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Endometriosis affects approximately 10% of women of reproductive age. This chronic, 
gynecological inflammatory disease results in a decreased quality of life for patients, with 
the main symptoms including chronic pelvic pain and infertility. The steroid hormone 
17-β Estradiol (E2) plays a key role in the pathology. Our previous studies showed that 
the anti-inflammatory lipid Lipoxin A4 (LXA4) acts as an estrogen receptor-alpha agonist in 
endometrial epithelial cells, inhibiting certain E2-mediated effects. LXA4 also prevents the 
progression of endometriosis in a mouse model via anti-proliferative mechanisms and 
by impacting mediators downstream of ER signaling. The aim of the present study was 
therefore to examine global proteomic changes evoked by E2 and LXA4 in endometriotic 
epithelial cells. E2 impacted a greater number of proteins in endometriotic epithelial cells 
than LXA4. Interestingly, the combination of E2 and LXA4 resulted in a reduced number of 
regulated proteins, with LXA4 mediating a suppressive effect on E2-mediated signaling. 
These proteins are involved in diverse pathways of relevance to endometriosis pathology 
and metabolism, including mRNA translation, growth, proliferation, proteolysis, and 
immune responses. In summary, this study sheds light on novel pathways involved in 
endometriosis pathology and further understanding of signaling pathways activated by 
estrogenic molecules in endometriotic epithelial cells.

Keywords: endometriosis, endometriotic epithelial cells, mass spectrometry, lipoxin a4, 17-β-estradiol, proteomic 
analysis, protein–protein interaction network, gene ontologies

inTrODUcTiOn

Endometriosis affects approximately 176 million women worldwide (1). This estrogen-dependant, 
inflammatory disease is characterized by the presence of endometrial-like tissue outside the uterine 
cavity, mostly on the pelvic peritoneum and ovaries. Symptoms include severe dysmenorrhea, 
dyspareunia, dysuria, chronic pelvic pain, and infertility, resulting in a decreased quality of life and 
significant socioeconomic consequences for patients (2–4).

17-β Estradiol (E2), the most potent estrogen, plays a pivotal role in endometriosis development 
and progression and is produced in high quantities in endometriotic lesions (5). Lipoxin A4 (LXA4) 
is an anti-inflammatory and pro-resolving lipid mediator with several anti-inflammatory actions 
in vitro and in vivo (6, 7). We previously demonstrated that LXA4, which possesses a high degree of 

http://www.frontiersin.org/Endocrinology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2015.00192&domain=pdf&date_stamp=2016-01-06
http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://dx.doi.org/10.3389/fendo.2015.00192
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:geraldine.canny@gmail.com
http://dx.doi.org/10.3389/fendo.2015.00192
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00192/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00192/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00192/abstract
http://loop.frontiersin.org/people/205010/overview
http://loop.frontiersin.org/people/295122/overview
http://loop.frontiersin.org/people/41462/overview
http://loop.frontiersin.org/people/283140/overview


January 2016 | Volume 6 | Article 1922

Sobel et al. LXA4 Antagonizes E2-Mediated Signaling

Frontiers in Endocrinology | www.frontiersin.org

structural similarity with the weak estrogen estriol, is an estrogen 
receptor alpha agonist in endometrial epithelial cells (8). In these 
studies, LXA4 altered estrogen-regulated gene expression as well 
as functional parameters, notably proliferation, in human endo-
metrial epithelial cells while also demonstrating antiestrogenic 
potential in a manner similar to that previously shown for estriol 
(9, 10). LXA4 also prevented the progression of endometriosis 
in a mouse model via anti-inflammatory and anti-proliferative 
mechanisms and by impacting mediators downstream of ER 
signaling, including epithelial-expressed molecules such as 
growth regulation by estrogen in breast cancer (11). As such, the 
proteomic changes induced by this eicosanoid in in vitro models 
of endometriosis warrants further study.

As the small size of peritoneal endometriotic lesions precludes 
the culture of sufficient numbers of endometriotic epithelial cells, 
we used the well-characterized, ER-positive 12Z endometriotic 
epithelial cell line, originally isolated from peritoneal lesions (12). 
These cells express inflammatory molecules and exhibit a migrat-
ing and invading potential and are therefore an ideal model to 
study molecular and cellular aspects of endometriosis (13–15).

In recent years, Mass spectrometry (MS) has become a 
powerful technology to carry out large-scale analyses of cellular 
proteomes, as it allows qualitative and quantitative analysis 
of complex mixtures. One widespread quantitative method is 
based on Isobaric Tags for Relative and Absolute Quantification 
(iTRAQ) (16), which allows the comparison of multiple com-
bined samples by chemically labeling peptides after digestion of 
protein extracts. With this labeling, small amine-reactive isobaric 
mass tags are attached to the N-terminus and lysine residues of 
peptides. Quantification is then based on a reporter ion generated 
during peptide fragmentation within the mass spectrometer and 
specific to each treatment in the mixed sample. The intensities of 
the reporter ion fragments enable the measurement of relative 
peptide abundance, and thus of their corresponding proteins (17).

