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Fibroblast growth factor (FGF) 21 is a member of the endocrine FGF subfamily. FGF21 
expression is induced under different disease conditions, such as type 2 diabetes, obe-
sity, chronic kidney diseases, and cardiovascular diseases, and it has a broad spectrum 
of functions in regulating various metabolic parameters. Many different approaches have 
been pursued targeting FGF21 and its receptors to develop therapeutics for treating 
type 2 diabetes and other aspects of metabolic conditions. In this article, we summarize 
some of these key approaches and highlight the potential challenges in the development 
of these agents.
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iNTRODUCTiON

Fibroblast growth factors (FGFs) are a group of signaling proteins with a conserved core domain of 
about 120 amino acids. These molecules display diverse functions from embryonic development, and 
tissue regeneration, to maintenance of metabolic homeostasis. Aberrant FGF signaling is linked to 
a range of pathological conditions, from cancer to metabolic disease (1, 2). FGFs function through 
single-pass transmembrane receptor (FGFR) proteins with three extracellular immunoglobulin-
type domains (D1–D3) and an intracellular tyrosine kinase domain. Seven major FGFRs (FGFR1b, 
FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, and FGFR4) encoded by four FGFR genes mediate 
FGF functions. The mammalian FGF family comprises 18 members that are subdivided into six 
groups based on phylogenetic analysis (3). Five of the six subfamilies are paracrine molecules in that 
they are secreted, retained, and function in local tissues where they are produced due to high affinity 
interactions with heparan sulfate (HS) proteoglycans in the extracellular matrix. The exception is the 
FGF19 subfamily, consisting of FGF15/19, FGF21, and FGF23, which have reduced affinity for HS. 
Instead, they use single-pass transmembrane proteins of the Klotho family (α-Klotho or β-Klotho) 
as co-receptors to activate FGFR signaling in an endocrine fashion. FGF19 subfamily members play 
important roles in metabolic pathways including bile acid metabolism, energy expenditure, and 
glucose, lipid, vitamin D, and phosphate homeostasis (3).

The human FGF21 is a 209 amino acid protein with a mature secreted polypeptide of 181 amino 
acids. FGF21 is mainly expressed in the liver, but is also upregulated in many other tissues upon 
various stimulations (4, 5). While it binds to FGFRs with very low affinity in the presence of heparin/
HS, FGF21 efficiently binds to and activates FGFR1c, FGFR2c, and FGFR3c in the presence of co-
receptor β-Klotho in vitro (6–8). In vivo, β-Klotho and FGFRs are co-expressed in several tissues in 
which FGF21 is shown to signal, and thus are potential target tissues mediating its physiological and 
pharmaceutical actions.

Many studies reveal FGF21 as a multifunctional metabolic regulator and its levels are signifi-
cantly increased under many pathological conditions. For example, in mice, studies from Fgf21 
knockout (KO) and transgenic mice suggest diverse actions of FGF21 on many metabolic organs 
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to regulate glucose, lipid, and energy metabolisms (9–12). In 
humans, circulating FGF21 levels are elevated in obese subjects 
(13, 14), patients with impaired glucose tolerance (15), type 
2 diabetes mellitus (13, 15, 16), dyslipidemia (17), and non-
alcoholic fatty liver disease (NAFLD) (18, 19). Elevated serum 
FGF21 levels are also seen in subjects with coronary heart disease 
(CHD) (20, 21) and in patients with carotid atherosclerosis (22). 
Serum FGF21 levels increase with progression of chronic kidney 
disease (CKD), chronic and acute renal dysfunction (23, 24), 
cold-induced thermogenesis, and brown adipose tissue (BAT) 
activity (25, 26). Altogether, these findings suggest that targeting 
FGF21 and its pathway components may have broad impact on 
various human conditions. Since the physiological and pharma-
cological functions of FGF21 have been extensively reviewed 
in Ref. (27–34), in this article, we only briefly summarize the 
potential connections between FGF21 and disease conditions to 
suggest potential areas that may benefit from FGF21 treatment. 
We will focus the discussion on key approaches for therapeutic 
development of FGF21 analogs.

