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Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been 
 extensively used in clinical practice for several decades. GC’s effects on inflammation 
are generally mediated through GC receptors (GRs). Signal transduction through these 
nuclear receptors leads to dramatic changes in gene expression programs in different 
cell types, typically due to GR binding to DNA or to transcription modulators. During 
the last decade, the view of GCs as exclusive anti-inflammatory molecules has been 
challenged. GR negative interference in pro-inflammatory gene expression was a land-
mark in terms of molecular mechanisms that suppress immune activity. In fact, GR can 
induce varied inhibitory molecules, including a negative regulator of Toll-like receptors 
pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repres-
sor mechanism. In contrast, the expression of some acute-phase proteins and other 
players of innate immunity generally requires GR signaling. Consequently, GRs must 
operate context-dependent inhibitory, permissive, or stimulatory effects on host defense 
signaling triggered by pathogens or tissue damage. This review aims to disclose how 
contradictory or comparable effects on inflammatory gene expression can depend on 
pharmacological approach (including selective GC receptor modulators; SEGRMs), cell 
culture, animal treatment, or transgenic strategies used as models. Although the current 
view of GR-signaling integrated many advances in the field, some answers to important 
questions remain elusive.

Keywords: acute-phase response, cortisol, gene expression, inflammatory diseases, innate immune response, 
GRe, SeGRAs, transrepression

inTRODUCTiOn

An inflammatory reaction relies on both fast triggering and tight control over intensity. Failure 
on fine-tuning immune cells activation and pro-inflammatory signaling can lead to unnecessary 
expended energy and tissue damage. Endogenous glucocorticoids (GCs), as cortisol in human and 
corticosterone in rodents, are key hormones produced by the adrenal cortex that regulate innate 
immune responses. Pioneering work showed that a hormone from adrenal cortex was necessary 
to keep adrenolectomized animals alive after bacterial challenge (1), while a specific steroidal 
corticoid reversed the effects associated with adrenolectomy (2). These early studies suggest either 
these hormones (i.e., GCs) are necessary to mount an efficient self-defense response or counteract 
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the aggressive side effects of this crucial reaction. While the 
first hypothesis will be discussed later, the second statement 
received attention when Phillip Hench assumed that arthritis 
remission could be related to high GCs blood levels. The later 
was verified to be true, as demonstrated by the reduction of 
rheumatoid arthritis symptoms upon treatment with cortisone 
[reviewed in Ref. (3, 4)]. An important step toward a molecular 
mechanism was the involvement of gene expression description 
in GCs anti-inflammatory effects, specifically the synthesis of 
an inhibitory protein or peptide (5–7). During the subsequent 
years, the main anti-inflammatory mechanism associated with 
GCs was the synthesis of Lipocortin 1 (Annexin A1; ANXA1), 
a phospholipase-A2 inhibitory protein that prevents the produc-
tion of downstream inflammatory mediators prostaglandins and 
leukotrienes [reviewed in Ref. (3)]. The molecular cloning of 
steroid receptors increased the knowledge regarding GC receptor 
(GR) binding to the DNA and transcriptional control through GC 
response elements (GREs). These DNA sequences can mediate 
transactivation, as described above for ANXA1, or repression as 
well [reviewed in Ref. (8)]. Different modalities of GR interfer-
ence in inflammatory signaling were reported, but one particular 
mechanism was considered more relevant to the understanding 
of GR functions during inflammation. This pathway drived the 
development of the concept of repression through tethering, 
which involves GR inhibitory physical interactions with nuclear 
activators of pro-inflammatory genes transcription (9–11). More 
importantly, this alternative paradigm opened the door to include 
other regulatory models and explore novel ligands with dissociated 
effects called selective GR agonists (SEGRAs) (also called dissoci-
ated GR ligands, and selective GR modulators; SEGRMs – spe-
cially in case of non-steroidal molecules) (12). GCs are known 
to interfere with innate immune signaling that promotes gene 
expression through engagement of Toll-like receptors (TLRs) 
and cytokine receptors, which leads to activation of transcription 
factors: nuclear factor (NF)-κB, activator protein (AP)-1, signal 
transducers and activators of transcription (STATs), interferon 
regulatory factors (IRFs), and others (13–16) (Figure  1). Here, 
we will discuss the perspectives of GR-mediated transcriptional 
activation or repression through varied mechanisms during the 
course of innate immune responses. We also aim to contextualize 
the different models of transcriptional control associated with 
GCs, which do not only suppresses inflammatory signaling, and 
point key discrepant observed outcomes and their interpretations.