The combination of state-of-the-art experimental strategies 
and advances in computational methods enables the global study 
of cellular proteomes. Computer-aided data mining such as 
annotation enrichment analysis enables more efficient mapping of 
complex proteomics data to biological processes (18). Searching 
for precise Gene ontology (GO) terms allows comprehensive 
summary analysis of large data sets, and the recently developed 
Cytoscape software is an useful tool to visualize protein–protein 
or protein–annotation networks (19–21).

The goal of the present study was to perform proteomic pro-
filing of endometriotic epithelial cells to compare and contrast 
responses to E2, LXA4, and both in combination. LC-MS/MS 
analyses were carried out for relative quantification of proteins 
between treatments based on an iTRAQ approach. Interactome 
data, GO terms and pathway annotations were used to create 
protein–protein and protein–annotation networks to generate 
new information on estrogen and lipoxin signaling.

MaTerials anD MeThODs

cell culture
12Z endometriotic epithelial cells (from Dr. Michael Beste, 
Massachusetts Institute of Technology, Cambridge, MA, USA) 

were maintained at 37°C in humidified air containing 5% CO2 
in phenol red-free DMEM F-12 (Sigma) supplemented with 10% 
charcoal stripped-fetal bovine serum (CSFBS) (Invitrogen), 1% 
penicillin/streptomycin, and 1% glutamine (Sigma, Switzerland).

sample Preparation
6 × 105 cells were seeded in 100-mm dish and treated with either 
vehicle (denoted control), 10 nM E2, 100 nM LXA4, or 10 nM E2 
and 100 nM LXA4 in combination for 24 h. All treatments were 
carried out in duplicate. After the incubation time had elapsed, 
cells were rinsed with PBS and harvested by centrifugation. The 
pellet was washed twice with PBS and resuspended in 100  μl 
homogenization buffer (8M Urea containing Protease inhibitors). 
Samples were then sonicated three times for 15  s to solubilize 
the proteins. Samples were subsequently centrifuged for 15 min 
at 13,000 rpm and the supernatants were transferred into clean 
Eppendorf tubes and stored at −20°C. Proteins were quantified 
using a Bradford protein quantification kit (BioRad, Switzerland). 
Protein lysates were reduced with 5  mM DDT (Applichem, 
Switzerland) for 30 min at room temperature and then alkylated 
with 20 mM iodoacetamide (Sigma, Switzerland) for 30 min at 
room temperature protected from light. Proteins were precipitated 
with ethanol-acetate and resuspended in TEAB buffer (500 mM 
tetraethyl ammonium bicarbonate pH 8). For each sample, 220 μg 
of proteins was digested overnight at 37°C with 5 μg of trypsin. 
Thereafter, samples were aliquotted and stored at −80°C.

The samples were labeled with iTRAQ™ reagents (Applied 
Biosystems) as follows: 12Z non-treated sample 1, iTRAQ reagent 
113; 12Z E2-treated sample 1, iTRAQ reagents 114; 12Z LXA4-
treated sample 1, iTRAQ reagents 115; 12Z E2 + LXA4-treated 
sample 1, iTRAQ reagent 116; 12Z non-treated sample 2, iTRAQ 
reagent 117; 12Z E2-treated sample 2, iTRAQ reagents 118; 12Z 
LXA4-treated sample, iTRAQ reagents 119; 12Z E2  +  LXA4-
treated sample 1, iTRAQ reagent 121.

After sample clean-up with Proxeon SCX StageTips, labeling 
was controlled by LC-MS/MS separately for each sample before 
mixing of the eight digests. The mixed samples were redissolved 
in 4M Urea with 0.1% Ampholytes pH 3–10 (GE Healthcare, 
Switzerland) and fractionated by off-gel focusing as previously 
described (22). The 24 fractions obtained were desalted on a 
microC18 96-well plate (Waters Corp., Milford, MA, USA), dried, 
and resuspended in 0.1% (v/v) formic acid, 3% (v/v) acetonitrile 
for LC-MS/MS analyses.

