031-9384(03)00175-6
http://dx.doi.org/10.1186/1471-2202-8-71
http://dx.doi.org/10.1186/1471-2202-8-71
http://dx.doi.org/10.1016/S0031-9384(03)00222-1
http://dx.doi.org/10.1016/j.neuroscience.2005.08.065
http://dx.doi.org/10.1016/j.neuroscience.2004.02.028
http://dx.doi.org/10.1016/j.neuroscience.2004.02.028
http://dx.doi.org/10.1016/j.bbr.2009.08.021
http://dx.doi.org/10.1016/j.bbr.2009.08.021
http://dx.doi.org/10.1016/j.physbeh.2014.05.010
http://dx.doi.org/10.1016/j.neuroscience.2005.05.025
http://dx.doi.org/10.1016/S0079-6123(08)00402-0
http://dx.doi.org/10.1159/000126125
http://dx.doi.org/10.1159/000126125
http://dx.doi.org/10.1016/0165-3806(93)90136-X
http://dx.doi.org/10.1016/j.neuroscience.2005.07.050
http://dx.doi.org/10.1016/j.physbeh.2008.04.015
http://dx.doi.org/10.1016/j.npep.2008.06.001
http://dx.doi.org/10.1111/j.1601-1848.2004.00076.x
http://dx.doi.org/10.1016/j.physbeh.2013.02.007
http://dx.doi.org/10.1016/j.physbeh.2013.02.007
http://dx.doi.org/10.1016/j.neubiorev.2007.02.003
http://dx.doi.org/10.1371/journal.pone.0027237
http://dx.doi.org/10.1371/journal.pone.0027237
http://dx.doi.org/10.1016/j.yhbeh.2014.03.002
http://dx.doi.org/10.1016/j.biopsych.2012.08.025
http://dx.doi.org/10.1038/tp.2014.117
http://dx.doi.org/10.1038/npp.2013.310
http://dx.doi.org/10.1097/YCO.0b013e3283642e10
http://dx.doi.org/10.1097/YCO.0b013e3283642e10
http://dx.doi.org/10.1089/cap.2012.0048
http://dx.doi.org/10.1089/cap.2012.0048
http://dx.doi.org/10.1016/j.biopsych.2009.09.020
http://dx.doi.org/10.1016/j.biopsych.2009.09.020
http://dx.doi.org/10.3389/fnins.2014.00295
http://dx.doi.org/10.1111/jcpp.12305
http://dx.doi.org/10.1016/j.biopsych.2013.02.007
http://dx.doi.org/10.1016/j.biopsych.2013.02.007
http://dx.doi.org/10.1073/pnas.1312857110
http://dx.doi.org/10.1371/journal.pone.0098839
http://dx.doi.org/10.1037/a0020799
http://dx.doi.org/10.1111/j.1749-6632.1997.tb51916.x
http://dx.doi.org/10.1111/j.1749-6632.1997.tb51916.x
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Miller and Caldwell Organizational effects of oxytocin

56. Francis DD, Young LJ,MeaneyMJ, Insel TR.Naturally occurring differences in
maternal care are associated with the expression of oxytocin and vasopressin
(V1a) receptors: gender differences. J Neuroendocrinol (2002) 14(5):349–53.
doi:10.1046/j.0007-1331.2002.00776.x

57. Keebaugh AC, Young LJ. Increasing oxytocin receptor expression in the
nucleus accumbens of pre-pubertal female prairie voles enhances alloparental
responsiveness and partner preference formation as adults.HormBehav (2011)
60(5):498–504. doi:10.1016/j.yhbeh.2011.07.018

58. Smeltzer MD, Curtis JT, Aragona BJ, Wang Z. Dopamine, oxytocin, and
vasopressin receptor binding in the medial prefrontal cortex of monogamous
and promiscuous voles. Neurosci Lett (2006) 394(2):146–51. doi:10.1016/j.
neulet.2005.10.019

59. Ross HE, Cole CD, Smith Y, Neumann ID, Landgraf R, Murphy AZ,
et al. Characterization of the oxytocin system regulating affiliative behavior
in female prairie voles. Neuroscience (2009) 162(4):892–903. doi:10.1016/j.
neuroscience.2009.05.055

60. Ross HE, Freeman SM, Spiegel LL, Ren X, Terwilliger EF, Young LJ. Variation
in oxytocin receptor density in the nucleus accumbens has differential effects
on affiliative behaviors in monogamous and polygamous voles. J Neurosci
(2009) 29(5):1312–8. doi:10.1523/JNEUROSCI.5039-08.2009