GLUCOCORTiCOiD SiGnALinG AnD 
TRAnSCRiPTiOnAL ACTiviTY

The secretion of endogenous GCs results from hypothalamic–
pituitary–adrenal (HPA) axis activation. Circadian, stress-related 
sensory information and inflammation trigger parvocellular 
corticotropin-releasing hormone (CRH)-secreting neurons in the 
paraventricular nucleus (PVN) of the hypothalamus. Once CRH 
reaches the anterior pituitary, responsive cells release adrenocor-
ticotropic hormone into the bloodstream, stimulating the release 
of GCs from de adrenal cortex. GCs exert a negative feedback 
action at many levels of the HPA axis, keeping the corticoid at a 

physiological range (Figure 1) (17). Because  steroids are water 
insoluble, they are transported through the blood to their target 
tissues mainly complexed with transcortin. GCs freely pass 
through cell membranes of their target cells, bind to their steroid 
receptors, and the complexes (steroid–receptor) translocate to 
nucleus, where they act as transcription factors [reviewed in Ref. 
(18)].

Glucocorticoid signaling depends largely on nuclear trans-
location and association of a hormone-bound GR dimer to 
6-bp GREs (also called simple GREs), which are specific DNA 
sequence in the regulatory regions of target genes. The human 
(h) GR gene (NR3C1) is ubiquitously expressed and functions 
as a ligand-dependent transcription factor that regulates the 
expression of GC-responsive genes positively or negatively (18). 
There are two main highly homologous hGR isoforms: α and β, 
but others have been described as well. hGRα functions have been 
considerably detailed, including the complex diversity that results 
from alternative translation sites (19).

Glucocorticoid receptor is a modular protein, meaning that 
they have distinct domains: (1) the amino-terminal A/B region, 
also called immunogenic, functional, or N-terminal domain 
(NTD), and (2) the C, D, and E regions also known as structural 
domain, comprising the DNA-binding domain (DBD), the hinge 
region, and the ligand-binding domain (LBD), respectively. The 
NTD of the hGRα contains a major transactivation domain, 
named activation function (AF)-1, which plays an important 
role in the interaction of the receptor with molecules necessary 
for the initiation of transcription, such as coactivators, chromatin 
modulators, and basal transcription machinery. The DBD of 
the hGRα (region C) contains the ability to bind to GREs apart 
from sequences important for receptor dimerization and nuclear 
translocation. The LBD of the hGRα (region E) binds to GC and 
plays a critical role in the ligand-induced activation of hGRα. 
The LBD also contains a second transactivation domain, termed 
AF-2, which is ligand-dependent and has sequences important 
for receptor dimerization, nuclear translocation, and interaction 
with coactivators (20, 21).

Coactivators form a bridge between the DNA-bound hGRα 
and the transcription initiation complex and facilitate the trans-
duction of the GC signal to RNA polymerase II activity. These 
include: (1) The p300 and the homologous cAMP-responsive 
element-binding protein (CREB)-binding protein (CBP), which 
also serve as macromolecular docking “platforms” for transcrip-
tion factors from several signal transduction cascades, including 
nuclear receptors, CREB, AP-1, NF-κB, STATs, and others; (2) 
the p300/CBP-associated factor (p/CAF), which interacts with 
p300/CBP; and (3) the p160 family of coactivators (22, 23). These 
coactivators also have intrinsic histone acetyltransferase (HAT) 
activity, which promotes chromatin decondensation, and allows 
the transcription initiation complex of the RNA-polymerase II 
and its ancillary components to initiate and promote transcrip-
tion (24–27).