FGF21 SiGNALiNG iN MeTABOLiC 
DiSeASeS

Role of FGF21 in Diabetes and Obesity
FGF21 has emerged as an important metabolic hormone involved 
in the regulation of glucose, lipid, and energy homeostasis. 
FGF21 transgenic animals show lower levels of serum insulin, 
glucose, triglycerides (TG), cholesterol, lower hepatic TG content, 
improved insulin sensitivity, resistance to diet-induced obesity, 
and a significantly extended lifespan compared with their wild-
type counterparts (35–37). Likewise, recombinant FGF21 also 
demonstrates a dramatic effect in normalizing plasma glucose 
levels, improving insulin sensitivity, reducing plasma TG and 
cholesterol levels in various diabetic animal models and diabetic 
rhesus monkeys, exhibiting an attractive profile as a potential 
novel therapy for treating metabolic disorders (35, 38–42).

The ability of FGF21 to affect a major metabolic tissue function 
was first demonstrated on adipocytes. FGF21 increases insulin-
independent glucose uptake into cultured 3T3-L1 mouse adipo-
cytes and primary human adipocytes through the upregulation 
of glucose transporter 1 (GLUT1) expression (35). Subsequent 
studies reveal that FGF21 regulates adipocyte lipolysis (5, 43, 44) 
and increases adiponectin expression and secretion (45, 46). The 
central role of fat tissue to FGF21 function was demonstrated in 
a lipoatrophic mouse model (mice severely depleted of adipose 
tissue) (47), where recombinant FGF21 treatment cannot cor-
rect the hyperglycemia and insulin resistance in these mice in 
contrast to wild-type animals. Reconstitution of adipose mass by 
transplanting white adipose tissue (WAT) from wild-type mice 
to lipoatrophic mice restores FGF21 responsiveness (48). Fat-
specific KO of FGF21 receptors, β-Klotho and FGFR1, abolishes 
FGF21-induced bodyweight reduction and improvement in 
serum glucose and lipid parameters (36, 49, 50), further suggest-
ing an important role for fat tissue in FGF21 biology.

FGF21 stimulates uncoupling protein 1 (UCP1) gene 
expression in both BAT and WAT and dramatically increases 

the appearance of “brown-like” adipocytes in subcutaneous 
WAT (51–53). These effects may contribute to the thermogenic 
activities of FGF21 and to promote weight loss under high fat 
conditions. In mice, FGF21 expression is upregulated in response 
to cold exposure and β-adrenergic stimulation (11, 54, 55). In 
rats, cold exposure induces a marked release of FGF21 from 
BAT, suggesting an endocrine role of BAT as a source of FGF21 
that may be relevant in thermogenic activation (55). In humans, 
changes in serum FGF21 concentrations correlate positively with 
cold-induced thermogenesis (25), and circulating FGF21 levels 
correlate with BAT activity during acute cold exposure in male 
subjects, indicating a possible role for FGF21 in maintaining 
normothermia (26). Although two recent studies utilizing Ucp1 
KO mice challenge the importance of WAT browning in FGF21 
mediated pharmacology, the importance of these effects in 
humans remain to be resolved (56, 57).

Brain is another direct target of FGF21 action. FGF21 crosses 
the blood–brain barrier, and FGFRs and β-Klotho are expressed 
in certain areas of the brain [reviewed in Ref. (34)]. Central 
administration of FGF21 increases energy expenditure, insulin 
sensitivity, and hepatic gluconeogenesis, while knocking out 
β-Klotho centrally abolishes the effects of FGF21 on metabolism, 
circadian behavior, growth, and female reproduction (34), dem-
onstrating an essential role of the nervous system in the actions 
of FGF21. Future studies are needed to understand the interplay 
between brain and adipose tissue in FGF21 responses.

Role of FGF21 in Liver, Chronic Kidney, 
and Cardiovascular Diseases
Liver is a major site for both production and action of FGF21. 
The hepatic expression and plasma levels of FGF21 in mice are 
markedly elevated upon fasting, or consumption of a ketogenic 
diet, and are suppressed by re-feeding (5, 58, 59). It is induced 
directly by peroxisome proliferator-activated receptor (PPAR) 
α activation and mediates hepatic ketogenesis, and increases 
fatty acid oxidation, glucose flux, gluconeogenesis, and improves 
insulin sensitivity (5, 39, 40, 58, 59). Overexpression of FGF21 
or recombinant FGF21 injection exhibit increased ketogenesis in 
liver (5) and Fgf21 KO mice show impaired fatty acid oxidation 
in liver and develop hepatosteatosis (11). Elevated FGF21 levels 
have been associated with multiple liver diseases, including alco-
holic liver diseases (ALD), NAFLDs, non-alcoholic steatohepa-
titis (NASH), hepatocellular carcinoma (HCC), and hepatitis, 
although the role of FGF21 in the progression of these diseases 
has not been defined (60).