61. Liu Y, Wang ZX. Nucleus accumbens oxytocin and dopamine interact to
regulate pair bond formation in female prairie voles. Neuroscience (2003)
121:537–44. doi:10.1016/S0306-4522(03)00555-4

62. Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci (2004)
7(10):1048–54. doi:10.1038/nn1327

63. Uvnäs-Moberg K, Alster P, Petersson M, Sohlström A, Björkstrand E. Postna-
tal oxytocin injections cause sustained weight gain and increased nociceptive
thresholds in male and female rats. Pediatr Res (1998) 43(3):344–8. doi:10.
1203/00006450-199803000-00006

64. Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F. A
single postnatal injection of oxytocin rescues the lethal feeding behaviour in
mouse newborns deficient for the imprinted Magel2 gene. Hum Mol Genet
(2010) 19(24):4895–905. doi:10.1093/hmg/ddq424

65. Takayanagi Y, Kasahara Y, Onaka T, Takahashi N, Kawada T, Nishimori K.
Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport
(2008) 19(9):951–5. doi:10.1097/WNR.0b013e3283021ca9

66. CamerinoC. Low sympathetic tone and obese phenotype in oxytocin-deficient
mice. Obesity (Silver Spring) (2009) 17(5):980–4. doi:10.1038/oby.2009.12

67. Blevins JE, Ho JM. Role of oxytocin signaling in the regulation of
body weight. Rev Endocr Metab Disord (2013) 14(4):311–29. doi:10.1007/
s11154-013-9260-x

68. Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and
regulation. Physiol Rev (2001) 81(2):629–83.

69. Dhakar MB, Stevenson EL, Caldwell HK. Oxytocin, vasopressin and their
interplay with gonadal steroids. In: Choleris E, Pfaff DW, Kavaliers M, editors.
Oxytocin, Vasopressin and Related Peptides in the Regulation of Behavior.
Cambridge: Cambridge University Press (2013). p. 3–36.

70. Caldwell HK, Young WS III. Oxytocin and vasopressin: genetics and behav-
ioral implications. 3rd ed. In: Lim R, editor. Neuroactive Proteins and Peptides:
Handbook of Neurochemistry and Molecular Neurobiology. New York, NY:
Springer (2006). p. 573–607.

71. Tribollet E, Audigier S, Dubois-Dauphin M, Dreifuss JJ. Gonadal steroids
regulate oxytocin receptors but not vasopressin receptors in the brain of male
and female rats. An autoradiographical study. Brain Res (1990) 511(1):129–40.
doi:10.1016/0006-8993(90)90232-Z

72. Johnson AE, Coirini H, Insel TR, McEwen BS. The regulation of oxy-
tocin receptor binding in the ventromedial hypothalaimic nucleus by testos-
terone and its metabolites. Endocrinology (1991) 128(2):891–6. doi:10.1210/
endo-128-2-891

73. Bale TL, Dorsa DM. Regulation of oxytocin receptor messenger ribonucleic
acid in the ventromedial hypothalamus by testosterone and its metabolites.
Endocrinology (1995) 136(11):5135–8. doi:10.1210/en.136.1.27

74. Wathes D, Mann G, Payne J, Riley P, Stevenson K, Lamming G. Regulation
of oxytocin, oestradiol and progesterone receptor concentrations in different
uterine regions by oestradiol, progesterone and oxytocin in ovariectomized
ewes. J Endocrinol (1996) 151(3):375–93. doi:10.1677/joe.0.1510375

75. Grazzini E, Guillon G, Mouillac B, Zingg HH. Inhibition of oxytocin receptor
function by direct binding of progesterone. Nature (1998) 392(6675):509–12.
doi:10.1038/33176

76. De Kloet E, Voorhuis D, Boschma Y, Elands J. Estradiol modulates density of
putative oxytocin receptors’ in discrete rat brain regions. Neuroendocrinology
(1986) 44(4):415–21. doi:10.1159/000124680

77. Richard S, Zingg H. The human oxytocin gene promoter is regulated by
estrogens. J Biol Chem (1990) 265(11):6098–103.

78. McCarthy MM, Mcdonald CH, Brooks PJ, Goldman D. An anxiolytic action
of oxytocin is enhanced by estrogen in the mouse. Physiol Behav (1997)
60(5):1209–15. doi:10.1016/S0031-9384(96)00212-0

