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IGF-1R expression and activation levels generally cannot be correlated in cancer cells, 
suggesting that cellular proteins may modulate IGF-1R activity. Strong candidates for such 
modulation are found in cell-matrix and cell–cell adhesion signaling complexes. Activated 
IGF-1R is present at focal adhesions, where it can stabilize β1 integrin and participate in 
signaling complexes that promote invasiveness associated with epithelial mesenchymal 
transition (EMT) and resistance to therapy. Whether IGF-1R contributes to EMT or to 
non-invasive tumor growth may be strongly influenced by the degree of extracellular 
matrix engagement and the presence or absence of key proteins in IGF-1R-cell adhesion 
complexes. One such protein is PDLIM2, which promotes both cell polarization and 
EMT by regulating the stability of transcription factors including NFκB, STATs, and beta 
catenin. PDLIM2 exhibits tumor suppressor activity, but is also highly expressed in certain 
invasive cancers. It is likely that distinct adhesion complex proteins modulate IGF-1R 
signaling during cancer progression or adaptive responses to therapy. Thus, identifying 
the key modulators will be important for developing effective therapeutic strategies and 
predictive biomarkers.

Keywords: iGF-1r, PDLiM2, adhesion, eMt, signaling, phenotype, resistance

introduction: iGF-1r signaling in cell–Matrix Adhesion 
complexes and cell Migration

Dynamic cooperative signaling interactions between the IGF-1R and integrins are necessary for 
the growth and migration of normal cells and also for invasiveness and metastasis of cancer cells. 
Examples include how in normal cells, IGF-1R expression and activation are required for fibroblast 
migration, integrating signals from the extracellular matrix (ECM) via β1 integrin and RACK1 scaf-
folding protein (1–4) (summarized in Figure 1). In vascular smooth muscle cells, IGF-1 stimulated 
cell migration and division requires αvβ3 integrin cooperation [reviewed in Ref. (5)]. α5β1 integrin 

Abbreviations: ECM, extracellular matrix; EMT, epithelial to mesenchymal transition; IGF-1R, insulin-like 
growth factor-1 receptor; IRS-1(2), insulin receptor substrate 1(2); NFκB, nuclear factor κB; PP2A, protein 
phosphatase 2A; STAT, signal transducer and activator of transcription.
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signaling is strongly interactive with IGF-1R signaling in prostate 
cancer cells, and IGF-1R has been shown both to associate with and 
enhance the stability of β1 integrin (6). Furthermore, the IGF-1R 
interaction with αv integrin in both normal and colon cancer 
cells is disrupted upon IGF-1 stimulation, which correlates with 
increased cell migration (7).

In addition to its well-described role in cooperative signaling 
with integrins to promote normal cell growth and migration 
[reviewed in Ref. (8, 9)], IGF-1R and integrin collaborative signal-
ing in cancer cells is implicated with an epithelial mesenchymal 
transition (EMT) phenotype (10–12). IGF-1R can promote inte-
grin stability, and in prostate tumor models, integrin expression 
is required for growth in vivo and proliferation in vitro (6, 13). 
Alternations and co-expression of IGF-1R and adhesion signaling 
components have been reported in several different cancers. For 
example, a recent analysis of IGF-1 and ECM-induced signal-
ing components in metastatic breast tumors demonstrated that 
compared with normal or primary cancer tissues, β1 integrin 
and fibronectin are more clearly co-located at the leading edge 
of tumors, which also correlates with active Akt and Erks (14).