Understanding the direct function of FGF21 on liver is compli-
cated since most studies have focused on NAFLD in the context of 
obesity and pharmacologic doses of FGF21 induce rapid weight 
loss, making it difficult to identify the primary effects of FGF21 
on liver metabolism. To bypass weight loss-associated benefits, 
a lean model of fatty liver disease was induced by consumption 
of a methionine- and choline-deficient (MCD) diet (61). This 
model recapitulates most pathologic processes observed in fatty 
liver disease, with progression to NASH and development of 
severe inflammation and fibrosis, without weight gain or insulin 
resistance. Mice fed with the MCD diet have more than 50-fold 
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increased hepatic levels of FGF21 messenger RNA and 16-fold 
increased serum FGF21 levels. In Fgf21 KO mice, MCD diet 
induces more severe steatosis, fibrosis, inflammation, and per-
oxidative damage. These animals show reduced hepatic fatty acid 
activation and β-oxidation, resulting in increased levels of free 
fatty acid. Continuous subcutaneous infusion of recombinant 
FGF21 for 4  weeks in Fgf21 KO animals reverse steatosis and 
peroxidative damage, suggesting a direct and perhaps adipose 
independent role of FGF21 in liver fatty acid activation and 
oxidation (61).

Kidney is another tissue affected by FGF21 function. Serum 
FGF21 levels increase with the progression of CKD, and with 
chronic and acute renal dysfunction (23, 24). In patients with 
diabetic nephropathy, FGF21 levels are also independently asso-
ciated with urinary albumin excretion (62), although studies on 
direct renal effects of FGF21 remain limited. In a recent report, 
recombinant FGF21, injected daily for 12  weeks into leptin 
receptor KO db/db mice, markedly decreases urinary albumin 
excretion and mesangial expansion and suppresses the synthesis 
of profibrotic molecules (63). Furthermore, FGF21 administra-
tion decreases cholesterol and triglyceride accumulation in the 
diabetic kidney, and markedly abolishes the increase of p65 
protein in the proinflammatory NF-κB pathway, all contributing 
factors to the progression of diabetic nephropathy (63).

Elevated serum FGF21 levels are also observed in patients with 
CHD (21, 64) and associate with both carotid atherosclerosis in 
women and carotid artery plaques in type 2 diabetes subjects 
(22, 65). Furthermore, serum FGF21 levels positively correlate 
with carotid and iliac lesions in patients with subclinical athero-
sclerosis, especially in women. High levels of FGF21 may be a 
compensatory reaction to offset atherosclerosis (66).

Several recent reports examined the role of FGF21 in car-
diovascular diseases. FGF21 is produced by cardiomyocytes (12). 
Although levels of FGF21 secreted from the heart is much lower 
than from liver, FGF21 secreted by cardiac cells in response to 
cardiac stress is able to inhibit isoproterenol-induced cardiac 
hypertrophic damages, and protects cardiac cells against hyper-
trophic insults (12). The increased heart weight, signs of dilatation 
and cardiac dysfunction in response to isoproterenol infusion are 
exacerbated in Fgf21 KO animals. Treatment with recombinant 
FGF21 reverses cardiac hypertrophy in Fgf21 KO mice and 
cultured cardiomyocytes. This paracrine action of FGF21 on car-
diomyocytes prevents cardiac hypertrophy by activating MAPK 
signaling, inducing rapid phosphorylation of cAMP response 
element-binding protein (CREB), leading to increased expres-
sion of PGC-1α and repressed NF-κB proinflammatory pathway 
(12). FGF21 treatment also induces the expression of genes 
from antioxidative pathways, reduces reactive oxygen species 
production, and protects cells against oxidative stress, improving 
overall heart function and prevents heart failure (67). In a mouse 
model with severe defective TG catabolism due to deficiencies 
in adipose triglyceride lipase (ATGL), a drastic increase in heart 
FGF21 mRNA expression is observed. In cardiac-specific over-
expression of FGF21 (CM-Fgf21) animals, FGF21, secreted from 
cardiomyocytes, moderately affects cardiac TG homeostasis, 
indicating that FGF21 is induced upon cardiac ER stress and 
regulates cardiac as well as whole body energy homeostasis (68). 

