
November 2015 | Volume 6 | Article 1771

Review
published: 20 November 2015

doi: 10.3389/fendo.2015.00177

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Jacqueline Jonklaas,  

Georgetown University, USA

Reviewed by: 
Tania M. Ortiga-Carvalho,  

Universidade Federal do Rio de 
Janeiro, Brazil  

Joanna Klubo-Gwiezdzinska,  
National Institutes of Health, USA

*Correspondence:
Johannes W. Dietrich  

johannes.dietrich@ 
ruhr-uni-bochum.de

Specialty section: 
This article was submitted to Thyroid 

Endocrinology,  
a section of the journal  

Frontiers in Endocrinology

Received: 15 September 2015
Accepted: 04 November 2015
Published: 20 November 2015

Citation: 
Hoermann R, Midgley JEM, Larisch R 
and Dietrich JW (2015) Homeostatic 
Control of the Thyroid–Pituitary Axis: 

Perspectives for Diagnosis and 
Treatment.  

Front. Endocrinol. 6:177.  
doi: 10.3389/fendo.2015.00177

Homeostatic Control of the  
Thyroid–Pituitary Axis: Perspectives 
for Diagnosis and Treatment
Rudolf Hoermann1 , John E. M. Midgley2 , Rolf Larisch1 and Johannes W. Dietrich3,4*

1 Department of Nuclear Medicine, Klinikum Luedenscheid, Luedenscheid, Germany, 2 North Lakes Clinical, Ilkley, UK, 
3 Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 
Bochum, Germany, 4 Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, 
Bochum, Germany

The long-held concept of a proportional negative feedback control between the thyroid and 
pituitary glands requires reconsideration in the light of more recent studies. Homeostatic 
equilibria depend on dynamic inter-relationships between thyroid hormones and pituitary 
thyrotropin (TSH). They display a high degree of individuality, thyroid-state-related hierar-
chy, and adaptive conditionality. Molecular mechanisms involve multiple feedback loops 
on several levels of organization, different time scales, and varying conditions of their 
optimum operation, including a proposed feedforward motif. This supports the concept 
of a dampened response and multistep regulation, making the interactions between 
TSH, FT4, and FT3 situational and mathematically more complex. As a homeostatically 
integrated parameter, TSH becomes neither normatively fixed nor a precise marker of 
euthyroidism. This is exemplified by the therapeutic situation with l-thyroxine (l-T4) where 
TSH levels defined for optimum health may not apply equivalently during treatment. In 
particular, an FT3–FT4 dissociation, discernible FT3–TSH disjoint, and conversion ineffi-
ciency have been recognized in l-T4-treated athyreotic patients. In addition to regulating 
T4 production, TSH appears to play an essential role in maintaining T3 homeostasis by 
directly controlling deiodinase activity. While still allowing for tissue-specific variation, 
this questions the currently assumed independence of the local T3 supply. Rather it 
integrates peripheral and central elements into an overarching control system. On l-T4 
treatment, altered equilibria have been shown to give rise to lower circulating FT3 con-
centrations in the presence of normal serum TSH. While data on T3 in tissues are largely 
lacking in humans, rodent models suggest that the disequilibria may reflect widespread 
T3 deficiencies at the tissue level in various organs. As a consequence, the use of TSH, 
valuable though it is in many situations, should be scaled back to a supporting role that 
is more representative of its conditional interplay with peripheral thyroid hormones. This 
reopens the debate on the measurement of free thyroid hormones and encourages the 
identification of suitable biomarkers. Homeostatic principles conjoin all thyroid parame-
ters into an adaptive context, demanding a more flexible interpretation in the accurate 
diagnosis and treatment of thyroid dysfunction.
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DUAL ROLe OF HORMONeS iN THYROiD 
HOMeOSTASiS

The dynamic ability to maintain flexible homeostatic equilib-
ria in response to environmental challenges is a hallmark of 
a healthy state of the organism. Thyroid hormones assume a 
dual role in homeostatic regulation, acting as controlling as 
well as controlled elements. They target a broad spectrum of 
metabolic effects but concomitantly are strongly regulated 
themselves. A basic understanding of thyroid control involving 
pituitary thyrotropin (TSH) has been readily exploited for the 
diagnosis of thyroid disorders (1–4). As a result, measurement 
of TSH, though an indirect indicator of thyroid homeostasis, 
has become central to contemporary thyroid function testing 
(4, 5). Our knowledge of the mechanisms involved in the 
regulation of thyroid hormones has greatly evolved in recent 
years. The underlying system is far more complex than previ-
ously thought (Figure 1). This requires a revision of long-held 
simplistic concepts and promotes a multifactorial concept of 
the feedback control between the thyroid and the pituitary 
gland (6–9). In this article, we review the role of thyroid 
homeostasis in the light of recent developments and discuss 
the resulting new perspectives for diagnosis and treatment of 
thyroid dysfunction.

HOMeOSTATiC ASPeCTS OF THYROiD 
FUNCTiON CONTROL

From first principles, it is clinically important to understand 
clearly what distinguishes a controlling parameter from any other. 
A change in TSH concentration could be either merely adaptive 
to restore true euthyroidism or a failed attempt to maintain the 
euthyroid state. Corrective moves of the control parameter may 
therefore merely imply a change in the mechanism targeted. This 
depends on whether the correction sought for is successfully 
achieved or not. Any meaningful interpretation must respect 
those particularities in TSH, which do not apply to most other 
laboratory parameters.