Integrin engagement leads to formation of transient nascent 
adhesions that can mature into focal adhesions tethered to actin 
stress fibers. The assembly and disassembly of these focal adhe-
sions is necessary for cell migration and involves coordinated 
activation of focal adhesion kinase (FAK), Src, and Rho GTPases 
(15). Activated IGF-1R can be recruited into a signaling complex 
with β1 integrin via scaffolding with RACK1 and FAK (1–4, 6, 16, 
17) (Figure 1). RACK1 acts as a scaffold to facilitate activation 
of FAK, and IGF-1 stimulates dephosphorylation of FAK, which 
is associated with dissolution of focal adhesions (2, 18, 19). This 
complex contains key IGF-1-responsive signaling components, 
including IRS-1, IRS-2, Shc, Src, PP2A, Shp-2, and c-Abl, which 

FiGUre 1 | schematic model of how adhesion-regulated iGF-1r 
signaling has a critical role in determining cancer cell phenotype.

have a particular role in regulating activity of the Erk signaling 
cascade. Indeed, cell adhesion or integrin ligation is required for 
optimal IGF-1-mediated activation of Shc and Erks (5, 20, 21). 
The intensity and duration of Erk phosphorylation in response to 
IGF-1 in the presence of cell adhesion may be a key determinant 
of cell phenotype and, in particular, EMT potential of cancer cells. 
For example, RACK1 over-expression biases the IGF signaling 
response toward increased Erk phosphorylation with concomitant 
increases in IGF-1 mediated cell proliferation and migration (1). 
G-protein coupled receptor (GPCR) engagement is also a com-
ponent of adhesion-regulated IGF signaling [reviewed in Ref. 
(22)], which biases IGF-1-mediated Erk activation (23). Several 
extracellular matrix and intracellular proteins have the potential 
to influence the level of IGF-1R association with adhesion recep-
tors and subsequent signaling. These include ECM components, 
such as fibronectin and collagen; proteoglycans, such as decorin, 
which regulates IGF-1R activation levels and internalization (24); 
and IGF binding proteins (IGFBPs) that can associate with ECM 
proteins and modulate IGF ligand activity or adhesion signaling 
(25, 26). Recent studies have also implicated the discoid domain 
receptor 1 (DDR1), which is a receptor tyrosine kinase (RTK) 
that becomes activated by collagen ligation (27, 28), and may be 
important for cell matrix adhesion and growth regulation. DDR1 
is also over-expressed in many cancers (28) and it associates with 
the IGF-1R (29). DDR1 association with the IGF-1R regulates 
IGF-1R trafficking and expression levels and promotes collagen-
dependent and -independent phosphorylation of DDR1. Hence, 
DDR1 is a newly characterized adhesion receptor that regulates 
IGF-1R expression and signaling in cancer cells (29). Interestingly, 
cancer genome sequencing studies indicate that head and neck 
cancers have many alterations in both IGF-1R and the DDR2 col-
lagen receptor (http://cancergenome.nih.gov). Thus, IGF-1R levels 
alone will not necessarily determine cancer cell responses to IGF-1 
and anti-IGF-1R therapies, as IGF-1R activity and downstream 
signaling are influenced by adhesion signals and activation of other 
signaling pathways, which are discussed further below.

iGF-1r regulation of cell–cell Adhesion 
complexes

IGF-1R can be found associated with E-cadherin in cell–cell 
adhesion complexes of normal corneal epithelial cells (30) and in 
several cancer cell types (7, 31–34). IGF-1 can stimulate cell–cell 
adhesion associated with survival and reduced migration in both 
2D and 3D models (31, 32, 34). Indeed, in MCF-7 breast cancer 
cells, IGF-1R interacts with, and regulates expression of the scaf-
folding protein zonula occludens protein 1 (ZO-1) at E-cadherin 
complexes, thereby enhancing the E-cadherin-mediated cell–cell 
adhesion (32, 34). However, IGF-1R activation can also promote 
cell migration in both normal and cancer cells [reviewed in Ref. (9, 
35, 36)]. Whether IGF-1R promotes cell adhesion or disruption of 
the E-cadherin adhesion complexes appears to be cell-type specific. 
For example, it has been shown that the interaction of active 
IGF-1R and E-cadherin is required for normal murine blastocyst 
formation (37). However, activation of the IGF-1R by either IGF-1 
(38) or IGF-II (33) has been also shown to disrupt cell–cell contacts 
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with concomitant redistribution of E-Cadherin and beta catenin 
from cell adhesion complexes to the cytoplasm or cytoplasm 
and nucleus, respectively, which is permissive to EMT and cell 
migration (7, 33). Integrin engagement by ECM is associated with 
dissolution of cell–cell junctions, and the integrin-activated signal-
ing pathway to FAK, Src, and small GTPases (including RhoA), and 
Rho Kinase can promote phosphorylation of adherence junction 
proteins or the stability of E-cadherin expression (15). There is 
also evidence for regulation of integrin adhesion by adherens 
junctions (AJ), where a key signaling intermediary is thought to 
be the Ras family GTPase Ras-related protein 1 (Rap1), which 
becomes activated upon AJ disassembly and is associated with 
focal adhesion formation (39). Interestingly, activated IGF-IR also 
transiently activates Rap1 and recruits it to sites of cell motile 
protrusion, whereas Rap1 remains in site of cell–cell contact in the 
absence of IGF-1R activation (40). IGF-1R and Rap1 expressions 
were both reported to exhibit increased expression in invasive 
breast cancer (41), again suggesting that IGF-1R contributes to 
the invasive switch in cancer.