All of these findings together suggest that modulating FGF21 
pathway may have broad benefits on multiple human conditions.

The elevated FGF21 levels observed under many disease 
conditions may indicate a state of FGF21-resistance as suggested 
by several studies (64, 69). However, alternative explanations, 
for example, that the FGF21 in diseased conditions represents 
less active form of the hormone due to modifications, are also 
possible. Nonetheless, the ability to respond to pharmacological 
doses of FGF21 despite the increased levels under disease condi-
tions supports the notion that FGF21 treatment may be beneficial 
in these disease areas.

THeRAPeUTiC APPROCHeS TARTeTiNG 
FGF21 PATHwAY

The impressive beneficial effects exhibited by FGF21 treatment 
in various animal models on multiple metabolic parameters 
prompted considerable interest in developing therapeutics from 
this pathway. However, the native FGF21 molecule is not suit-
able as a development candidate due to short plasma half-life 
and poor drug-like properties (32). Considerable engineering 
efforts are needed to bring sufficient improvements for large-scale 
manufacturing and further clinical development. This section 
highlights several key approaches explored in the search of a 
suitable therapeutic candidate.

engineering the Native FGF21 Molecule
Extensive protein engineering on FGF21 itself yields significant 
improvements in biophysical properties in several different 
expressions systems. For example, the introduction of a disulfide 
bond at L118C–A134C in the C-terminal domain of FGF21, site-
specific mutagenesis at S167 to A, and the deletion of the first four 
amino acids, HPIP, are found to improve the stability, and reduce 
the heterogeneity and proteolysis issues associated with the wild-
type protein in the Pichia pastoris yeast expression system (70). A 
molecule, LY2405319, that combined all three changes together, 
is indistinguishable from native FGF21 in physiological effects 
both in vitro and in preclinical rodent and monkey models, but 
with improved biophysical properties suitable for large-scale 
production (70, 71). LY2405319 is the first FGF21 analog to enter 
human clinical trial, a phase I study was conducted in obese 
subjects with type 2 diabetes (70). Overall, the clinical data are 
similar to the pharmacologic effects of FGF21 in rodent and non-
human primates, LY2405319 significantly lowers body weight, 
fasting insulin levels, fasting TG, total and LDL-cholesterol, 
and robustly increases serum adiponectin and HDL-cholesterol 
levels. However, only a trend toward glucose lowering is observed 
(70). These results are encouraging and supports that FGF21 is 
bioactive in humans; however, the effectiveness of FGF21 in 
controlling hyperglycemia would still need to be addressed in 
future studies.

Engineering efforts for other expression systems are also 
described. To efficiently produce FGF21 from Escherichia coli, Ye 
et al. exchanged the beta10-beta12 domain of human FGF21 with 
that of the mouse sequence and then fused the chimeric protein 
to SUMO (72). The solubility of the resulting SUMO-FGF21 
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protein is improved by twofold compared with the wild-type 
human FGF21. The engineered FGF21 is also more potent in 
stimulating glucose uptake in HepG2 cells and shows improved 
glucose-lowering effects in diabetic db/db mice (72).

Other alterations are also explored to improve the stability 
and bioactivity of FGF21. For example, the C-terminal domain of 
FGF21 crucial for interaction with co-receptor β-Klotho (73–75) 
is also sensitive to proteolysis (76). Replacement of this segment 
with sequences that are both resistant to proteolytic cleavage and 
have higher affinity for β-Klotho can achieve both of the goals 
of improving stability and bioactivity. In one approach, this 
C-terminal domain of FGF21 is replaced with that of FGF19, 
believed to bind to β-Klotho with higher affinity (77); while in 
another approach, this C-terminal domain is replaced with a sta-
ble scaffold called Avimer™ that has high affinity to co-receptor 
(78). The avimer fusion molecule, FGF21 (1-171)-WD22, indeed 
has improved properties and decreased susceptibility to modi-
fications compared to wild-type FGF21 (78), providing a novel 
framework for further engineering that is not possible with the 
wild-type protein.

To extend FGF21 plasma half-life by reducing clearance 
through kidney filtration, several size-extension approaches, such 
as PEGylation, fusion to Fc, serum albumin, or full antibodies, are 
all reported to improve the pharmacokinetic properties of FGF21.