The concept of a control loop feeding back information 
about the state of thyroid production to the pituitary gland was 
postulated as early as 1940 (11) and established experimentally 
before 1950 (12, 13). Models initially assumed an inverse linear 
correlation between TSH and T4 (14–17), but following more 
detailed analysis this was later changed to a log-linear relation-
ship, which has remained the standard model ever since (18–22). 
As circulating thyroid hormones are bound to a large extent to 
transport proteins (TBG, transthyretin, and albumin) TSH has 
mostly been related to the unbound biologically active hormone, 
free T4 (FT4). Table  1 summarizes various thyroid–pituitary 

FiGURe 1 | Homeostatic integration of central, thyroidal, and peripheral influences. The integrated control involves several major control loops, a negative 
feedback control of thyroid hormones on pituitary TSH and hypothalamic TRH, positive stimulatory control of TRH on TSH, ultrashort feedback of TSH on its own 
secretion, and feedforward control of deiodinases by TSH. Other thyrotropic agonists than TSH, such as TSH receptor antibodies (TSH-R Ab) and human chorionic 
gonadotropin (hCG), play an important role in diseases, such as Graves’ disease and pregnancy-related hyperthyroidism. A plethora of additional influences may 
fine-tune the responses at each level of organization. 1 refers to the classical Astwood–Hoskins loop, and 5 indicates ultrashort feedback loop of TSH on its own 
secretion, described in the text. Additional feedback loops (not shown here) control the binding of thyroid hormones to plasma proteins (8, 10).
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TABLe 1 | Historical perspective on evolving models for the TSH-T4/FT4 
relationship.

Author Year of 
publication

Regression

Danziger and 
Elmergreen (14)

1956 Linear

Roston (23) 1959 Linear with basal secretion

Norwich and Reiter 
(15)

1965 Linear

DiStefano and Stear 
(36) 

1968 Linear with basal secretion

DiStefano and Chang 
(16, 37)

1969 and 1971 Linear with basal secretion

Saratchandran et al. 
(24)

1976 Log-linear

Wilkin et al. (17) 1977 Restricted maximum secretion

Hatakeyama and 
Yagi (38)

1985 Power law and linear

Cohen (25) 1990 Exponential

Spencer et al. (19) 1990 Log-linear

Li et al. (26) 1995 Non-linear polynomial

Dietrich et al.  
(10, 27, 28, 40)

1997, 2002, and 
2004

Michaelis–Menten kinetics, 
non-competitive inhibition, and 
first-order time constants

Sorribas and  
González (39)

1999 Power laws

Leow (18) 2007 Log-linear

Degon et al. (29) 2008 Non-linear

McLanahan et al. 
(30)

2008 Michaelis–Menten kinetics, 
non-competitive inhibition, and 
first-order time constants

Eisenberg et al. 
(31, 32)

2008 and 2010 Adopted from DiStefano

Benhadi et al. (21) 2010 Log-linear

Hoermann et al. 
(6, 9)

2010 and 2014 Erf (modulated log-linear) and 
polynomial

van Deventer et al. 
(22)

2011 Log-linear

Clark et al. (33) 2012 Polynomial

Midgley et al. (8) 2013 Segmented log-linear

Hadlow et al. (7) 2013 Polynomial

Jonklaas et al. (34) 2014 Segmented

Goede et al. (35, 41) 2014 Exponential (log-linear) and log-
linear with Michael–Menten-type 
feedforward path

Models of DiStefano et al. and Eisenberg are based on the same platform. Likewise 
models of Dietrich et al., McLanahan et al., Midgley et al., and Hoermann et al. (9) are 
based on a common formalism. The model of Goede et al. (41) inherits from those of 
Leow (18) and Dietrich et al. (10, 27, 28, 40).
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feedback models that have been proposed in the literature over 
the last decades (6–10, 14–19, 21–39). The feedforward path link-
ing TSH levels to T4 output has been modeled as a simple linear 
relation in the majority of these models.

From the perspective of a sufficiently sensitive defensive 
response, however, linear or log-linear proportional relations 
between TSH and FT4 would not intuitively appear to be the most 
adequate solution. As in many technical systems, a dampened 

response could be more suited to maintain the controlled param-
eter at a given stable level with a minimal fluctuation. This 
consideration requires an examination of the system operating 
beyond the standard log-linear model.

A ReASSeSSMeNT OF THYROiD–
PiTUiTARY FeeDBACK CONTROL

It would be ideal to follow individuals’ responses during progres-
sion from the hypothyroid to the hyperthyroid state to study the 
changing pituitary response over the entire functional spectrum. 
Analyses that do not cover the full spectrum from the hypothy-
roid to the hyperthyroid extremes are problematic to interpret, 
because wide variations in the slopes of the logTSH–FT4 relation-
ships have been reported (19, 21, 22, 42). Particularly, different 
weightings of the extreme, statistically most influential dysfunc-
tional examples in the various patient panels impact heavily on 
the linear regression. Studies restricted to a narrower euthyroid 
panel have yielded TSH estimates when extrapolating the regres-
sion line to the hypothyroid state are much lower than those 
clinically observed in the hypothyroid patient (21, 22). Large 
cross-sectional studies have examined the TSH–FT4 relationship 
over the entire functional range but did not confirm a proportional 
and log-linear TSH–FT4 relationship, rather suggesting that the 
TSH response to changes in FT4 is curvilinear and damped 
in the middle part (6, 7, 9, 33) (Figure  2). Technically, using 
either a modulatory logistic function, a segmented approach, 
non-competitive inhibition, or polynomial approximation offers 
similar ways of examining the same underlying principles of a 
non-proportional adaptive response dependent on the actual 
thyroid hormone status (6–8, 33). The non-linearity of the 
logTSH–FT4 relationship has been independently confirmed by 
several groups and was replicated in a prospective study involving 
1912 subjects (7–9, 33, 34). Thus, the TSH–FT4 relationship is not 
invariant but is impacted on by the thyroid status itself, which 
acts as a major determinant of the gradient relating TSH and 
FT4 (8). Accordingly, the thyroid state may be more vigorously 
defended, the greater is the deviation from a putative optimum 
state (6) (Figure  2). This behavior provides a far more flexible 
response than a simple log-linear template. It may conceivably 
arise from the integrated action of the multiple feedback loops 
operating at various levels of organization, as shown in Figure 1. 
The consequences of the non-proportional relationship for the 
clinical interpretation are discussed below.