iGF-1r signaling in cancer Phenotype, 
eMt, and Adaptive responses to therapy

Adhesion signaling in cooperation with IGF-1R may have an 
important role in the responses of cells to kinase inhibitors, 
chemotherapeutic agents, and other therapies. This adaptive 
response may be related to an EMT phenotype, whereby cells 
acquire a mesenchymal phenotype allowing them to invade and 
migrate and has also been likened to a stem-like phenotype. 
IGF-1 can induce transcription of drivers of EMT including the 
E-cadherin transcriptional regulators, Snail and Zeb (33, 42–45). 
In ovarian cell models, mechanisms of adaptive resistance to 
PI3-K/mTOR inhibitors were attributed to extracellular matrix 
attachment accompanied by up-regulation of IGF-1R and other 
pro-survival proteins (46). Recent reports on IGF-1R and Her2 
cooperation in invasiveness also indicate that the major biological 
effect facilitated by IGF-1R is invasion mediated by Src and FAK 
(47). The authors suggest that this effect is very likely to depend 
on integrin signaling, which would indeed be consistent with the 
published studies on Src, FAK, and integrin action in IGF-1R 
signaling.

A dataset for IGF-1-mediated activation of Akt and Erks in 
50 breast cancer cell lines is available in the library of integrated 
network-based cellular signatures (LINCS) consortium website 
from a study by Niepel et  al., which collated the responses to 
ligand stimulation and tyrosine kinase inhibitors for a panel of 
growth factors (48, 49). It is clear from this dataset that IGF-1R 
expression levels vary substantially across the 50 cell lines and that 
autophosphorylation on Y1131 (activity) of the IGF-1R does not 
necessarily correlate with receptor levels or downstream signaling 
events. This implies regulation or biasing of IGF-1R activity and 
signaling output by other signaling pathways, as discussed in the 
previous section. These pathways may include those activated by 
fibroblast growth factor (FGF), which biases toward Erk signaling 
in this study (48), epidermal growth factor (EGF), c-Met, or the 
Wnt signaling pathway (50–53). It is also becoming increasingly 
clear that expression and activation of these pathways may have 

important implications for responses to anti-IGF-1R therapy, as 
has been shown for DVL3 signaling (54).

In addition to its role in stem cell renewal, the Wnt pathway is 
increasingly recognized as an important driver of EMT, although 
the mechanisms and interactions with RTK and adhesion signaling 
are not yet well understood [reviewed in Ref. (52)]. Wnt signaling 
acts through 10 known seven-transmembrane Frizzled (Fzd) fam-
ily receptors and three Disheveled (DVL) isoforms (55, 56), which 
can activate either a canonical signaling pathway through beta 
catenin; a non-canonical pathway that includes Rho, Rac, PKCs, 
Jnk, and other proteins; or the alternative Wnt 5/Fzd2 pathway 
that is mediated by STAT3 and Fyn kinase (57). IGF-1R signaling 
can intersect with the canonical Wnt pathway at the level of GSK3 
beta phosphorylation and inactivation, leading to stabilization and 
transcriptional activation of beta catenin. IGF-1R inhibition also 
modifies Wnt pathway activity (58), and Wnt pathway components 
may modulate IGF-1R signaling (54). DVL3, a component of 
Wnt signaling pathways, was recently identified as a modifier of 
response to IGF-1R antibody or tyrosine kinase inhibitors, and 
DVL3 expression can alter the kinetics of IGF-1-mediated Erk 
activity (54). There is also evidence for altered levels of these Wnt 
pathway proteins in different stages of cancer differentiation and 
regulation of canonical and non-canonical Wnt signaling during 
cancer progression (59–61).