lc-Ms/Ms analyses
Extracted peptides were analyzed on a hybrid LTQ Orbitrap Velos 
mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) 
interfaced to an Ultimate 3000 RSLC nano HPLC system 
(Dionex, Switzerland). Peptides were separated for 120 min on a 
reversed-phase nanocolumn Acclaim PepMap RSLC 100A (75 µm 
ID × 25 cm, 2 µm, Dionex) at a flow rate of 300 nl/min using a 
H2O: acetonitrile gradient method. Lock mass option was used for 
full MS scan recalibration with a polydimethylcyclosiloxane ion 
from ambient air (m/z 445.12003). In data-dependent acquisition 
controlled by Xcalibur 2.1 software (Thermo Fisher Scientific, 
Switzerland), the 15 most intense precursor ions detected in the 
full MS survey performed in the Orbitrap (range 300–1700 m/z, 
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resolution 30,000 at m/z 400) were selected and fragmented. MS/
MS was triggered by a minimum signal threshold of 3,000 counts, 
carried out with stepped relative collision energy between 40 and 
50% with an isolation width of 2.1 amu. Only precursors with a 
charge higher than 1 were selected for HCD fragmentation, and 
fragment ions were analyzed in the Orbitrap at a resolution of 7,500. 
The m/z of fragmented precursors was then dynamically excluded, 
with a tolerance of 10 ppm, for 25 s. To identify peptides, MS/MS 
files were analyzed with Proteome Discoverer 1.3 (Thermo Fisher 
Scientific, Switzerland) using Mascot 2.3 (Matrix Science, UK) 
for database searching. Mascot was set up to search the SwissProt 
database1 restricted to human taxonomy (database release used was 
2011_03, 20,234 sequences after taxonomy filter), using the decoy 
database search option. Trypsin (cleavage at K and R, not before 
P) was used as the enzyme definition. Mascot was searched with a 
fragment ion mass tolerance of 0.02 Da, a parent ion tolerance of 
10 ppm, allowing one missed cleavage. Iodoacetamide derivative of 
cysteine and iTRAQ (eight-plex) modification of lysine and peptide 
N-terminal were specified as fixed modifications. Deamidation of 
asparagine and glutamine, oxidation of methionine, and acetyla-
tion of protein N-terminal were specified as variable modifications. 
A False discovery rate (FDR) filter of 1% was applied.

statistical analysis
Quantitative protein values were calculated as the median 
of peptide reporter ion intensities. Proteins with at least one 
identified peptide with a high confidence (FDR <0.01) in both 
replicates were considered for quantitative analyses. The protein 
quantification was normalized using the Lowess function (23). 
The log2 ratio of the treatment value divided by the control value 
was calculated for each protein and for each replicate.

The local pooled error test (LPE) was computed for each com-
parison (E2 versus control, LXA4 versus Control, and LXA4 + E2 
versus control) as previously described (24). The FDR-adjusted 
p-value was computed using the Benjamini–Hochsberg (BH) 
correction. In our analysis, we defined two sets of proteins of 
interest, one with LPE p-values <0.05 and a subset group with 
FDR-adjusted p-values <0.1. Calculations were performed using 
R statistical software version 2.10.0.

gene Ontology analysis
Gene Ontology analysis was performed on significantly differen-
tially expressed proteins for one or more treatments versus control. 
GO terms were analyzed using DAVID (18)2. Biological process 
annotations with a minimum set of two annotated proteins in our 
query and an enrichment p-value <0.05 were used. The results of 
this analysis were subsequently visualized in Cytoscape v3.2.03 to 
model the protein–annotation network.

Pathway annotation retrieval
KEGG Pathway annotations were retrieved using DAVID 
(18) with a minimum of two annotated proteins, which were 

1 www.uniprot.org
2 https://david.ncifcrf.gov
3 http://www.cytoscape.org

significantly differentially expressed (LPE p-value <0.05) in E2 
or LXA4/E2-treated cells. The results of this analysis were subse-
quently utilized in Cytoscape to model the protein–annotation 
network.

Protein network analysis
Cytoscape software for network visualization was employed 
to build a protein–protein interaction network (20, 21) using 
physical interactions, pathway interactions, and genetic regula-
tion interactions from all available sources within GeneMANIA 
(25). A maximum of 20 proteins were automatically added to 
our query by GeneMANIA in order to fill potential gaps in our 
network, using the guilt by association principle.

Western Blotting
Cells were treated with indicated concentrations of E2, LXA4, 
and both in combination for 24 h in E2-free medium. After the 
incubation time had elapsed, cells were rinsed with PBS and 
harvested in 2× SDS sample buffer [125 mM Tris-HCl (pH 6.8), 
4% SDS, 20% glycerol, 100 mM DTT, 0.01% bromophenol blue 
and protease inhibitors (Sigma-Aldrich, Switzerland)]. Thirty 
micrograms of total protein were loaded and separated on 10% 
sodium dodecyl sulfate (SDS)-polyacrylamide gels. Proteins were 
electrophoretically transferred onto nitrocellulose membrane 
(Biorad Laboratories, Switzerland). The membrane was blocked 
overnight at 4°C in a 5% fat-free dry milk solution in TBS-
containing 0.05% Tween 20 (TBS-T) and subsequently incubated 
for 1  h at RT with a rabbit anti CSN5 antibody (Abcam, UK) 
diluted 1:2,000 in 5% fat-free dry milk solution in TBS-T or with a 
mouse anti β-actin antibody (Sigma Aldrich, Switzerland) diluted 
1:8,000. After washing, the membrane was incubated for 1 h with 
HRP-conjugated anti-rabbit secondary antibody or anti-mouse 
secondary antibody at a 1:3000 dilution in 5% non-fat milk in 
TBS-T. Immunoreactive bands were visualized using chemilumi-
nescence (PerkinElmer, Wellesley, MA, USA) and densitometric 
analysis was performed using ImageJ software.