PEGylation to FGF21 can be achieved through the N-terminal 
residue or a specific site on the surface of the protein. N-terminal 
PEGylation using 20 kDa mPEG-butyraldehyde extends FGF21 
plasma half-life from ~35 min to ~4 h with reduced immuno-
genicity (79). Internal PEGylation can be carried out by mutating 
specific amino acid residues for attachment to a cysteine residue 
(80) or to a non-natural amino acid, p-acetylphenylalanine (81), 
followed by conjugation reactions for PEG attachment. In these 
cases, the plasma half-life extension achieves >30  h in rodent. 
In general, PEGylation at certain positions retains good FGF21 
activities in vitro and in vivo (79–81). In addition, correctly placed 
PEG moieties also reduce the risk of inducing kidney vacuole 
formation (80).

Alternative to PEGylation, half-life extension via fusion to Fc 
molecules has the potential advantage of reducing manufactur-
ing complexity and improving homogeneity of the final product. 
A FGF21 analog based on fusion to the Fc fragment of human 
IgG1 reports such improved properties (76). The final molecule, 
Fc-FGF21(RG), consists of the combination of several changes, 
these include the selection of the N-terminus of FGF21 for Fc 
fusion to reduce impact on receptor binding, mutation at P171 
to G to remove a proteolytic clipping site, and substitution of 
L98 to R to reduce aggregation (76). Fc-FGF21(RG) reports a 
circulating half-life of 11 h in mice and 30 h in monkeys (76, 82). 
In rodent models and obese rhesus monkeys, a single injection of 
Fc-FGF21(RG) displays a sustained reduction in blood glucose 
levels, lipids, and bodyweight for 5–7  days, demonstrating a 
profile consistent with once-weekly dosing (83).

Fusion to scaffold monoclonal antibody also proves success-
ful in extending FGF21 plasma half-life (84). A mutated FGF21 
molecule is conjugated to the Fab region of a scaffold antibody, 
CVX-200, via one of the four native lysine residues (K56, K59, 
K69, or K122) or one of the three positions mutated to cysteine 

(D79C, H125C, and A129C). One such conjugated molecule, 
CVX-343, which is the fusion of the FGF21-A129C mutant to the 
scaffold antibody retains in vitro activity while increasing half-life 
up to 70-fold compared with wild-type FGF21. In diet-induced 
obese mice, weekly doses of CVX-343 reduce body weight, blood 
glucose, and lipid levels. In ob/ob and db/db mice, CVX-343 
increases glucose tolerance, pancreatic beta-cell mass and prolif-
eration, providing evidence of another half-life extended FGF21 
molecule with improved preclinical pharmacokinetics while 
preserving full therapeutic functionality.

Other FGF-Based Analogs
Several other FGF molecules show similar effects on metabolism 
to FGF21 (32, 85). In addition, advances in understanding FGF/
receptor interactions/functions offer alternative approaches 
to engineer FGF21-like or mimetic molecules. So far, FGF19, 
FGF23, FGF1, and FGF2 have been explored for this concept.

The most advanced analog is based on FGF19. FGF21 and 
FGF19 share an extensive receptor binding profile and pharma-
cological effects [reviewed in Ref. (32, 86)]. Both bind β-Klotho, 
and both activate β-Klotho complexed with FGFR1c, 2c, and 3c. 
Both FGF19 and FGF21 display a similar metabolic profile, such 
as lowering serum glucose, TG and cholesterol levels, as well as 
improving insulin sensitivity and reducing bodyweight in multi-
ple disease models, suggesting that FGF19 could be an alternative 
to FGF21 for therapeutic development. However, the key concern 
for FGF19 is that in addition to FGFR1c, 2c, and 3c, FGF19 also 
regulates bile acid homeostasis and induces hepatocyte prolifera-
tion and HCC via activation of FGFR4 (51, 87–89). Therefore, 
selective removal of mitogenic activity is a strategy for FGF19 
development. FGF19 variants devoid of the undesirable prolifera-
tive activities have been identified (88, 90–92) and one variant 
has been tested in humans (92), the efficacy and long-term safety 
profiles in humans remain to be established.