Adhesion signaling integrated with 
control of Gene expression: role for 
PDLiM2

The ability of cancer cells to invade, undergo reversible EMT, 
and retain stemness requires integrating gene expression with 
cytoskeleton dynamics and cell shape in response to cues from the 
extracellular matrix. PDLIM2 is an IGF-1 regulated cytoskeleton 
and nuclear protein that is also located in cell–cell and cell-matrix 
adhesion complexes (62, 63) (Figure 2A). PDLIM2 is expressed 
in epithelial cells, may be repressed in cancer, and is also highly 
expressed in cancer cells that exhibit an EMT phenotype (62–67). 
The pdlim2 gene is located on chromosome 8p21, a region that 
is disrupted in many cancers and associated with metastasis (68). 
PDLIM2 regulates protein stability and expression of the key EMT 
markers, E-cadherin and Snail (63). Moreover, PDLIM2 regulates 
STAT and NFκB transcription factors and cytoskeleton function 
in inflammatory leukocytes, and the beta catenin transcriptional 
output in epithelial cells (63, 69–71). Suppression of PDLIM2 
in normal MCF10A myoepithelial cells in 3D matrigel cultures 
leads to cell transformation, which, interestingly, is accompanied 
by markedly increased expression of both IGF-1R and RACK1 
(Figure 2B). In addition, loss of PDLIM2 inhibits cell polariza-
tion and causes up-regulation of β1 integrin expression, and 
subsequent hyper-activation of downstream signaling through the 
FAK-RhoA-cofilin axis that can be reversed by pharmacological 
inhibition of FAK or Rho Kinases (67). Suppression of PDLIM2 
in invasive cancer cells (DU145, MDA-MB-231) causes increased 
E-cadherin expression and cell–cell contact, loss of directional 
migration, altered expression and activity of many transcription 
factors associated with tumorigenesis, and reversal of EMT (63).
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FiGUre 2 | (A) PDLIM2 is expressed at cell–cell adhesions: MCF-7 cells 
overexpressing GFP-PDLIM2 were seeded on coverslips and cultured to 
confluency in complete growth medium (DMEM and 10% FBS) for 48 h. 
Cells were fixed and nuclei were stained with Hoechst dye (blue). Cells 
were photographed at the focus plane of cell adhesion to the coverslip to 
demonstrate the location of GFP-PDLIM2 (green). Nuclei are shown in 
slightly different focus plane in the background. Note: nuclei appear to be 
larger or overlapping compared with GFP-PDLIM2 expression between the 
cells because GFP-PDLIM2 outlines the area of the cell that is adhered to 

the coverslip, which in a confluent monolayer, adopts to different shapes 
and sizes that do not represent the full body of the cell. (B) Suppression of 
PDLIM2 causes increased expression of IGF-1R and the scaffolding 
protein, RACK1. Control MCF10A cells (shScramble) or MCF10A cells with 
PDLIM2 expression stably suppressed (shPDLIM2) were cultured in a 3D 
Matrigel assay for 12 days. Cell structures were fixed and processed for 
confocal microscopy analysis for RACK1 (green) and IGF-1R (red) 
expression and nuclei were stained with Hoechst (blue), as described in 
Ref. (67).
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Since PDLIM2 silencing impairs the formation of polarized 
acinar structures and also suppresses EMT and directional 
migration, it regulates both E-cadherin-mediated cell–cell adhe-
sion and ECM-Integrin activated signaling. This is consistent 
with a function as a cytoskeleton to nucleus courier protein, 
integrating signals from sites of cell adhesion with the cytoskel-
eton to gene expression in the nucleus. The presence of PDLIM2 
in both cell–cell adhesion and cell–matrix adhesion complexes 
also suggests a role in signaling crosstalk. The most likely 
mechanisms for this are through controlling protein stability 
of key components of the adhesion complexes and the activity 
of their transcriptional regulators. PDLIM2 associates with the 
Cop9 signalosome [in particular, the CSN5 subunit (JAB1)], 
which regulates the activity of Cullin-E3 ligase complexes and 
protein degradation (63). However, it is not yet clear whether 
PDLIM2 function in adhesion complexes contributes directly 
to protein stability in these complexes or is associated with its 
sequestration away from the nucleus to enhance stability of 
transcription factors. Identifying the key targets of PDLIM2 
within adhesion complexes will be necessary to establish its 
precise function.