resUlTs

Our LC-MS/MS analyses (Figure 1A) resulted in the identifica-
tion of 26,979 peptides (Table S1 in Supplementary Material). 
Proteins with at least one identified peptide in both replicates were 
considered for further quantification and analysis, culminating in 
3,232 quantified proteins in Figure  1A. A representative spec-
trum of an iTRAQ quantitative analysis of CSN5 is represented 
in Figure 1B. CSN5 is a subunit of the COP9 signalosome impli-
cated in diverse biological processes, such as signal transduction, 
development, and the cell cycle (26). CSN5 exhibited a log fold 
change of 0.3 between treatments versus control. To benchmark 
our quantitative approach, we carried out Western blotting for 
CSN5 (Figure 1D). The Western blot and MS data show a similar 
pattern (Figures 1C,E) and are highly correlated with a R2 linear 
regression value of 0.92. Densitometric analysis revealed that 
CSN5 levels were significantly increased in LXA4E2 conditions 
versus control (p < 0.05).

The variability of both replicates in each condition was checked 
using the logarithm of geometric mean intensity compared to the 
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FigUre 1 | Validation of Ms data for cOP9 subunit-5 (csn5) by Western blotting. (a) Schematic of the experimental procedure. (B) Representative reporter 
ion spectrum for CSN5 in 12Z cells, (c) mean intensity of reporter ions, (D) Western blot, and (e) resultant densitometric values. The bar graph of densitometric 
analysis shows the ratio of CSN5 to β-Actin protein expressed as a percentage. A representative blot from three independent experiments is shown. *p < 0.05 
compared to vehicle-treated cells (ctrl). The reporter ion spectrum is derived from the detection of the SGGNLEVMGLMLGK peptide.
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logarithm of the intensity ratio of the two replicates (Figure S1 
in Supplementary Material). Approximately 95% of the protein 
log2 ratio values were between −0.5 and 0.5 in each condition, 
indicating a low variability between the two replicates.

Using the LPE test, 348 significantly differentially expressed 
proteins were identified for at least one treatment, with a p-value 
<0.05, while a high quality subset of 27 proteins was identified 
with a FDR-adjusted p-value <0.1, after correction for multiple 
testing with the BH method. The volcano plot (LPE p-value versus 
log fold change) representation of E2 versus control (Figure 2A), 
LXA4 versus control (Figure 2B), and LXA4 in combination with 
E2 (Figure 2C) provides a general overview of significantly dif-
ferentially expressed proteins. Many significantly differentially 
expressed proteins, which passed the LPE test, had a low log2 
ratio of approximately 0.3. Interestingly, our data suggest that 
the combination of both treatments exert a suppressive effect 
on proteins impacted by E2 alone (Figure  2D). The proteins 
modulated by both LXA4 and E2 in combination showed only 
an overlap of 59 proteins, and 148 proteins that were impacted 
by E2 alone were no longer significantly impacted in cells treated 
with the combination. The quantitative information for each 
significantly differentially expressed protein is shown in Table S2 
in Supplementary Material.

The general GO terms for biological processes were retrieved 
with DAVID (18) for each significantly differentially expressed 
protein in each treatment condition versus control (Figure 3A, 
Table S3 in Supplementary Material). Proteins with GO terms 
linked to cell proliferation, cell death, growth, cell adhesion, and 
immune processes, as the most relevant to endometriosis pathol-
ogy, were identified. This analysis demonstrates an antagonist 
effect of LXA4 on E2 signaling at the protein level (Figure 3A). 
Indeed, LXA4 in combination with E2 modulates the cellular 
macromolecular complex disassembly process, suggesting an 
inhibition in the growth and proliferation of endometriotic 
epithelial cells. LXA4 alone affects proteins annotated with a 
single biological process, the humoral immune response, which 
is perhaps unsurprising as only 25 proteins in total were detected 
(Figure 2D).

A subsequent quantitative analysis of the 348 protein subset 
annotated by these GO terms (80 proteins) was performed. The 
Z-score of log ratio of each treatment versus control in 12Z cells 
is depicted in heat maps using hierarchical clustering for differ-
entially expressed proteins (Figure 3B). Using Cytoscape and GO 
biological process annotations, a protein–annotation network (in 
Figure 3C) was modeled, linking our quantitative analysis with 
protein function.

Next, we wished to delineate the contextual relevance using 
the most recently developed protein–protein interaction bioin-
formatics resources. The p-values of the LPE test as a function of 
the FDR are presented in Figure 4A. The 27 proteins that fell in 
the pink area on the graph were selected for network analysis. It 
can be seen from Figure 4A that a greater number of significantly 
differentially expressed proteins with a controlled FDR were 
detected in cells stimulated with LXA4E2 versus control and in 
cells stimulated with E2 versus control. In contrast, a smaller 
number of significantly differentially expressed proteins with 
a controlled FDR were detected in cells stimulated with LXA4 

versus control. Accordingly, the FDR decreases in a steeper man-
ner for cells stimulated with LXA4 versus control. The protein–
protein interaction network of these 27 significantly differentially 
expressed proteins with a controlled FDR <0.1, listed in Table 1 
(Figures 4A,B) was generated using GeneMANIA4 and interac-
tome data from physical interactions, pathway interactions, and 
genetic interactions (Figure 4C).