It should be noted that these studies relied on immunometric 
FT4 assays, since tandem mass spectrometry (LC–MS/MS) is 
currently not practicable with large patient panels. However, 
none of the studies gave indication of a TSH–thyroid hormone 
mismatch. The inverse linear relation between thyroid hormones 
and logTSH was similarly broken with an immunoassay and 
LC–MS/MS in a clinically diverse sample contradicting an ear-
lier report (22, 34). A subanalysis was conducted in a cohort of 
otherwise “healthy” out-patients without relevant comorbidity 
to ascertain FT3 or FT4 measurements and their relationships 
were not compromised by problematic conditions, such as 
pituitary dysfunction and the non-thyroid illness syndrome (6). 
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Reliability of immunological methods and harmonization among 
various commercially available assays has been questioned (43, 
44). In this respect, we have extensively evaluated the analytical 
performance of the immunoassays used in our inter-relational 
studies (45). In particular, we verified the reference range in the 
local population, demonstrated robustness of the relationships 
despite biological variation, and quantified other influences on 
the defining relationships, such as age and body mass index (9, 
45). A clinically important and specific role of FT3 measurement 
was further supported by our pilot study in a large unselected 
predominantly euthyroid sample (46). FT3, in the range from 1 
to 10 pmol/l, but not FT4 or TSH, showed a significant u-shaped 
relationship with the Hospital Anxiety and Depression Score 
(HADS) as well as the anxiety and depression subscales in a 
generalized linear-quadratic model (not a widely used, but 
unsuitable linear model) (46). Together these findings support 
suitability of FT3 for correlative studies when measured with the 
same instrument at a single institution but do not negate issues 
of insufficient validation and standardization with the methods 
discussed below.

FiGURe 2 | Non-linear relationship between logTSH and free T4. The two studies by Hoermann et al. (6) (A) and Hadlow et al. (7) (B) show that the TSH–FT4 
relationship may not follow a proportional log-linear model (dashed straight line), displaying a damped response in the euthyroid range and steeper gradients at the 
hypothyroid or hyperthyroid spectrum. The superiority of the non-linear modulatory logistic function shown over the standard log-linear model was statistically 
established by a strict curve-fitting template based on Akaike’s information criterion (6). A multistep regulation of the FT4–TSH feedback control is discussed in the 
text. Adapted and reproduced with permission from Hoermann et al. (6) and Hadlow et al. (7).

MOLeCULAR MeCHANiSMS iNvOLveD iN 
THe FeeDBACK CONTROL

While this article focuses on homeostatic regulation and an in-
depth review of the growing body of molecular details is beyond its 
scope, it should be briefly shown that key mechanisms are recon-
cilable with a non-proportional model. Both T3 and T4 following 
its conversion into T3 bind to specific intracellular TR receptors 
exerting a repressive action on various genes, including TSHβ and, 
to a lesser degree, α-subunit (47–52). Among the isoforms of TR 
expressed in various tissues, TRβ2 is active in the central nerv-
ous system, hypothalamus, and pituitary gland, with a reported 
sensitivity enhanced up to 10-fold to thyroid hormones, compared 
with TRβ1 (53, 54). Such a differential response should enable the 
central tissues to anticipate T3/T4 oversupply before it can affect 
less sensitive peripheral tissues. Similarly, deiodinases in central 
and peripheral tissues are also regulated differently, enhancing 
T3 conversion and providing a differentiated mechanism for 
oversensitively responding to changes in FT4 in the feedback 
loop (55–63). Specifically, type 2 deiodinase ubiquitination has 
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recently been shown to be instrumental in hypothalamic negative 
feedback regulation and is expressed in a non-uniform way among 
various tissues (64). Contrary to earlier assumptions, T3 and T4 
do not diffuse freely across the plasma membrane but are actively 
transported by specialized transport proteins, such as MCT8, 
MCT10, and OATP1C1 (65). Intracellular trafficking involves 
intracellular binding substrates (IBSs) of thyroid hormones (e.g., 
CRYM) (66). These carriers appear to be necessary components 
of the feedback control, as simulated for IBS and demonstrated 
for MCT8 deficiency (27, 65). Additionally, in rodents their hypo-
thalamic expression has been shown to be subject to regulation 
by T3 (67). Transmembrane transport control adds another layer 
of complexity to the system but is currently not well understood.

While negative thyroid hormone feedback mitigates thyroid 
hormone overproduction and hyperthyroidism, TRH is a potent 
defensive mechanism against undersupply, stimulating both 
pituitary TSH secretion and modulating its bioactivity (68–72). 
TSH stimulation of thyroid hormone production, in turn, is 
essential, because the TSH-independent basal capacity of the 
thyroid gland is limited and unable to maintain a euthyroid state. 
Tissue-specific glycosylation differentially regulates the hormone 
allowing for targeted signaling (73). Pars tuberalis-derived TSH 
has been shown to differ in its glycosylation pattern from the 
pars distalis-derived hormone, lacks the ability to stimulate the 
thyroid TSH receptor, and regulates deiodinase type 2 activity 
related to seasonality and behavior independent of thyroid hor-
mone production (73). Long feedback control of TRH release by 
thyroid hormones involves both hypophysiotropic TRH neurons 
and tancytes, responding to humoral and neuronal inputs that 
can adjust the set point. The latter mechanism may integrate 
energy metabolism and thyroid function (74–76). This may play 
an important role in the pathogenesis of non-thyroidal illness 
(NTI) syndrome or thyroid allostasis in critical illness, tumors, 
uremia, and starvation (TACITUS) (74, 77–80).