The ligand-activated hGRα can modulate gene expression 
independently of binding to GREs, by interacting as a monomer 
with other transcription factors, such as AP-1, NF-κB, p53, and 
STATs (11, 28, 29). This GR nuclear action is independent of DNA-
binding sites (DBSs) and involves modulation of transcriptional 
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FiGURe 1 | Global scheme of glucocorticoid signaling and transcriptional mechanism during inflammation. 1. Hypothalamus–pituitary–adrenal (HPA) 
signaling cascade upon stressors. CRH, corticotrophin-releasing hormone; ACTH, adrenocorticotropic hormone; GCs, glucocorticoids. 2. The endogenous/
synthetic GCs bind to glucocorticoid receptor (GR) and can act in two ways: non-genomic effects in cytoplasm or translocation into the nucleus, resulting in the 
modulation of the transcriptional responses (for example, the transactivation of anti-inflammatory genes). Alternatively, selective glucocorticoid receptor agonists 
(SEGRAs) can act majorly through tethering mechanism. 3. In the context of an inflammatory scenario, cytokines, DAMPS, and PAMPs bind to their respective 
receptors and activate pro-inflammatory transcription factors (TFs). These TFs translocate to the nucleus and increases the activity at pro-inflammatory genes 
promoters by GC–GR complex (composite sites, tethering, or compete for DNA-binding sites – not shown). 4. The four main transcriptional mechanisms involved in 
the inflammatory response: sGRE, nGRE, binding to composite sites and tethering. In the first two modes (sGRE and nGRE), the GC–GR complex modulates the 
transcription in a GRE-dependent manner activating or repressing genes, if accessible. In the last two modes (composite site and tethering), the GC–GR complex is 
recruited to GRE sites modulating gene expression in conjunction with TFs (composite site) or interacting directly with TFs (tethering) or coactivators (not shown). 
Please refer to main text for more details.

3

Xavier et al. Glucocorticoids and Inflammatory Gene Expression

Frontiers in Endocrinology | www.frontiersin.org April 2016 | Volume 7 | Article 31

activity through direct protein–protein interaction (“tethering”) 
with inducible specific transcription factors by influencing their 
ability to stimulate or inhibit the transcription rates of the respec-
tive target genes (30). The negative regulation by tethering has 
been misleadingly conceived as the sole modality of “transrepres-
sion” during inflammation, which could be a general terminology 
for repression in trans, including those mediated by the recently 
characterized negative GREs (IR nGREs), a novel family of 
evolutionary-conserved cis-acting negative response elements 
that differs from simple GREs (31). The mechanism of repres-
sion by tethering has been the basis to revolutionize GR agonists 
pharmacological design (see SEGRAs/SEGRMs in Data Sheet S1 

in Supplementary Material). In addition to that, GR and other 
transcription factors can compete for DBS, and there is also the 
model of composite regulation, in which GR interacts with other 
transcription factors at adjacent or overlapping DNA regulatory 
elements (32, 33). In sum, several modalities of GR interaction 
with DNA, coactivators/corepressors, and other transcription 
factors govern the complex transcriptional responses to GCs 
(Figure 1).

Post-translational modifications (PTMs) of GR are also 
relevant to GCs signaling. The hGR has several phosphorylation 
sites that typically occurs after binding to the ligand and may 
determine turnover, subcellular trafficking, target promoter 
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specificity, cofactor interaction, strength and duration of  receptor 
signaling, and receptor stability. Phosphorylation of the GR is a 
versatile mechanism for modulating and integrating multiple 
receptor functions (34, 35).

Other PTMs include ubiquitination, which also regulates the 
motility of GR inside the nucleus. After the binding of the ligand, 
the GR is destabilized and directed toward the proteasome path-
way [reviewed in Ref. (18)]. Acetylation of the GR occurs after 
ligand-binding and prior to nuclear translocation. The acetylated 
GR is deacetylated by histone deacetylase 2 (HDAC2), and this 
deacetylation is necessary for the GR to be able to inhibit NF-κB 
activation (36). PTMs, including those not mentioned, offer 
an additional dimension of GR regulation that can be relevant 
depending on the inflammatory context.

SYnTHeTiC GLUCOCORTiCOiDS, GR 
AnTAGOniSTS, AnD TRAnSGeniC 
AniMALS: wHAT DO THeY inFORM US 
ABOUT enDOGenOUS GCs/GR 
FUnCTiOnS DURinG inFLAMMATiOn?