A similar strategy also proved successful for FGF1. FGF1, 
considered a prototypic FGF molecule discovered in the early 
1970s, has also been shown recently to play a role in adaptive 
adipose remodeling and metabolism (85, 93). Similar to FGF19, 
the mitogenic and metabolic activities of FGF1 are separable. 
A variant of FGF1, devoid of mitogenic activity, improves 
glucose metabolism and insulin sensitivity in a rodent model, 
demonstrating a potential utility of FGF1 in treating diabetes 
in humans (85).

Structural and functional studies of various FGF molecules 
suggest another interesting approach where the core FGF 
sequence can be considered as a protein scaffold, and sequences 
outside the core can be considered as appendages enabling a spe-
cific biological activity through specific interactions with FGFRs, 
co-receptors, and/or heparin (90). This opens the possibility to 
explore the entire FGF family for designing the best candidate 
for development (90). Two successful examples are reported, one 
with endocrine factor, FGF23 (94), the other with a paracrine 
factor, FGF2 (95). In the case of FGF23, since it also activates 
FGFR1c, 2c, and 3c (94), but differs from FGF21 in co-receptor 
utilization (6, 96, 97), the replacement of the α-Klotho interact-
ing FGF23 C-terminal domain with the β-Klotho interacting 
FGF21 C-terminal domain converts FGF23 into an FGF21-like 
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molecule (94). In the case of FGF2, in addition to adding the 
β-Klotho interacting C-terminal region of FGF21 (P168–S209) 
to the FGF2 framework from M1 to M151, mutations in the 
HS-binding site (K128D/R129Q/K134V) are also needed to 
reduce heparin binding. The resulting molecule, FGF2ΔHBScore-
FGF21C-tail, loses heparin binding and HS-dependent activation 
of FGFR1c, but gains the ability to function like FGF21 to 
regulate metabolism (95).

Non-FGF-Based Analogs
While significant improvements have been made to FGF21 and 
other FGF-based FGF21 analogs, additional challenges may need 
to be addressed as the molecules progress through development. 
For example, potential induction of anti-drug antibodies that 
neutralize endogenous ligand function may pose risk in the clinic. 
Therefore, protein scaffolds or modalities that have more optimal 
drug-like properties, but do not have sequence homology to 
endogenous ligands, may circumvent challenges associated with 
the use of endogenous ligands themselves. Since FGF21’s pharma-
cological function is mainly mediated through FGFR1c/β-Klotho 
activation [reviewed in Ref. (32)], several innovative approaches 
using monoclonal antibodies (mAbs) and other stable scaffolds to 
target components of the receptor complex have been reported.

A subset of mAbs, identified through phage display screen-
ing that selectively bind both FGFR1 isotypes, are found to be 
agonistic and able to activate receptor signaling (98, 99). In 
multiple diabetic animal models, the injection of these FGFR1 
agonistic antibodies induce acute and sustained serum glucose 
lowering, decrease serum insulin levels and bodyweight, and 
improve lipid profiles and hepatosteatosis. In fat tissue, FGF21 
and anti-FGFR1 antibodies induce CREB phosphorylation and 
increase expression of PGC-1α, PGC-1β, UCP-1 and the down-
stream genes associated with oxidative metabolism. Overall, the 
effects of these agonist antibodies mimic FGF21 actions. Since 
these antibodies do not depend on β-Klotho to signal, the non-
tissue-specific activation of FGFR1 also induces undesirable side 
effects. For example, these antibodies induce FGF23 production 
and hypophosphatemia owing to their actions in bone and kid-
ney, and potential ability to induce proliferation may be another 
concern (98, 100).

An antibody, mimAb1 identified through immunization of 
XenoMouse, specifically activates FGFR1c and is completely 
β-Klotho dependent (49). MimAb1 displays similar potency and 
efficacy in inducing ERK phosphorylation in  vitro when com-
pared with recombinant FGF21. In obese cynomolgus monkeys, 
mimAb1 injections result in reductions in bodyweight, plasma 
insulin and TG, and improvement in insulin sensitivity similar to 
Fc-FGF21, but with significantly extended duration of effect (49).