Additionally, an ultrashort feedback loop involving the sup-
pression of TSH by its own concentration has been proposed, 
mainly by one group (81–83). Our own studies including math-
ematical modeling of thyroid hormone homeostasis confirmed 
that this particular loop appears to be a relevant factor in influ-
encing the TSH–FT4 relationship (8, 10).

The primary regulatory role of pituitary thyroid hormone 
feedback versus TRH stimulation has been studied using trans-
genic mice, but its relevance is still controversial (69, 70, 84, 
85). In the pit-D2 KO mouse, Fonseca et al. (86) demonstrated 
coordination between the hypothalamic and pituitary T3 path-
ways that involve type 2 deiodinase. The role of deiodinase in 
tancytes was increased in the absence of pituitary deiodinase in 
order to preserve euthyroid serum T3 levels (86). The selective 
loss of pituitary type deiodinase, while increasing basal TSH in 
the mouse, diminished TSH response to hypothyroidism (87). 
However, knock-out animals with various degrees of deficiencies 
in all types of deiodinase have suffered little as a consequence, 
being able to maintain sufficient homeostatic regulation (88–90). 
It appears that multiple adaptive layers exist to protect the 
basic functionality of the homeostatic feedback control from 
various challenges. Furthermore, a multitude of physiological 

and pathophysiological influences modulates the relationship 
between TSH and thyroid hormones at various sites of action, 
thereby influencing the location of the set point in health and 
disease (Table 2) (8, 9, 76, 91–111).

Complementing the idea of a multifaceted feedback control, 
we have recently proposed that a feedforward motif may also be 
operative, directly linking TSH with deiodinase activity and the 
control of corporeal conversion from T4 to T3 (123). While this 
study provides the first documentation for a TSH-deiodinase 
inter-relation in humans in vivo, the responsiveness of deiodinase 
type 1 and type 2 to TSH, presumably through a TSH receptor- 
and cAMP-dependent mechanism, has been well recognized (55, 
124–130).

Like other glycoprotein hormones, TSH is secreted in a 
pulsatile manner. Faster oscillations with a mean pulse ampli-
tude of 0.6  mIU/l and a rate of 5–20/24  h are superimposed 
on a circadian rhythm with maximum TSH levels shortly after 
midnight (Figure 3) (112, 113, 131). It is still debated whether 
fast TSH pulses emerge by pulsatile TRH input, which has been 
contradicted by Samuels et al. (114), through stochastic signals or 
via autocrine function of thyrotrophs, i.e. controlled oscillations 
emanating from ultrashort feedback (10, 40, 115). TSH pulsatility 
may be beneficial by preventing homologous desensitization of 
the thyrotropin receptor (132–134). This could partly explain 
why sialylated TSH has both prolonged half-life and reduced 
bioactivity (135, 136).

A direct TSH-deiodinase link may, at least partly, explain 
the T3 circadian rhythm accompanying that of TSH, while FT4 
shows no such related circadian or seasonal rhythm (137–139). 
This response may be modulated by regulating TSH receptor 
density, as shown in rats with severe thyroid dysfunction (140).

Importantly, these mechanisms align the task of defending 
plasma FT3 with the central control system (123). Supply of T3 
to peripheral tissues is therefore no longer to be seen exclusively 
as a locally and autonomously regulated process, rather as a part 
of an overarching, integrated, and central-peripheral control 
system that governs thyroid hormone signaling in both homeo-
static and allostatic regulatory modes (123). This is particularly 
relevant for the treatment situation with levothyroxine, as 
discussed below (121).

Figure 1 presents a synopsis of central, thyroidal, and periph-
eral influences and their homeostatic integration. Taken together, 
the molecular mechanisms defining multiple feedback loops on 
several levels of organization, different time scales, and varying 
conditions of their optimum operation may explain the dispro-
portional non-logarithmic behavior of the TSH–FT4 relationship 
(Figure 2) (6–9, 33, 34). They support a multistep regulation and 
functionally hierarchical model that has been proposed by our 
group (8). While we have focused on describing the essential 
principles, additional physiological contributors, such as ethnic-
ity, gender, age, body mass, iodine intake, selenium supply, T4 
treatment, genetic deiodinase polymorphisms, and many others, 
may all elaborate the complexity of the system. Thus, further 
fine-tuning of the adaptive responses occurs at both the central 
and peripheral levels (Table 2) (9, 74, 76, 91, 92, 95, 97–99, 118, 
119, 141–144).
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TABLe 2 | Physiological and pathophysiological influences that may modulate the relationship between TSH and thyroid hormones.

Factor Main site of action Predominant mechanism Main effect Reference

Age Pituitary and hypothalamic Altered sensitivity of thyroid hormone 
feedback

Diminished TSH response with increasing 
age

(9, 91–95)

BMI Pituitary, hypothalamic, and 
adipose tissue

Central modulators (e.g., leptin) and 
hyperdeiodination

Hyperthyrotropinemia (9, 96–99)

Time of day Pituitary and deiodinases Circadian TRH rhythm and ultrashort TSH 
feedback

Circadian rhythms of TSH and FT3 and 
pulsatile TSH release

(40, 100, 
112–115)

Pregnancy Thyroid gland TSH receptor stimulation by placental 
factors (hCG)

Stimulation of thyroid hormone secretion and 
TSH suppression

(101, 109, 
110)

Non-thyroidal illness Multiple Set point alteration Low-T3/T4 and inappropriate TSH response (116, 117)

Genetic polymorphism Pituitary Set point variation TSH variation (118, 119)

Epigenetics Pituitary Long-term set point alteration Resetting the system (120)

Thyroid state Pituitary and hypothalamic Variable TSH response depending on 
distance from putative optimum

Exaggerated response or dampening effect (6, 8)

TSH quantity Pituitary Ultrashort feedback loop TSH suppression (8, 82)