Two basic approaches to interrogate GR functions include mim-
icking the signaling with agonists, or abolishing the signaling by 
inhibiting endogenous GCs synthesis or blocking the receptor 
with antagonists. The genetic counterparts of these strategies are 
transgene overexpression and genetic deletion/loss-of-function 
mutations at the level of GR or GCs metabolism. Revealing GR 
roles is a challenging task, since the outcomes can vary depending 
on timing (early or delayed), duration (acute or chronic), GCs 
levels (“physiological” or “supraphysiological”), or tissue/cell type 
and even species. We provide Data Sheet S1 in Supplementary 
Material to complement information for readers not familiar with 
GR agonists, antagonists, and transgenic mice, and briefly point 
out the limitations for each strategy.

Transgenic mice have already provided valuable informa-
tion about GR signaling [reviewed in Ref. (37)], including the 
demonstration of cell-specific GCs signaling contribution during 
inflammation using promoter-driven Cre-lox P recombination, 
or the evaluation of GR signaling in dimerization deficient 
receptor knock-in mice (GRdim). Dissociated agonist (SEGRM) 
Compound A also have proved that targeting tethered tran-
srepression efficiently promote anti-inflammatory effects (38), 
corroborating GRdim mice data. However, this simplified model 
have been questioned (39), and pharmacological investigation of 
GR-mediated gene transactivation showed that depending on the 
gene selected for analysis, a given steroid can behave as an antago-
nist, partial agonist, or full agonist (40). Due the complexity of 
GR DBSs, ligand-induced conformation changes, PTMs, and 
protein–protein interactions, a complete landscape of GCs tran-
scriptional control during inflammation will require combined 
efforts and massive data acquisition to help define new cutting 
edge therapy rationale. In order to provide additional informa-
tion about global gene expression in different immune cells, we 
provide a Table  S1 in Supplementary Material comprising the 
main findings according to the indicated GR agonists (Table S1 
in Supplementary Material).

GR RePReSSiOn On  
PRO-inFLAMMATORY GeneS

Didactically, GR signaling may be divided into genomic (involv-
ing transcription regulation) and non-genomic. The later is 
faster and less characterized. Although probable, there are no 
strong evidences that GR engage relevant non-genomic signal 
transduction to repress pro-inflammatory signaling during 
innate immune responses (41, 42). GR genomic mechanisms 
that inhibit pro-inflammatory signaling include: (1) direct tran-
scription of genes that will negatively interfere with pathways 
involved in the synthesis of inflammatory mediators; (2) direct 
repression of genes that contribute to immune cells activation; 
(3) negative interference in transcriptional events engaged by 
transcriptions factors that transduce pro-inflammatory signals; 
and (4) synergism between GR and other transcription factors 
activated during inflammation, ultimately promoting the induc-
tion of “anti-inflammatory” gene products. Examples of the first 
mechanism involves transcription of ANXA1, NFKBIA (IκBα), 
DUSP1 (MKP-1), GILZ, and ZFP36 (TPP). IκBα induction by 
GCs highjacks nuclear NF-κB, while MAP kinase phosphatase 
DUSP1 inactivates p38 kinase pro-inflammatory signaling, and 
tristetraproline (TPP) can destabilize many cytokine transcripts 
[reviewed in Ref. (43)]. A recent study showed that DUSP1 
promotes activation of TPP destabilizing activity on Tnf, Il1b, 
and many other pro-inflammatory transcripts (44). For GILZ, 
we suggest a dedicated review (45). While direct repression 
(second mechanism) through nGREs during inflammation is not 
well characterized, some repressed genes associated with GCs 
anti-inflammatory effects through IR nGRE have been identified 
[C1qb, C3, Il6, etc., Ref. (31)]. However, an independent group 
was unable to recognize IR nGRE enrichment in their dataset (46). 
GR obstruction on the transactivation of pro-inflammatory genes 
activated by NF-κB/AP-1 (third mechanism) has been largely 
attributed to tethered transrepression, and to a lesser extent to 
composite sites or GR competition for DBS or limited coactiva-
tors (39, 43, 47). In the case of tethering, GR can associate with 
NF-κB and prevents the binding of IRF3 or positive transcription 
elongation factor b to the promoter. Conversely, GR recruits 
GRIP1 when tethered to AP-1, an event that may depend on 
nuclear thyroid hormone receptor interactor (48). We may expect 
that a “positive” GR tethering, recruiting coactivators, or activat-
ing the basal transcription machinery operates the expression of 
anti-inflammatory genes (fourth mechanism). It is not always 
clear if this is the case for some of the genes mentioned in the 
first mechanism. IRAK-M (IRAK3), which can block major TLRs 
pathways effectively, was recently described as a GR-induced gene 
through cooperation with NF-κB sites (49). Priming of chromatin 
state or presence and activity of coactivators/corepressor may 
impact greatly how GR modulates genes expression (50–53). We 
assume that all these transcriptional anti-inflammatory mecha-
nisms prevail at late phases of an acute inflammatory reaction 
or when exogenous GR ligands are therapeutically delivered 
(Figure 2), which would be in agreement with time-dependent 
gene profiling assays (54).