79. Pournajafi-Nazarloo H, Carr MS, Papademeteriou E, Schmidt JV, Cushing
BS. Oxytocin selectively increases ERα mRNA in the neonatal hypothalamus
and hippocampus of female prairie voles. Neuropeptides (2007) 41(1):39–44.
doi:10.1016/j.npep.2006.10.002

80. Csaba G. Phylogeny and ontogeny of hormone receptors: the selection theory
of receptor formation and hormonal imprinting. Biol Rev (1980) 55(1):47–63.
doi:10.1111/j.1469-185X.1980.tb00687.x

81. Windle R, Shanks N, Lightman SL, Ingram CD. Central oxytocin
administration reduces stress-induced corticosterone release and anxiety
behavior in rats 1. Endocrinology (1997) 138(7):2829–34. doi:10.1210/en.138.
7.2829

82. Neumann I, Wigger A, Torner L, Holsboer F, Landgraf R. Brain oxy-
tocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-
adrenal axis in male and female rats: partial action within the paraventricu-
lar nucleus. J Neuroendocrinol (2000) 12(3):235–44. doi:10.1046/j.1365-2826.
2000.00442.x

83. Díaz-Cabiale Z, OlaussonH, SohlströmA, Agnati L, Narvaez J, Uvnäs-Moberg
K, et al. Long-term modulation by postnatal oxytocin of the α2-adrenoceptor
agonist binding sites in central autonomic regions and the role of prenatal
stress. J Neuroendocrinol (2004) 16(3):183–90. doi:10.1111/j.0953-8194.2004.
01146.x

84. Hashemi F, Tekes K, Laufer R, Szegi P, Tóthfalusi L, Csaba G. Effect of a
single neonatal oxytocin treatment (hormonal imprinting) on the biogenic
amine level of the adult rat brain could oxytocin-induced labor cause perva-
sive developmental diseases? Reprod Sci (2013) 20(10):1255–63. doi:10.1177/
1933719113483010

85. Ward ID, Zucchi FC, Robbins JC, Falkenberg EA, Olson DM, Benzies
K, et al. Transgenerational programming of maternal behaviour by prena-
tal stress. BMC Pregnancy Childbirth (2013) 13(Suppl 1):S9. doi:10.1186/
1471-2393-13-S1-S9

86. Fine R, Zhang J, Stevens H. Prenatal stress and inhibitory neuron sys-
tems: implications for neuropsychiatric disorders. Mol Psychiatry (2014)
19(6):641–51. doi:10.1038/mp.2014.35

87. DiPietro JA. Maternal stress in pregnancy: considerations for fetal
development. J Adolesc Health (2012) 51(2):S3–8. doi:10.1016/j.jadohealth.
2012.04.008

88. Reyes-Castro L, Rodriguez J, Rodriguez-Gonzalez G, Chavira R, Bautista C,
McDonald T, et al. Pre-and/or postnatal protein restriction developmentally
programs affect and risk assessment behaviors in adult male rats. Behav Brain
Res (2012) 227(2):324–9. doi:10.1016/j.bbr.2011.06.008

89. Peleg-Raibstein D, Luca E, Wolfrum C. Maternal high-fat diet in mice
programs emotional behavior in adulthood. Behav Brain Res (2012)
233(2):398–404. doi:10.1016/j.bbr.2012.05.027

90. Marques AH, O’Connor TG, Roth C, Susser E, Bjørke-Monsen A-L. The
influence of maternal prenatal and early childhood nutrition and mater-
nal prenatal stress on offspring immune system development and neurode-
velopmental disorders. Front Neurosci (2013) 7:120. doi:10.3389/fnins.2013.
00120

91. Tribollet E, Dubois-Dauphin M, Dreifuss J, Barberis C, Jard S. Oxytocin
receptors in the central nervous system.AnnNYAcad Sci (1992) 652(1):29–38.
doi:10.1111/j.1749-6632.1992.tb34343.x

92. Newman SW. The medial extended amygdala in male reproductive behavior.
A node in the mammalian social behavior network. Ann N Y Acad Sci (1999)
877:242–57. doi:10.1111/j.1749-6632.1999.tb09271.x

93. AlbersHE. Species, sex and individual differences in the vasotocin/vasopressin
system: relationship to neurochemical signaling in the social behavior neu-
ral network. Front Neuroendocrinol (2015) 36:49–71. doi:10.1016/j.yfrne.2014.
07.001

94. Cushing BS, Kramer KM. Mechanisms underlying epigenetic effects of early
social experience: the role of neuropeptides and steroids. Neurosci Biobehav
Rev (2005) 29(7):1089–105. doi:10.1016/j.neubiorev.2005.04.001