TSH quality Pars tuberalis and pars 
distalis 

Tissue-specific glycosylation of TSH TSH bioactivity (72, 73)

TSH agonists or antagonists 
(TSH-R Ab and hCG)

Thyroid gland TSH receptor stimulation or blockade Thyroid hormone stimulation/inhibition and 
TSH suppression/stimulation

(68, 101, 
109, 111)

TRH Pituitary TSH production and TSH glycosylation TSH stimulation and bioactivity (69, 70, 72)

Neuromodulators (dopamine 
and somatostatin)

Pituitary Set point modulation TSH (76)

Leptin Central and hypothalamus TRH stimulation TSH increase (74)

Cytokines (interleukin-6) Pituitary TSH inhibition TSH decrease (106)

Cortisol and glucocorticoids Pituitary TSH inhibition TSH suppression (104)

Deiodinase type 2 Central, hypothalamus, and 
pituitary 

T4–T3 conversion Sensitive feedback regulation by T4 (60, 75, 86)

Deiodinase type 1 Peripheral tissues T4–T3 conversion T3 generation (57)

MCT8 and MCT10 Hypothalamus and pituitary T3-dependent mRNA expression and 
thyroid hormone transport

Intra- versus extracellular thyroid hormone 
gradient

(65, 67)

CRYM All cells Intracellular binding substrate (IBS) Intracellular thyroid hormone trafficking (66)

Thyroid hormone receptor 
(TR) β2

Pituitary and hypothylamus T3 binding Receptor occupancy (48)

TR costimulator 
cosuppressor (RXR)

Pituitary and hypothylamus T3 binding Receptor occupancy (54, 71)

Iodine supply and iodine 
deficiency

Thyroid gland and 
autonomously functioning 
thyroid nodule(s)

Thyroid volume-related TSH response 
and TSH receptor or G protein mutations

TSH increase/decrease (107, 111)

l-T4 treatment Pituitary Altered thyroid hormone feedback and 
set point

TSH–FT3 disjoint and FT3–FT4 dissociation (121, 122)

Other thyroid-related 
compounds or drugs

Multiple sites Thyroid inhibitors, thyroid mimetica, and 
endocrine disruptors

Changes in TSH, FT3, and FT4 and inhibition 
of conversion or T3 actions

(102, 103)
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eMeRGiNG ROLe OF NON-CLASSiCAL 
THYROiD HORMONeS

Some less recognized non-classical thyroid hormones, such as 
reverse triiodothyronine (rT3), 3,5-diiodothyronine (T2), iodo-
thyroacetates, and thyronamines, have recently been revisited 
and found to play an active physiological role (Figure 4) (145, 
146). rT3 (3,3′5′-T3) is a T3 isomer that is deiodinated in the 
3′ position. It is upregulated in fetal life and NTI and interferes 
by blocking characteristics on thyroid signaling (147). 3,5-T2 
exerts agonistic effects at nuclear thyroid hormone receptors, 
although its concentrations parallel those of rT3 in critical illness 

(148–150). Elevated 3,5-T2 concentrations in the non-thyroid 
illness syndrome could, at least in part, explain why patients dis-
playing the low-T3 syndrome may not benefit from substitution 
therapy with l-thyroxine (l-T4) or l-triiodoythyronine (l-T3)  
(151).

Iodothyroacetates are smaller, deaminated variants of thyroid 
hormones and have similar effects to those of iodothyronines 
(152, 156). However, their plasma half lives and affinity to recep-
tors and transporters differ from the latter (157, 158). Due to its 
smaller molecule size triiodothyroacetate (TRIAC) is used for the 
treatment of resistance to thyroid hormone (RTH), but this effect 
does not seem to be beneficial for all mutant variants (157, 158).
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FiGURe 3 | Pulsatility of TSH secretion. Secretion of thyrotropin is subject to circadian and ultradian variation. Shown are results of computer simulations with 
circadian input only (model 1), additional stochastic afferences (model 2), additional ultrashort feedback of TSH secretion (model 3), and combined stochastic input 
and ultrashort feedback (model 4). Statistical properties and fractal geometry of model 4 is identical to that of natural time series, while the simpler models differ (10).
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Although thyronamines originate from follicular thyroid 
tissue and are structurally similar to iodothyronines, their 
biological effects are different. In many respects, their effects are 
antagonistic effects to those of the classical thyroid hormones 
(153, 159, 160). Classical and non-classical thyroid hormones 
can be interconverted by enzymes in certain body compartments 
(Figure 4) (153–155). While the effect of non-classical thyroid 
hormones on the overall behavior of thyroid homeostasis is 
still to be elucidated in more detail, some molecules including 
3,5-T2, TRIAC, and TETRAC have thyromimetic effects at TR-β 
receptors, thereby exerting TSH-suppressive actions (156, 157, 
161–163). This suggests a role of non-classical thyroid hormones 
as important modulators of the overall control system in sup-
porting feedback loops controlling release and conversion of 
thyrotropin and the classical thyroid hormones. The resulting 
complexity of the homeostatic system is reflected in the non-
proportional relationship between FT4 and TSH concentrations 
(Figure 2).