In general, the effects of SEGRMs are less characterized; how-
ever, evidences suggest that these dissociated agonists of GR (e.g., 
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FiGURe 2 | Time-dependent evolution of inflammatory responses as orchestrated by multiple GR-dependent mechanism. At the first moment, after an 
inflammatory stimulus, acute-phase proteins (APP) and other genes are transcribed through transactivation, contributing to a pro-inflammatory response that 
correlates with a peak of endogenous GCs levels (red wave); examples of the transcriptional modalities are still poorly described. In a second moment, a subsequent 
endogenous GCs wave, or administration of synthetic GCs and SEGRAs (green dashed wave), correlates with the prevalence of anti-inflammatory response 
governed by transactivation (anti-inflammatory genes)/transrepression (pro-inflammatory genes) mechanisms. A decreased expression of pro-inflammatory genes, 
for instance, IL-1β (tethering) and possible C1q (nGRE), reinforce the anti-inflammatory modality ruled by sGRE mode (DUSP1, GILZ, etc.). No positive tethering 
mechanism was described for anti-inflammatory genes. In contrast, IRAK-M induction through composite site with NF-κB has been reported (see main text). The 
chromatin remodeling and different PTMs are present in both phase of inflammatory response, offering the relevant protein interactions and DNA-binding sites for 
GRs/TFs.
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Compound A) display an anti-inflammatory activity. In human 
peripheral blood mononuclear cells, Compound A inhibits the 
production of pro-inflammatory cytokines like TNF-α, IL-1β, 
and IL-6 through transrepression (55). In addition, other 
described SEGRMs, like ZK 216348 and Org 214007-0, showed 
similar anti-inflammatory effects in comparison to synthetic GC 
prednisolone (56, 57). According to Table S1 in Supplementary 
Material, there is a general agreement on a GR-mediated anti-
inflammatory effect considering individual immune cells and 
different agonists.

Although the in vivo response results from a complex inter-
play between different cells and organs that respond differently 
to GCs, it is reasonable that inflammation must proceed when 
endogenous GCs peaks at the beginning of the reaction. It is 
also understandable that GR agonists are a clinically relevant 
option after an inflammatory burst, unless chronic treatment is 
considered.

PeRMiSSive AnD SYneRGiC ROLeS OF 
GRs On “PRO-inFLAMMATORY” Gene 
eXPReSSiOn

We pointed earlier the hypothesis that GCs contributes to the 
mounting of an efficient self-defense response. Sapolsky et  al. 

reviewed this concept and referenced many important studies that 
have been historically neglected (58). When global gene expres-
sion assays became available, the fact that some genes escape GR 
suppression was not highlighted, since anti-inflammatory effects 
have always been expected. Several studies employing GR agonists 
or antagonists showed that various acute-phase proteins (APPs) 
such as serum amyloid A (SAAs), lipocalin 2 (LCN2), pentraxin 
3 (PTX3), ceruloplasmin (CP), etc., are highly dependent on con-
comitant inflammatory stimulus and GR signaling (46, 59–62). 
Interestingly, induction of Lcn2 and Ptx3 genes by Gram-negative 
lipopolissacharyde (LPS) is increased by GCs and depends on 
IκBζ (63). Frequently, APPs pro- or anti-inflammatory nature is 
not clearly identified. The acute-phase response is defined as an 
acute inflammatory response involving non-antibody proteins 
whose concentration in the plasma increase in response to 
infection or injury of homeothermic animals (64). As part of 
inflammation, APPs are products of GR signaling and important 
players in innate immune responses (65). Fortunately, new stud-
ies have focused on the roles of some APPs, indicating that LNC2 
may regulate myeloid cell polarization to pro-inflammatory (M1) 
phenotype (66), or contrarily, deactivate macrophages (67) and 
suppress cytokines production (68). PTX3 also presents ambigu-
ous functions, since it reinforces complement function and 
reduces immune cells migration to sites of inflammation (69). 
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Oncostatin M (OSM) and its receptor are potently induced by 
combined LPS and GR signaling in vivo and in vitro, as shown 
by the use of agonists and antagonists (70). The signal transduc-
tion of this neuropoietic cytokine via the cognate receptor can 
significantly synergize with pro-inflammatory cytokines (71). It 
is also interesting that GCs synergism with interferon signaling 
and STATs have been observed (59, 60), but usually the reported 
effect goes in the opposite direction (72). While the interpretation 
of synergism between GR and pro-inflammatory stimuli must be 
further elucidated regarding APPs, type I interferons, and non-
canonical cytokines, other evidences suggests pro-inflammatory 
actions for GCs.