Frontiers in Endocrinology | www.frontiersin.org May 2015 | Volume 6 | Article 769

http://dx.doi.org/10.1046/j.0007-1331.2002.00776.x
http://dx.doi.org/10.1016/j.yhbeh.2011.07.018
http://dx.doi.org/10.1016/j.neulet.2005.10.019
http://dx.doi.org/10.1016/j.neulet.2005.10.019
http://dx.doi.org/10.1016/j.neuroscience.2009.05.055
http://dx.doi.org/10.1016/j.neuroscience.2009.05.055
http://dx.doi.org/10.1523/JNEUROSCI.5039-08.2009
http://dx.doi.org/10.1016/S0306-4522(03)00555-4
http://dx.doi.org/10.1038/nn1327
http://dx.doi.org/10.1203/00006450-199803000-00006
http://dx.doi.org/10.1203/00006450-199803000-00006
http://dx.doi.org/10.1093/hmg/ddq424
http://dx.doi.org/10.1097/WNR.0b013e3283021ca9
http://dx.doi.org/10.1038/oby.2009.12
http://dx.doi.org/10.1007/s11154-013-9260-x
http://dx.doi.org/10.1007/s11154-013-9260-x
http://dx.doi.org/10.1016/0006-8993(90)90232-Z
http://dx.doi.org/10.1210/endo-128-2-891
http://dx.doi.org/10.1210/endo-128-2-891
http://dx.doi.org/10.1210/en.136.1.27
http://dx.doi.org/10.1677/joe.0.1510375
http://dx.doi.org/10.1038/33176
http://dx.doi.org/10.1159/000124680
http://dx.doi.org/10.1016/S0031-9384(96)00212-0
http://dx.doi.org/10.1016/j.npep.2006.10.002
http://dx.doi.org/10.1111/j.1469-185X.1980.tb00687.x
http://dx.doi.org/10.1210/en.138.7.2829
http://dx.doi.org/10.1210/en.138.7.2829
http://dx.doi.org/10.1046/j.1365-2826.2000.00442.x
http://dx.doi.org/10.1046/j.1365-2826.2000.00442.x
http://dx.doi.org/10.1111/j.0953-8194.2004.01146.x
http://dx.doi.org/10.1111/j.0953-8194.2004.01146.x
http://dx.doi.org/10.1177/1933719113483010
http://dx.doi.org/10.1177/1933719113483010
http://dx.doi.org/10.1186/1471-2393-13-S1-S9
http://dx.doi.org/10.1186/1471-2393-13-S1-S9
http://dx.doi.org/10.1038/mp.2014.35
http://dx.doi.org/10.1016/j.jadohealth.2012.04.008
http://dx.doi.org/10.1016/j.jadohealth.2012.04.008
http://dx.doi.org/10.1016/j.bbr.2011.06.008
http://dx.doi.org/10.1016/j.bbr.2012.05.027
http://dx.doi.org/10.3389/fnins.2013.00120
http://dx.doi.org/10.3389/fnins.2013.00120
http://dx.doi.org/10.1111/j.1749-6632.1992.tb34343.x
http://dx.doi.org/10.1111/j.1749-6632.1999.tb09271.x
http://dx.doi.org/10.1016/j.yfrne.2014.07.001
http://dx.doi.org/10.1016/j.yfrne.2014.07.001
http://dx.doi.org/10.1016/j.neubiorev.2005.04.001
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Miller and Caldwell Organizational effects of oxytocin

95. Kenkel WM, Yee JR, Carter CS. Is oxytocin a maternal-foetal signalling
molecule at birth? Implications for development. J Neuroendocrinol (2014)
26(10):739–49. doi:10.1111/jne.12186

96. Carter CS. Developmental consequences of oxytocin. Physiol Behav (2003)
79(3):383–97. doi:10.1016/S0031-9384(03)00151-3

97. Winslow JT, Hearn EF, Ferguson J, Young LJ, Matzuk MM, Insel TR. Infant
vocalization, adult aggression, and fear behavior in an oxytocin null mutant
mouse. Horm Behav (2000) 37:145–55. doi:10.1006/hbeh.1999.1566

98. DeVries AC, Young WS III, Nelson RJ. Reduced aggressive behaviour in
mice with targeted disruption of the oxytocin gene. J Neuroendocrinol (1997)
9(5):363–8. doi:10.1046/j.1365-2826.1997.t01-1-00589.x

99. Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, et al.
Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient
mice. Proc Natl Acad Sci U S A (2005) 102(44):16096–101. doi:10.1073/pnas.
0505312102

100. Dhakar MB, Rich ME, Reno EL, Lee HJ, Caldwell HK. Heightened aggres-
sive behavior in mice with lifelong versus postweaning knockout of the
oxytocin receptor.Horm Behav (2012) 62(1):86–92. doi:10.1016/j.yhbeh.2012.
05.007

101. Lee HJ, Caldwell HK, Macbeth AH, Tolu SG, Young WS III. A condi-
tional knockout mouse line of the oxytocin receptor. Endocrinology (2008)
149(7):3256–63. doi:10.1210/en.2007-1710

102. Lee HJ, Caldwell HK, Macbeth AH, Young WS III. Behavioural studies using
temporal and spatial inactivation of the oxytocin receptor. Prog Brain Res
(2008) 170:73–7. doi:10.1016/S0079-6123(08)00407-X

103. Jing X, Ratty AK, Murphy D. Ontogeny of the vasopressin and oxytocin
RNAs in themouse hypothalamus.Neurosci Res (1998) 30:343–9. doi:10.1016/
S0168-0102(98)00017-0

104. Whitnall MH, Key S, Ben-Barak Y, Ozato K, Gainer H. Neurophysin in the
hypothalamo-neurohypophysial system. II. Immunocytochemical studies of
the ontogeny of oxytocinergic and vasopressinergic neurons. J Neurosci (1985)
5(1):98–109.

105. Hammock EA, Levitt P. Oxytocin receptor ligand binding in embryonic tissue
and postnatal brain development of theC57BL/6Jmouse. Front BehavNeurosci
(2013) 7:195. doi:10.3389/fnbeh.2013.00195

106. Cardoso C, Ellenbogen MA, Linnen AM. The effect of intranasal oxytocin on
perceiving and understanding emotion on the Mayer-Salovey-Caruso Emo-
tional Intelligence Test (MSCEIT). Emotion (2014) 14(1):43–50. doi:10.1037/
a0034314

107. Ellenbogen MA, Linnen AM, Cardoso C, Joober R. Intranasal oxytocin
impedes the ability to ignore task-irrelevant facial expressions of sadness
in students with depressive symptoms. Psychoneuroendocrinology (2013)
38(3):387–98. doi:10.1016/j.psyneuen.2012.06.016

108. Bartz J, Simeon D, Hamilton H, Kim S, Crystal S, Braun A, et al. Oxytocin
can hinder trust and cooperation in borderline personality disorder. Soc Cogn
Affect Neurosci (2011) 6(5):556–63. doi:10.1093/scan/nsq085

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015Miller and Caldwell. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or
licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Endocrinology | www.frontiersin.org May 2015 | Volume 6 | Article 7610

http://dx.doi.org/10.1111/jne.12186
http://dx.doi.org/10.1016/S0031-9384(03)00151-3
http://dx.doi.org/10.1006/hbeh.1999.1566
http://dx.doi.org/10.1046/j.1365-2826.1997.t01-1-00589.x
http://dx.doi.org/10.1073/pnas.0505312102
http://dx.doi.org/10.1073/pnas.0505312102
http://dx.doi.org/10.1016/j.yhbeh.2012.05.007
http://dx.doi.org/10.1016/j.yhbeh.2012.05.007
http://dx.doi.org/10.1210/en.2007-1710
http://dx.doi.org/10.1016/S0079-6123(08)00407-X
http://dx.doi.org/10.1016/S0168-0102(98)00017-0
http://dx.doi.org/10.1016/S0168-0102(98)00017-0
http://dx.doi.org/10.3389/fnbeh.2013.00195
http://dx.doi.org/10.1037/a0034314
http://dx.doi.org/10.1037/a0034314
http://dx.doi.org/10.1016/j.psyneuen.2012.06.016
http://dx.doi.org/10.1093/scan/nsq085
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive

	Oxytocin during development: possible organizational effects on behavior
	Introduction
	Oxytocin's Postnatal and Peripubertal Effects on Behavior
	Sexual, Affiliative, and Aggressive Behaviors
	Parental Behavior
	Other Behaviors
	Summary

	Oxytocin's Developmental Effects on Neurochemicals and Neural Substrates
	Effects on Estrogen Receptor Alpha
	Effects on the Oxytocin and Vasopressin Systems
	Other Effects
	Summary

	Potential Effects of Oxytocin During Fetal Development
	Conclusion
	Author Contributions
	Acknowledgments
	References