The functions of these proteins, as retrieved from Uniprot, are 
detailed in Table 2. Again, the log2 ratio of each treatment divided 
by control for differentially expressed proteins is depicted in heat 
maps using hierarchical clustering (Figure 4B).

These 27 proteins interact together to a high degree sug-
gesting their implication in closely related biological processes. 
Using GeneMANIA, based on the guilt-by-association principle, 
we completed our query network with 20 interaction partner 
proteins, which were not detected by the mass spectrometer due 
to limitations in dynamic range detection but intricately associ-
ated with our high quality protein set. ERβ (ESR2) and 17-beta 
Hydroxysteroid dehydrogenase 10 (17HSDb10), implicated 
in estrogen metabolism, are among these interaction partner 
proteins depicted by gray circles in Figure  4C. Basal ERα and 
ERβ expression by 12Z cells was confirmed by Western blotting 
prior to performing experiments (data not shown), indicating 
that these are estrogen-responsive cells.

In this high quality protein subset, the antagonist effect of LXA4 
on E2 signaling was also observed. LXA4 in combination with E2 
decreased the expression of GORASP2, NANS, CRYZ, PDXK, 
LXN, TYMS, RFC5, DDX55, MRPS25, and CHMP2B compared 
to LXA4 or E2 alone. One of the most impacted proteins was Golgi 
reassembly stacking protein 2 (GORASP2), implicated in Golgi 
fragmentation and the subsequent entry into mitosis (27) and 
therefore cell-cycle progression. Similarly, Sialic acid synthase 
(NANS), which functions in sialic acid biosynthetic pathways 
(28) and Replication factor C subunit 5 (RFC5), implicated in 
proliferation, were less up-regulated by LXA4E2 than by either 
treatment alone, suggesting that treating 12Z cells with E2 and 
LXA4 in combination resulted in a decrease of cellular metabolic 
processes and proliferation.

Lipoxin A4 and E2 in combination increased PSMD4, AGFG1, 
KPNA3, PSMB4, RALY, LAMP1, KRT1, BOP1, and NUTF2 
compared to LXA4 or E2 alone. LXA4 increased the expression 
of Keratin, type II cytoskeletal 1 (KRT1), which could however 
also be a contaminant in the lysates. The 26S proteasome non-
ATPase regulatory subunit 4 (PSMD4) is involved in antigen 
processing and presentation of exogenous peptide antigen via 
MHC class I.

With the objective of confirming our observation that LXA4 
antagonized E2-mediated effects, we compared 12Z cells treated by 
E2 and LXA4 in combination (LXA4E2) versus E2 alone. Employing 
the LPE test, the corresponding volcano plot (Figure  5A) was 
generated. 146 proteins were significantly differentially expressed 
in cells treated with the LXA4E2 combination versus cells treated 
with E2 alone (Table S4 in Supplementary Material). Among these 
proteins, 64 were significantly up-regulated whereas 82 proteins 

4 http://www.genemania.org
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FigUre 2 | Volcano plots of proteomic changes induced in 12Z cells treated with (a) 10 nM 17-β-estradiol (e2) versus vehicle, denoted ctrl, (B) 
100 nM lipoxin a4 (lXa4) versus control, and (c) e2/lXa4 combination versus control. The x-axis shows the log2 ratio of treated sample compared to 
control while the y-axis is (–1)*log10 (p-value) as calculated using the local pooled error (LPE) test. 348 and 25 significantly differentially expressed proteins were 
detected, respectively, using the LPE-test (p-value <0.05) and a subset with FDR-adjusted p-value <0.10 (Benjamini–Hochsberg correction), in one or more 
comparison (treatment versus control). (D) Venn diagram of the 348 significantly differentially expressed proteins in each treated sample versus control. E2 exerted 
a more marked effect on 12Z endometriotic epithelial cells than LXA4. Treatment with a combination of LXA4 and E2 resulted in a reduction in the number of 
proteins impacted.
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were significantly down-regulated, confirming our hypoth-
esis. There was a 63% overlap between significantly differentially 
expressed proteins in any of the treatments versus control and 
LXA4E2 versus E2.