FGFR1/β-Klotho specificity and β-Klotho dependency is also 
achieved through another approach, the generation of a bispecific 
molecule where one arm binds β-Klotho while the other binds 
FGFR1. This concept was first demonstrated using the Avimer™ 
scaffold. A-domain library is screened for Avimer™ polypeptides 
that bind FGFR1 or β-Klotho (101). The individual binders are 
then assembled into a single polypeptide, generating a bispecific 
molecule that binds to β-Klotho and FGFR1c simultaneously. One 
such bispecific avimer, C3201, is highly potent in FGF21-sensitive 

cell-based assays, activates FGFR1c signaling with efficacy similar 
to FGF21 and depends on β-Klotho. To extend its serum half-life, 
C3201 is fused to human serum albumin (HSA), and the result-
ing fusion molecule, C3201-HSA, exhibits a half-life sufficient 
for once-weekly dosing. When tested in male obese cynomolgus 
monkeys, animals treated with C3201-HSA show improved meta-
bolic parameters with reduced bodyweight, insulin, and TG levels 
similar to FGF21 (101). Therefore, these data demonstrate the 
concept that a bispecific molecule, generated by fusing a FGFR1 
binder and a β-Klotho binder together, can activate appropriate 
receptor signaling and mimic the activity of FGF21 in vitro and 
in vivo. Generation of such a bispecific molecule is not restricted 
to an Avimer scaffold, other scaffolds can also be used. A variation 
of this approach using a bispecific antibody has also been shown 
to be successful. FGFR1 binders and β-Klotho binders, obtained 
through phage display and immunization, respectively, are 
assembled using the knob and hole method (102). The resulting 
bispecific molecules resemble a normal antibody conformation 
except with the two arms capable of binding FGFR1 and β-Klotho 
separately. Similar to bispecific Avimers, these bispecific antibod-
ies also display activities similar to FGF21, stimulate thermogenic 
activity in BAT, induce WAT browning, and ameliorate obesity, 
insulin resistance, and associated metabolic defects. Unlike the 
antibodies activate FGFR1 independent of β-Klotho, the bispecific 
antibodies do not alter serum FGF23 and phosphorus levels (98, 
100, 102), supporting the notion that increase target specificity 
through β-Klotho dependency reduces undesirable side effects 
of FGFR activation.

SUMMARY

An FGF21 therapeutic represents an attractive opportunity for 
novel drug development treating metabolic disorders. Many of its 
potent activities in improving glucose metabolism, lipid metabo-
lism, inducing energy expenditure and reducing bodyweight, 
demonstrated in many rodent and non-human primate models, 
are translated to humans.

TABLe 1 | Selected list of FGF21 analogs.

Target Compound (source) Reference

FGF21 analogs LY2405319 (Eli Lilly) (70)
SUMO-FGF21 (NAU) (72)
FGF21/19 chimera (NYU) (77)
FGF21(1-171)-WD22 (Amgen) (78)

FGF21 long-acting 
analogs

PEG-FGF21 (WMC) (79)
PEG-FGF21 (Amgen) (80)
ARX-618 (Ambrx/BMS) (81, 109)
Fc-FGF21 (Amgen) (76)
CVX-343 (Pfizer) (84)

Other FGF-based 
analogs

FGF19 variants (Amgen, 
Genentech, NGM)

(88, 90–92)

FGF23-21 (Amgen) (94)
rFGF1ΔNT (Salk/NYU) (85)
FGF2ΔHBScore-FGF21C-tail (NYU) (95)

Non-FGF-based 
analogs

R1Mab (Genentech) (98)
mimAb1 (Amgen) (49)
C3201-HSA (Amgen) (101)
bFKB1 (Genentech) (102)
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Various approaches successfully improve FGF21 stability, 
reduce aggregation, improve affinity toward receptor, and 
improve its manufacturability and productivity (Table  1). 
Additionally, FGF21-mimetic molecules utilizing completely 
distinct protein modalities, with no similarities to endogenous 
ligand, such as agonistic antibodies and bispecific Avimers, 
open new opportunities to identify best-in-class therapeutics 
for this pathway (Table 1). However, significant challenges also 
exist. Although initial clinical data provide encouraging signs 
of efficacy in humans, it is unclear if FGF21 could provide 
clinically meaningful improvements in hyperglycemia or more 
robust and durable responses in other metabolic parameters 
under chronic treatment conditions. In addition, studies in 

rodents with FGF21 reveal several potential areas of side-effect 
concerns that need monitoring, such as potential interactions 
with the growth hormone axis (103, 104), decreases in bone 
mineral density (105), increases in plasma corticosterone 
levels (106), cross-talk with the PPARγ axis (107), and female 
infertility (108). The human relevance of these rodent findings, 
as well as the potential differences in side-effect profiles among 
the different therapeutic approaches, will need to be evaluated 
in the future.
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