CONSeQUeNCeS FOR THYROiD 
FUNCTiON TeSTiNG

Accordingly, the novel insights into thyroid–pituitary hypo-
thalamic regulation of thyroid hormones described above have 
important consequences for thyroid function testing. The initial 
discovery that pituitary TSH responds inversely to the underlying 
thyroid hormone concentration has greatly influenced current 
clinically applied thyroid testing (4). Its exaggerated response 
allows much greater sensitivity to subtle changes in the thyroid 
hormone status. The first TSH-based thyroid test strategies 
emerged in the 1980s (164). Whilst the vast majority of studies 
concentrated on TSH testing, there were few attempts at physi-
ologically based modeling (Table 1) (10, 26, 101, 165, 166). The 
consensus of TSH as a more sensitive diagnostic test than FT4 
measurement has been summarized repeatedly in laboratory-
focused procedures on TSH measurement and clinical guidelines 
on its practical use (2, 4, 167). Technically, routinely employed 

http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org


FiGURe 4 | Overview of classical (iodothyronines) and non-classical thyroid hormones (iodothyroacetates and thyronamines) with associated 
interconversion processes. Adapted from Engler and Burger (152), Piehl et al. (153), Soffer et al. (154), and Hoefig et al. (155).
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TSH assays are now in their third generation with each advance 
significantly enhancing functional assay sensitivity and the abil-
ity to clearly separate suppressed TSH levels observed in overt 
hyperthyroidism from levels at the lower reference limits seen 
in euthyroid subjects (168). Clinicians have embraced the avail-
ability of such a sensitive and cost-effective instrument. TSH is 
also employed in numerous prognostic studies which define it as 
a statistical marker of future outcomes (169–175).

This has important consequences as to how TSH has become 
viewed by the thyroid community as a simple and efficient diag-
nostic parameter. The ease of measurement was translated into 
simplicity of interpretation, ignoring the fact that TSH is both an 
indirect measure reflective of thyroid hormone homeostasis and a 
controlling element. Thereby, this concept obscured the intricate 
relationship of the TSH response with the underlying change in 
the hormonal milieu. By separating TSH from its physiological 
roots and primary role as a controlling element (Figure 1), not 

only did it become a statistical parameter in its own right, but also 
it thereby gained the role of the dominant thyroid function test. 
Consequently, definitions of hypothyroidism or hyperthyroidism 
were adjusted, introducing new laboratory-based and TSH-
derived disease entities of subclinical hypothyroidism and hyper-
thyroidism, which are defined by an abnormal TSH level while 
FT3 and FT4 still dwell within their reference ranges (176–178). 
This was a major conceptual shift, as a disease had now become 
exclusively defined by measuring a single laboratory value, and, 
as a result, thyroid disease prevalence was thereby linked to the 
performance of a single test (179).

HOMeOSTASiS AND THe ReFeReNCe 
RANGe OF TSH

While acknowledging strategic advantages of TSH measurement, 
such as ease of use, suitability for first-line screening, detection 

http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 1779

Hoermann et al. Homoeostatic Control of Thyroid Hormones

Frontiers in Endocrinology | www.frontiersin.org

of subtle functional abnormalities, and association with various 
health outcomes including mortality, there are considerable risks 
of distorting its integrated physiological importance. The miscon-
ception is highlighted by the ongoing controversy surrounding 
the reference limits of TSH, particularly its upper limit defining 
subclinical hypothyroidism (167, 180, 181). Proposed amend-
ments to the range, taking into account additional factors such 
as hidden autoimmunity, ethnicity, gender, and age, offer minor 
corrections but still fall short of a satisfactory solution. The issues 
may be more fundamental in nature (182). Even logarithmic 
transformation of TSH does not totally succeed in restoring a 
normal distribution. Some authors have attributed this failure to 
the presence of hidden pathologies, such as autoimmune disor-
ders, others disagreeing with that conclusion (183, 184). We have 
adopted an alternative statistical approach to the conventional 
method of establishing the reference interval (45). This involves 
extrapolation from a normally distributed, robust middle part of 
the range to the respective boundaries and is suitable for verifying 
proposed reference ranges by third parties, such as laboratories 
and manufacturers, using their own retrospective sample of the 
target population.

However, this does not overcome the problems of diagnostic 
interpretation using TSH. Unlike many other laboratory param-
eters, TSH values are personalized measures exhibiting a high 
degree of individuality. The ratio of the interindividual to the 
intraindividual variation may serve as an estimate of “individual-
ity,” being much higher for TSH than most laboratory parameters, 
for example, 2 in an earlier report and 2.9 in a recent study (45, 
185). Accordingly, the same TSH value could be “normal” for 
one individual but pathological for another. This also holds for 
patients with subclinical dysfunction, in whom the relationship 
between FT4 and TSH shows elements both of normality and 
abnormality (101). Apart from the statistical requirement that a 
TSH value in the subclinical range must change by 30% to be con-
fidently classified as change rather than variation or fluctuation, 
the true nature of TSH referencing is bivariate in relation to an 
appropriate individual TSH level when combined with a certain 
FT4 level (101, 186–189). Pulsatility of TSH release adds to the 
intraindividual variation in TSH levels, which is higher than that 
of circulating FT4 concentrations (45, 190). Circadian and ultra-
dian rhythms of TSH levels reduce diagnostic accuracy unless 
reference intervals are adapted or blood sampling is restricted to 
morning time (100).

Furthermore, the observed rather flat TSH–FT4 relationship 
within the euthyroid range of the population makes a particular 
TSH measurement more ambiguous in its prediction of the under-
lying thyroid state than it does when related by a steeper gradient 
(Figure 2). This questions reliance solely on TSH measurements 
whenever precise estimates of thyroid function are warranted, 
but to consider all three thyroid parameters TSH, FT4, and FT3 
and their inter-relationships. However, only a few published 
studies have followed this approach, establishing as a proof of 
concept truly multivariate reference ranges for thyroid param-
eters, instead of a combination of two statistically independent 
univariate reference intervals (191–194). A model that respects 
the relationship between TSH and thyroid hormones raises the 
concept of an individually and conditionally determined set 

point. This is the intersecting point on the overlaid characteristic 
curves for thyroidal T4 production and pituitary TSH secretion 
(35, 41, 101). It is important to appreciate that the homeostatic 
relationship of TSH and FT4 defines the reference range of TSH 
in a “kite-shaped” graphical configuration, as opposed to the rec-
tangular area obtained by plotting the two univariate parameters 
(101). A mathematical algorithm has recently been proposed 
to reconstruct the set point in an individual independently of a 
population-based reference range (35, 195). The clinical potential 
of this novel approach awaits further trials. It might prove useful 
in assessing the appropriateness of a TSH value in a given patient, 
thus legitimizing a personalized TSH target for thyroid hormone 
replacement therapy.