Among these 146 proteins (Figure  5B), we found several 
protein families involved in E2-induced signaling that were 
impacted by LXA4. The DDX, RPS, and KRT families were 
among those most affected. DEAD box proteins (DDX) are 
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FigUre 3 | (a) Gene ontology analysis using DAVID for each condition versus control. (B) Heat map of significantly differentially expressed proteins, having at least 
one significant GO annotation. (c) Protein–annotation network constructed employing the DAVID functional analysis tool and Cytoscape. Significantly enriched GO 
terms are represented by red rectangles and proteins are represented by green ovals.
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multifunctional proteins, and putative RNA helicases are thought 
to be involved in cellular growth and division (29). Ribosomal 
protein S6 (RPS6), a component of the 40S ribosomal subunit, is 

implicated in mRNA translation. Krt1 and Krt10 are heterodimer 
partners and members of the type I (acidic) cytokeratin family. 
Phosphoenolpyruvate carboxykinase 2 (PCK2) expression was 
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FigUre 4 | (a) FDR control of the LPE-test p-values. Significantly regulated proteins obtained from an analysis using a stringently controlled FDR are located in the 
pink area. (B) Heat map of log fold change (treatments versus control) of protein expression with a LPE p-value <0.05 and a FDR <0.1. (c) Protein–protein 
interaction network of the significantly differentially expressed proteins (in black), constructed using interactome data from GeneMANIA and Cytoscape. Intermediate 
nodes (in gray) were added to complete the network, using interactome data and the principle “guilt by association” in GeneMANIA. Genetic interactions (in green), 
physical interactions (in blue), and pathway interactions (in pink) are presented.
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TaBle 1 | significantly differentially expressed proteins according to the lPe test with a FDr <0.1.

Protein 
iD

log(e2/
ctrl)

log(lXa4/
ctrl)

log(lXa4e2/
ctrl)