Busillo and Cidlowski proposed a molecular framework 
to explain how GR mediates anti-inflammatory and pro- 
inflammatory effects (73). The antagonistic effects were attributed 
to different target immune networks: pro-inflammation in innate 
immune response and anti-inflammatory in adaptive response. 
Based on several evidences that sensors NLRP3 (inflammasome 
component) and TLR2 are induced by GR signaling plus a pro-
inflammatory trigger, the authors proposed that GCs prepares 
and reinforces the immune system to respond to pathogens and 
injury. The interpretation on NLRP3 and TLR2 inductions by 
GR/pro-inflammatory combination demands caution, because 
increased IL-1β levels and engagement of TLR signaling depends 
on multiple levels that can vary over the time. Their relevance 
must be evaluated by collectively checking if IL1B transcript is 
reduced (transcription and mRNA stability) or if toll-interacting 
protein (TOLLIP), a repressor of TLR signaling, is also induced 
[reported in Ref. (54)].

It has also been proposed by Busillo and Cidlowsky that the 
contrasting actions of GCs may rely in different signaling proper-
ties of target cells, chromatin state (availability of GR DBS), cel-
lular binding partners, etc. Although we do agree with this model 
and recommend this article for the readers interested in specific 
cellular responses to GCs, we do not discard that pro- and anti-
inflammatory resultants coexist in the same cells as a function of 
time (Figure 2), GCs levels (74), and interplay with other cell types. 
In fact, individual immune cells treated with synthetic GCs can 
present anti- or pro-inflammatory responses indirectly. As dem-
onstrated by Hodrea et al., dexamethasone can promote enhanced 
phagocytosis by human dendritic cells through upregulation of 
genes related to this function, leading to subsequent increase 
in pro-inflammatory response (75). However, in other immune 
cell types, Dexamethasone exerted anti-inflammatory effects by 
enhancing apoptosis or by downregulating surface L-selectin in 

neutrophils (76, 77). Thus, GCs effects on  inflammatory cells 
can be variable through different mechanisms. The literature 
regarding the effects of SEGRAs/SEGRMs in different immune 
cells remains quite scarce, but as demonstrated by Pazdrak et al., 
the responses may diverge in the same cell type depending on the 
agonist, as observed in eosinophils (78). We suggest that the cur-
rent view on GR transcriptional modulation would benefit from 
models that consider additional factors not completely available 
in the literature yet.

PeRSPeCTiveS

Important molecular achievements have been made in terms of 
regulatory cis- and trans-components in GCs target genes, which 
are now recognized as highly heterogeneous sets. Strikingly, not 
all gene expression data fit in predicted models (54), pointing to 
unrecognized regulatory determinants. To better characterize 
how these genes are regulated by GR, important perspectives 
must be incorporated, such as evidences that this nuclear receptor 
occupies half-sites as monomers (79), and how different agonists 
provoke different PTMs on GRs and the respective consequences 
(12). It is also mysterious, at gene expression level, the ways GRs 
promote pro-inflammatory or anti-inflammatory effects. What 
are the exact context-dependent factors that determine predomi-
nance of well-known anti-inflammatory actions or complete 
resistance to GCs (80)? This field of research still awaits new 
breakthroughs.
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