While relatively stable in thyroid health, the set point is, 
however, not fixed but acts as an important physiological inte-
grator and modulator for the homeostatic and allostatic regula-
tion of thyroid hormones (Figure  1) (9, 116). This demands a 
careful diagnostic interpretation taking into account additional 
information about the clinical condition and various historical 
influences that may temporarily or permanently impact on the 
location of the set point at various hierarchical levels (Table 2). 
In extremis, the notion of a non-fixed TSH set point is typified in 
the NTI syndrome and other constellations of thyroid allostasis 
where TSH measurement fails as a diagnostic test for that reason 
(117). The persistence of a significant homeostatic deviation for 
a prolonged period of time, may, in turn, irrevocably alter the 
position of the set point, which then assumes a “normality” that 
is now vigorously defended anew (120). This potential plasticity 
of thyroid homeostasis is part of a broader concept of epigenetic 
influences where the bidirectional interchange between heredity 
and the environment plays a defining role.

In conclusion, the conventional reference system and reliability 
of TSH measurement as a clinically adequate measure of euthy-
roidism is compromised by its indirect influence dependent on its 
fundamental relationship with the underlying thyroid hormones. 
This, however, is neither proportional (log-linear), as previously 
thought, nor is it unconditional, but rather complex, hierarchical, 
and highly individual. Consequently, subclinically hypothyroid 
patients therefore comprise a heterogeneous population of truly 
dysfunctional and truly euthyroid subjects. Hence, current defi-
nitions of subclinical hypothyroidism or hyperthyroidism cannot 
serve as a satisfactory and consistent aid to an accurate disease 
classification in itself. Emerging integrated and personalized 
diagnostic concepts need to be evaluated and appropriate new 
markers of tissue euthyroidism must be developed.

HOMeOSTATiC CONSiDeRATiONS iN 
T4-TReATeD PATieNTS

The rationale for using TSH as an important treatment target is 
that the patient’s own pituitary gland is generally assumed to be 
a good determinant for establishing the dose adequacy of l-T4 
treatment, even though differences between the T3 utilization of 
various tissues may exist (4, 5). Thereby, the TSH value derived 
from optimum health is deemed an appropriate level to aim at for 
treatment in most patients, excluding systemic NTI and pituitary 
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FiGURe 5 | Loss of T3 stability in l-T4-treated athyreotic patients with 
thyroid carcinomas. In controls (dashed line), serum T3 remains stable over 
a wide variation in the endogenous thyroid hormone production. In contrast, 
in l-T4-treated patients (solid line), compensatory T3 regulation is broken, 
and serum T3 unstably varies with the exogenous T4 supply. Adapted and 
reproduced with permission from Hoermann et al. (123).
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disorders where the TSH response is compromised. However, 
when put to the test, we and others found this assumption to be 
invalid (9). On the contrary, the interlocking inter-relationships 
between FT3, FT4, and TSH were not invariably fixed but 
conditionally and homeostatically determined. In l-T4-treated 
patients, we showed a significant upward or downward shift and 
change in the gradients of the FT4 or FT3 regression line with 
logTSH, compared to untreated controls (9). The phenomenon 
reveals a disjoint in the relationship between TSH and FT3 
(122). While earlier studies already hinted that TSH normaliza-
tion may not suffice to guarantee a normal serum T3, the more 
detailed inter-relationships have only recently been analyzed 
(9, 122, 196–199). From a homeostatic point of view, evidence 
suggests that the stability of serum T3 is maintained over a 
wide variation in the endogenous thyroid hormone production 
in healthy subjects but is lost in the l-T4-treated athyreotic 
patient (Figure 5) (121, 123). This observation raises questions 
regarding T3 adequacy in treated hypothyroidism. The lower 
FT3 levels frequently documented in athyreotic l-T4-treated 
patients, as compared to untreated controls, have received scant 
attention, being widely dismissed as easily compensated at the 
tissue level in humans. However, feedback regulation seems 
clearly compromised in athyreotic patients on l-T4 treatment 
resulting in T3 instability and homeostatic equilibria that differ 
significantly from those in healthy subjects (123) (Figure 5). In 
this respect, the presence of the thyroid gland itself and the size 
of the remnant thyroid tissue after thyroid surgery have recently 
been shown to play an important role in stabilizing serum 
FT3, presumably through TSH stimulated intrathyroidal T3 
conversion (123, 200). This may explain why athyreotic patients 
are particularly vulnerable, with approximately 15% living in a 
chronically low-T3 state below reference, even if they are able 