lPe pval e2 
versus ctrl

lPe pval lXa4 
versus ctrl

lPe pval lXa4e2 
versus ctrl

FDr e2 
versus ctrl

FDr lXa4 
versus ctrl

FDr lXa4e2 
versus ctrl

Protein 
name

P04264 −1.11 −1.33 −0.34 2.35E − 12 1.25E − 02 1.01E − 02 6.85E − 09 1.00E + 00 4.73E − 01 KRT1

Q9H8Y8 1.51 3.30 0.70 4.24E − 12 7.62E − 15 1.00E − 03 6.85E − 09 2.44E − 11 1.71E − 01 GORASP2

P61970 −0.82 −0.79 −0.77 1.29E − 08 1.37E − 01 1.00E − 08 1.39E − 05 1.00E + 00 1.08E − 05 NUTF2

Q9NR45 0.66 0.76 0.46 2.12E − 06 5.50E − 04 1.79E − 04 1.72E − 03 2.96E − 01 5.79E − 02 NANS

P40937 1.14 0.98 0.29 3.83E − 06 7.39E − 02 2.40E − 01 2.48E − 03 1.00E + 00 9.99E − 01 RFC5

P04818 0.67 0.63 0.15 5.25E − 06 1.28E − 01 2.52E − 01 2.83E − 03 1.00E + 00 9.99E − 01 TYMS

Q12907 −0.59 −0.15 −0.23 1.51E − 05 4.70E − 01 4.71E − 02 6.99E − 03 1.00E + 00 8.14E − 01 LMAN2

Q9UKM9 −0.59 −0.50 −0.23 1.74E − 05 3.26E − 01 6.10E − 02 7.04E − 03 1.00E + 00 8.98E − 01 RALY

Q03426 0.88 0.62 0.62 1.09E − 04 2.52E − 01 4.35E − 03 3.58E − 02 1.00E + 00 3.28E − 01 MVK

P11279 −0.57 −0.59 −0.43 1.11E − 04 2.68E − 01 1.78E − 03 3.58E − 02 1.00E + 00 1.99E − 01 LAMP1

O60841 0.56 0.28 0.42 1.73E − 04 5.97E − 01 2.84E − 03 5.09E − 02 1.00E + 00 2.54E − 01 EIF5B

Q14137 −0.73 −0.73 −0.69 2.03E − 04 1.73E − 01 8.54E − 05 5.46E − 02 1.00E + 00 3.45E − 02 BOP1

Q9UQN3 −0.62 −0.70 −0.81 3.97E − 04 1.87E − 01 6.62E − 07 9.88E − 02 1.00E + 00 5.35E − 04 CHMP2B

Q08257 0.29 0.49 0.30 2.81E − 02 9.40E − 06 9.50E − 03 6.48E − 01 1.01E − 02 4.72E − 01 CRYZ

Q9BS40 0.27 0.47 0.06 3.28E − 02 1.31E − 05 5.81E − 01 6.92E − 01 1.06E − 02 9.99E − 01 LXN

O00764 0.28 0.42 0.25 2.40E − 02 1.12E − 04 3.65E − 02 5.96E − 01 7.25E − 02 7.55E − 01 PDXK, 
HEL-S-1a

P48556 −0.38 −1.08 −0.91 1.23E − 02 4.13E − 02 2.66E − 09 4.25E − 01 1.00E + 00 8.28E − 06 HEL-S-91n, 
PSMD8

Q8NHQ9 −0.51 −0.16 −1.38 3.47E − 02 7.62E − 01 5.13E − 09 6.97E − 01 1.00E + 00 8.28E − 06 DDX55

P52594 0.36 0.49 0.56 9.85E − 03 6.37E − 02 4.71E − 06 3.93E − 01 1.00E + 00 3.05E − 03 AGFG1

P46779 −0.44 −0.49 −0.51 8.39E − 04 1.75E − 02 8.78E − 06 1.45E − 01 1.00E + 00 4.73E − 03 RPL28

O00505 0.42 0.46 0.66 2.27E − 02 4.00E − 01 7.20E − 05 5.96E − 01 1.00E + 00 3.32E − 02 KPNA3

P55036 0.43 0.47 0.56 6.59E − 03 3.74E − 01 1.78E − 04 3.22E − 01 1.00E + 00 5.79E − 02 PSMD4

Q02878 0.43 0.54 0.49 2.71E − 03 2.23E − 01 1.97E − 04 2.14E − 01 1.00E + 00 5.79E − 02 RPL6

P82663 −0.23 −0.25 −0.76 2.99E − 01 6.40E − 01 3.41E − 04 9.97E − 01 1.00E + 00 8.48E − 02 MRPS25

P28070 0.14 0.06 0.58 4.67E − 01 9.06E − 01 3.90E − 04 9.97E − 01 1.00E + 00 9.01E − 02 PSMB4

In columns one to three negative values are colored grading from yellow to red and positive values are in green.
In columns four to six, the pink color indicates a significant p-value for the LPE test and, in columns seven to nine, the yellow color indicates a FDR <0.1.
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attenuated by the LXA4E2 combination compared to E2 alone, 
suggesting a decrease in insulin/glucose metabolism and the 
TCA cycle, as this enzyme mediates the rate-limiting step in the 
metabolic pathway that produces glucose from lactate and other 
precursors derived from the citric acid cycle. The alpha subunit of 
NAD(+)-specific Isocitrate dehydrogenase 3 (IDH3A) was also 
markedly affected by LXA4E2 compared to E2. These enzymes 
catalyze the oxidative decarboxylation of isocitrate to alpha-
ketoglutarate, the rate-limiting step of the TCA cycle (30).

In order to study the role of these differentially expressed pro-
teins, we subsequently retrieved all pathway annotations (with a 
minimum of two proteins annotated) using DAVID (Figure 5C). 
In summary, several pathways of relevance to endometriosis, such 
as metabolic pathways, notably pyrimidine, fructose, and man-
nose metabolism, as well as the cell cycle, oxidative phosphoryla-
tion, the proteasome, regulation of autophagy, mTOR signaling, 
and adipocytokines were affected, demonstrating that LXA4 
modulates several cellular processes which are impacted by E2.

DiscUssiOn

Here, we report the first comprehensive proteomic analysis of 
changes induced by LXA4 and E2 in an endometriotic epithelial 

cell line. We have performed proteome-wide biomarker and 
therapeutic target discovery using the most recent bioinformatics 
tools and databases, coupled with standard statistical analysis.

In order to verify our method, we performed Western blots for 
CSN5/JAB1, a component of the COP9 signalosome, a complex 
which regulates several cellular and developmental processes 
(31), and observed that this protein were significantly increased 
in LXA4E2 conditions versus control. ERα was previously shown 
to co-immuno-precipitate with CSN5 and overexpression of 
CSN5 caused an increase in ligand-induced ERα degradation 
(32), indicating the functional relevance of this observation. 
There was a high degree of correlation between the Western blot 
and the MS data, confirming the robustness of our results.

Most proteins whose expression was induced by LXA4, were 
also induced by E2, as would be expected from our previous obser-
vations in endometrial epithelial cells where we characterized 
this eicosanoid as an estrogen receptor agonist which bound ER, 
activated canonical ER signaling and also inhibited E2-mediated 
responses including gene expression and cellular proliferation 
(8). As observed in that previous study where LXA4 exhibited less 
potent responses that E2, the natural ligand, in the present study, 
fewer proteins are regulated by LXA4 than by E2, and LXA4 also 
inhibited certain E2-mediated changes in protein expression.
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TaBle 2 | Known functions of significantly differentially expressed proteins with a FDr <0.1 as retrieved from Uniprot.

gene names Function

KRT1 KRTA May regulate the activity of kinases such as PKC and SRC via binding to integrin beta-1 (ITB1) and the receptor of activated protein 
kinase C (RACK1/GNB2L1). In complex with C1QBP is a high-affinity receptor for kininogen-1/HMWK

GORASP2 GOLPH6 Plays a role in the assembly and membrane stacking of the Golgi cisternae

NUTF2 NTF2 Facilitates protein transport into the nucleus. Interacts with the nucleoporin p62 and with Ran. Acts at a relatively late stage of nuclear 
protein import

NANS SAS Produces N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-d-glycero-d-galacto-non-onic acid (KDN). Can also use 
N-acetylmannosamine 6-phosphate and mannose 6-phosphate as substrates to generate phosphorylated forms of Neu5Ac and KDN