Do iGF-1r and ir Function Differently in 
Adhesion signaling complexes?

The insulin receptor isoform A (IR-A) has been firmly estab-
lished as an important contributor to cancer phenotype, in 
particular, by promoting the renewal and survival of cancer 
stem cells and mediating responses to environmental condi-
tions including hyperglycemia [reviewed in Ref. (10, 72, 73)] 
and resistance to IGF-1R-targeted therapies (74). Since cancer 
stem cell growth may require switching on an EMT phenotype, 

it will be interesting to establish whether the IGF-1R and IR-A 
function differently in cooperation with adhesion signaling. 
This issue is complicated by the fact that IGF-1R is activated 
preferentially by IGF-1 and the IR-A by IGF-2, and ligand-
induced internalization and trafficking of the receptors may 
be different in response to ligand stimulation (29, 75, 76). 
Another key difference may reside in signaling or its regula-
tion by the C terminal tails of these receptors. This region of 
the receptor exhibits least (approximately 40%) homology. In 
particular, the 1248-SFYYS-1252 motif in the C terminal tail 
of the IGF-1R lacks tyrosines in the IR and has the amino 
acid sequence SFFHS. Substitution of the tyrosines Y1250/
Y1251 with phenylalanine in the IGF-1R is sufficient to impair 
recruitment of the IGF-1R into a complex with β1 integrin, and 
disrupt cooperative signaling and cytoskeleton organization (2, 
77). Substitution of serine S1248 with alanine in the IGF-1R 
impairs migration slightly but increases ligand-independent 
survival (78). Internalization and trafficking of these mutant 
receptors is also impaired, but it remains to be determined 
whether the actions of this motif of the C terminal tails can 
distinguish between IGF-1R and IR-A activity and whether they 
behave similarly in cancer stem cell renewal and in promoting 
cell invasiveness in EMT. IGF-1R signaling adaptation may 
also be associated with DNA damage-directed therapy. Initial 
resistance to cisplatin in ovarian cancer has been associated 
with increased IGF-1R expression, whereas IGF-1R expression 
levels decrease in later stages of resistance (79). This again 
indicates an adaptation that involves suppression of IGF-1R 
expression levels, but not necessarily activity. Taken together, 
it is clear that IGF-1R expression is highly adaptable during 
cancer progression. It can cooperate with many other signaling 
pathways and may be influenced by different cellular responses 
and phenotypes. Thus, it may be a major contributor to cancer 
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cell escape, survival, and ability to activate redundant cellular 
signaling pathways.

summary

IGF-1R signaling at focal adhesion complexes and its interplay 
with adhesion/cytoskeleton signaling has a critical role in cel-
lular transformation, EMT, therapy resistance, and the plasticity 
of cancer cells. In addition to altered kinetics of canonical Akt 
and Erk signaling pathways, it is intimately involved in complex 
bi-directional cytoskeletal–nuclear signaling to determine gene 
expression necessary for cell polarity and phenotypic changes. 
Determining the key regulators of IGF-1R expression and how 
their expression is regulated in phenotypically distinct cancers may 
unlock new ways to target invasiveness and resistance to kinase 
inhibitors and conventional cancer therapies.
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