to normalize TSH (122, 198). Three remarkable phenomena 
have been observed in l-T4-treated patients, (1) a dissociation 
between FT3 and FT4, (2) a disjoint between TSH and FT3, and 
(3) an l-T4-related conversion inefficiency (121, 123). Hence, 
l-T4 dose escalation may not invariably remedy T3 deficiency 
but could actually hinder its attainment (121, 201). In addition 
to substrate inhibition and an inhibitory action of reverse T3 on 
the enzyme activity of deiodinase type 2, experimental studies 
in the rat elaborate on molecular details involving ubiquitina-
tion that may explain a lack of effect of increasing T4 dose in 
this condition (64). In the rodent, FT3 concentrations in the 
circulation remained low after escalation of the l-T4 dose (64). 
More importantly, irrespective of local variations by tissue or 
type of deiodinase involved, tissue hypothyroidism persisted in 
all organs examined including brain, liver, and skeletal muscle 
despite a normal TSH (64). The recent findings are in agree-
ment with earlier studies in the rat (64, 202, 203). T3 supply is 
locally controlled by several mechanisms, such as active thyroid 
hormone uptake, tissue-specific expression and activity of two 
distinct types of deiodinases converting T3 from T4, and thyroid 
hormone inactivation by deiodination or degradation by sulfata-
tion, deamination, or glucoronidation (57–66). The regulation 
varies by tissue as the brain predominantly expresses type 2 
deiodinase, whereas type 1 deiodinase is abundant in other tis-
sues of the body, and by thyroid state, as T3 excess upregulates 
type 1 deiodinase but downregulates type 2 deiodinase, which 
is upregulated in hypothyroidism (57–64). Type 3 deiodinase 
produces T3 in an inactive form, reverse T3. Although T3 utiliza-
tion may be locally adjusted to meet the specific demands of each 
organ, tissue supply is not autonomously independent, but sub-
ject to the overarching central control, as discussed above. While 
corresponding data on tissue T3 in humans are widely lacking 
and the physiological proportions of T3 derived by conversion 
versus thyroidal secretion may differ in humans and rodents, the 
animal models indicate widespread tissue hypothyroidism of tar-
get organs in the presence of low serum T3 and normal TSH. This 
suggests that the disequilibria recognized between circulating 
FT3 concentrations and both FT4 and TSH in patients on l-T4 
may remain intracellularly uncompensated and truly reflective 
of tissue deficiencies. However, the long-term consequences of 
the altered ratios are presently unknown. Interestingly, a strong 
TSH–FT3 relationship was a marker of familial longevity in a 
recent study confirming the prognostically important role of the 
equilibria measured in the circulation (204).

The novel implications of homeostatic regulation require 
further careful study and clinical follow-up. In humans, quality 
of life may be reduced in a substantial portion of hypothyroid 
patients taking levothyroxine, even though normal TSH levels 
suggest restoration of euthyroidism (205). Importantly, the 
interpretation of TSH values is not uniform among different 
pathophysiological conditions. A given TSH value in an ath-
yreotic patient on l-T4 has a diagnostic implication entirely 
different from the same value in an untreated euthyroid subject. 
While concentrating on treatment-related aspects of thyroid 
homeostasis, we have not specifically addressed the treatment 
of hypothyroidism, which has been covered by several recent 
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specialized articles (205–211). Though optimum treatment 
targets and modalities invite a fuller debate and further research, 
it is, however, increasingly clear that l-T4 treatment in its cur-
rent form, which lacks approximately 10% naturally secreted T3 
component, is at base an unphysiological treatment modality 
where the resulting homeostatic responses operate differently 
from normality. The diagnostic situation cannot therefore be 
judged by the same TSH-based criteria defining optimum health 
(9, 122).

Hence, we suggest that the use of TSH, valuable though it 
is in many situations, should be scaled back to a supporting 
role that is more appropriate to its conditional interplay with 
peripheral thyroid hormones. We emphasize that measurement 
and consideration of FT3 and conversion efficiency is equally 
important, particularly in known situations where TSH and 
FT3 dissociate. This reopens the debate on measurement of free 
thyroid hormones and encourages the identification of suitable 
biomarkers. While TSH assays are traceable to a single WHO 
standard, FT4 and especially FT3 methods are in urgent need 
of equivalent standardization and harmonization if they are to 
play a clinically acceptable role in an integrated concept (212). It 
remains general good clinical practice to only interpret labora-
tory tests in conjunction with a clinical assessment of the patient 
history and symptoms and to obtain appropriate confirmation 
or follow-up before commencing treatment. While TSH may be 
suitable for screening of asymptomatic conditions, the integrated 
interpretation of TSH, FT4, and FT3 and their conditional 
equilibria should benefit decision making, particular on dose 
adequacy of replacement therapy. Possible adverse effects of the 
homeostatic disequilibria that arise under the current standard 
treatment of l-T4 replacement also warrant careful study, and 
new treatment strategies should aim at maintaining more physi-
ological equilibria.

SUMMARY AND FUTURe OUTLOOK

The concept of thyroid homeostasis offers new perspectives to 
optimize the interpretation of thyroid function tests and mini-
mize the diagnostic misuse of an isolated and inappropriate sta-
tistical interpretation of TSH. The latter approach has wrongly 
assumed a level of diagnostic certainty that is inherently lacking 
in this indirect, conditional, and highly individual measure of 
thyroid function. We have described a new integrative concept, 
in which TSH becomes a context-sensitive conditional variable 
but is neither a precise marker of euthyroidism nor optimal 
for the fine-tuning of thyroid control. TSH levels defined for 
optimum health may not apply in many l-T4-treated patients. 
Because of a discernible disjoint between FT3 and TSH con-
centrations in athyreotic patients, this can result in an inability 
of T4 monotherapy to adequately address their therapeutic 
needs. Unlike in the healthy subject with adequate correction, 
FT3 levels now become unstably dependent on exogenous T4 
supply. Furthermore, the T4-related conversion inefficiency 
may outweigh the benefits of escalating the l-T4 dose in 
some patients. Homeostatic principles question the isolated 

interpretation and disease-defining diagnostic value of TSH 
measurements, hence promoting both a more personalized 
approach and consideration of diagnosis in a more conditional 
adaptive context.

These perspectives raise a variety of issues that warrant 
further exploration and require carefully designed clinical 
studies before advancing to broader clinical application. The 
questions relate to multivariate reference limits, personalized 
set point reconstructions, and the additional value of FT3 for 
defining thyroid status and assessing dose adequacy in thyroid 
hormone replacement. There also may be clinical consequences 
and long-term risks of an unphysiological FT3–FT4 ratio, 
FT3–TSH disjoint, and impaired deiodinase activity on l-T4 
replacement, supporting a possible role of combined treat-
ment with T3 and T4 in selected patients with poor conversion 
efficiency.
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