RFC5 The elongation of primed DNA templates by DNA polymerase delta and epsilon requires the action of the accessory proteins proliferating 
cell nuclear antigen (PCNA) and activator 1

TYMS TS OK/SW-cl.29 Contributes to the de novo mitochondrial thymidylate biosynthesis pathway

LMAN2 C5orf8 Plays a role as an intracellular lectin in the early secretory pathway. Interacts with N-acetyl-d-galactosamine and high mannose type 
glycans and may also bind to O-linked glycans. Involved in the transport and sorting of glycoproteins carrying high mannose type glycans

RALY HNRPCL2 P542 Probable-RNA binding protein. Could be a heterogeneous nuclear ribonucleoprotein (hnRNP). May be involved in pre-mRNA splicing

MVK May be a regulatory site in the cholesterol biosynthetic pathway

LAMP1 Presents carbohydrate ligands to selectins. Also implicated in tumor cell metastasis

EIF5B IF2 KIAA0741 Function in general translation initiation by promoting the binding of the formylmethionine-tRNA to ribosomes. Seems to function along 
with eIF-2 (By similarity).

BOP1 KIAA0124 Component of the PeBoW complex, which is required for maturation of 28S and 5.8S ribosomal RNAs and formation of the 60S 
ribosome

CHMP2B CGI-84 Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies 
(MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by 
invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of 
membrane proteins

ANXA8L1 ANXA8L2 Annexin: calcium-dependent phospholipid binding

CRYZ Does not have alcohol dehydrogenase activity. Binds NADP and acts through a one-electron transfer process. Orthoquinones.

LXN Hardly reversible non-competitive, and potent inhibitor of CPA1, CPA2, and CPA4. May play a role in inflammation

PDXK Required for synthesis of pyridoxal-5-phosphate from vitamin B6

PSMD8 Acts as a regulatory subunit of the 26S proteasome which is involved in the ATP-dependent degradation of ubiquitinated proteins. 
Necessary for activation of the CDC28 kinase

DDX55 KIAA1595 Probable ATP-binding RNA helicase

AGFG1 HRB RAB RIP Required for vesicle docking or fusion during acrosome biogenesis (By similarity). May play a role in RNA trafficking or localization in case 
of HIV infection

RPL28 60S ribosomal protein L28

KPNA3 QIP2 Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates 
containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is 
mediated by KPNB1 through binding to nucleoporin FxFG repeats, and the complex is subsequently translocated through the pore 
by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three 
components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases 
Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-
bound forms of Ran between the cytoplasm and nucleus. In vitro, mediates the nuclear import of human cytomegalovirus UL84 by 
recognizing a non-classical NLS. Recognizes NLSs of influenza A virus nucleoprotein probably through ARM repeats 7–9

PSMD4 MCB1 Binds and presumably selects ubiquitin-conjugates for destruction. Displays selectivity for longer polyubiquitin chains. Modulates intestinal 
fluid secretion

RPL6 TXREB1 Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I

MRPS25 RPMS25 28S ribosomal protein S25, mitochondrial

PSMB4 PROS26 The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and 
Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. Mediates the 
lipopolysaccharide-induced signal macrophage proteasome (by similarity). SMAD1/OAZ1/PSMB4 complex mediates the degradation of 
the CREBBP/EP300 repressor SNIP1
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Elevated local E2 levels and increased expression of estro-
gen-regulated molecules, which promote proliferation, are 
features of endometriotic lesions (33–36), and molecules that 

inhibit estrogen production and/signaling represent potential 
therapeutics. We and others have demonstrated that LXA4 and 
its analogs have decreased endometriosis progression in rodent 
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FigUre 5 | (a) Volcano plots of proteomic changes induced in 12Z cells treated with 10 nM E2 and 100 nM LXA4 in combination compared with 10 nM E2 alone. 
(B) Selection of significantly differentially expressed proteins with a LPE p-value <0.05 and a FDR <0.4. (c) Protein–annotation network generated using DAVID, 
employing KEGG Pathway annotations. Annotations are depicted by red rectangles and proteins are represented by elipses along a blue–yellow color scale of the 
log2 (LXA4E2/E2) iTRAQ signal.
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models and may represent future therapies (11, 37, 38). The lat-
ter study reported attenuated expression of estrogen-regulated 
mediators implicated in cell proliferation in mice with endome-
triosis treated with LXA4 compared to vehicle-treated controls.

It is perhaps unsurprising that LXA4, as a molecule that acts 
via several known receptors notably ALX/FPR2 and ERα, also 

impacts diverse pathways as well as metabolism. For example, 
Mevalonate kinase (MVK), a key early enzyme in isoprenoid and 
sterol synthesis and therefore in cholesterol production via the 
generation of Squalene (39), exhibited a 25% reduced induction 
in cells stimulated with E2 and LXA4 in combination compared 
to cells treated with E2 alone. The Mevalonate pathway is a key 
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