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In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several 
protein kinases. The action of these kinases is linked to steroid production, mainly 
through steroidogenic acute regulatory protein (StAR), whose expression and activity 
are dependent on protein phosphorylation events at genomic and non-genomic levels. 
Hormone-dependent mitochondrial dynamics and cell proliferation are functions also 
associated with protein kinases. On the other hand, protein tyrosine dephosphorylation 
is an additional component of the ACTH signaling pathway, which involves the “classical” 
protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing 
PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as 
MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in 
hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase 
plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), ara-
chidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells 
have a role in the turn-off of the hormonal signal in ERK-dependent processes such as 
steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation 
of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases 
and phosphatases in the regulation of mitochondrial dynamics and steroid production. In 
addition, the participation of kinases and phosphatases in the signal cascade triggered 
by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/
ACTH and discussed.

Keywords: PKA, PTPs, eRK1/2, SHP2, mitochondrial dynamics, MKP-1, Acsl4

Abbreviations: AA, arachidonic acid; ACBD3, acyl CoA-binding domain 3; Acot 2, acyl-CoA thioesterase; Acsl4, acyl-CoA 
synthetase 4; ACTH, adrenocorticotropin; Ang II, angiotensin II; ERK1/2, extracellular signal-regulated kinases 1 and 2; LH, 
luteinizing hormone; MAM, mitochondria-associated ER membrane; MAPKs, mitogen-activated protein kinases; MEK1/2, 
mitogen-activated protein kinase kinase 1 and 2; Mfn, mitofusin; MAKP, mitogen-activated protein kinase phosphatase; PAO, 
phenylarsine oxide; PKA, cAMP-dependent protein kinase; PKC, protein kinase C; PTPs, protein tyrosine phosphatases; PV, 
pervanadate; SHP2, Src homology domain 2-containing PTP; StAR, steroidogenic acute regulatory protein; ZF, zona fasciculata.
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iNTRODUCTiON

Steroid hormones are synthesized in steroidogenic cells of the 
adrenal gland, ovary, testis, placenta, and brain and are required 
for normal reproductive function and body homeostasis. 
Unlike cells producing polypeptide hormones, which store large 
amounts of hormone in secretory vesicles ready for rapid release, 
steroidogenic cells store low amounts of steroids. Thus, a rapid 
steroidogenic response requires a rapid synthesis of new steroid 
molecules.

The transport of cholesterol from the outer to the inner mito-
chondrial membrane (IMM) is the rate-limiting step of steroido-
genesis (1, 2), and it is controlled by a complex mechanism that 
includes phosphorylation–dephosphorylation processes and the 
interaction of several proteins. Among these, the steroidogenic 
acute regulatory protein (StAR along this review, also known 
as STAR or more precisely STARD1) is the most widely studied 
(3, 4). Indeed, specialized reviews have focused and deeply cov-
ered the role of StAR protein in steroidogenesis (3, 4).

Steroid biosynthesis is finely regulated by the  
 phosphorylation–dephosphorylation of intermediate proteins 
(5–9). In this regard, it is well accepted that steroidogenic hor-
mones act through the activation of serine/threonine (Ser/Thr) 
protein kinases. In all steroidogenic tissues, phosphorylation-
dependent events are required for the acute stimulation of steroid 
biosynthesis through the activation of protein kinases, including 
cAMP-dependent protein kinase (PKA), protein kinase C (PKC), 
calcium/calmodulin-dependent protein kinase, and mitogen-
activated protein kinases (MAPKs). Adrenocorticotropic hor-
mone (ACTH) and luteinizing hormone (LH) [or its surrogate 
chorionic gonadotropin (CG)] signal transduction pathways 
include PKA-dependent phosphorylation events in adrenal and 
Leydig cells, respectively (10–12) In the adrenal zona glomerulosa, 
aldosterone secretion is stimulated by angiotensin II (Ang II) and 
K+, in addition to ACTH. These stimuli promote phosphoryla-
tion events, which are not dependent on cAMP/PKA. Indeed, K+ 
activates voltage-operated Ca2+ channels, while Ang II, bound to 
Ang II type 1 receptors, acts through the inositol 1,4,5-trisphos-
phate IP3–Ca2+/calmodulin system (13). In other words, steroid 
biosynthesis is modulated by hormones, ions, or growth factors 
through the posttranslational phosphorylation of proteins, while 
the question that arises is how these phosphorylation events can 
lead a specific signal to its mitochondrial site of action.

Signal transduction pathways in eukaryotic cells include pro-
tein phosphorylation as an integral component regulated by the 
delicate balance between protein kinases and phosphatases activ-
ity. Thereby, many cellular responses require a coordinated cross 
talk between Ser/Thr and Tyr kinases and phosphatases activity.

In this context, this article will discuss the role of protein 
phosphorylation–dephosphorylation in cellular biology and 
endocrine function of steroidogenic cells.

PROTeiN PHOSPHORYLATiON

Kinases involved in StAR Phosphorylation
Since the middle 80s, Orme-Johnson and her group were pioneers 
describing the relevance of the rapid induction of a 30-kDa protein 

in adrenal cortex after ACTH stimulation (14) and Leydig cells 
stimulated by cAMP (15). After these first discoveries, this group 
demonstrated that this protein is accumulated in mitochondria 
after hormone stimulation and processed to render two isoforms 
of 32 and 30  kDa (16, 17). Later, Stocco and Clark provided 
important data on the crucial role of this protein on the acute 
regulation of steroidogenesis and also on its molecular aspects. 
Since this protein is essential for cholesterol transport to the IMM 
and consequently for steroid synthesis, it was named StAR (3). 
Even when StAR has been widely identified as a phosphoprotein, 
the exact role of phosphorylation in StAR protein activity and 
hence cholesterol transport to the IMM still remains to be fully 
elucidated.

It is well established that non-genomic effects of PKA mainly 
involve posttranslational modifications of StAR protein. In 
fact, PKA phosphorylates murine and human StAR at specific 
residues such as Ser56/57 and Ser194/195 (18, 19). Moreover, 
genomic effects of PKA are known to include not only STAR 
gene (also known as STARD1 gene) transcription but also the 
transcriptional regulation of several steroidogenic-related genes 
(20). Even if cAMP-dependent signaling is the major pathway 
in steroid biosynthesis stimulated by ACTH and LH/CG, and 
PKA phosphorylation sites in StAR protein are well described, 
it is noteworthy that StAR sequence also contains putative 
phosphorylation sites for PKC, cGMP-dependent protein kinase 
or protein kinase G (PKG), casein kinase I and II, and cyclin-
dependent kinase 5 (Cdk5), as it was described elsewhere for 
eukaryotic phosphoproteins using database Expasy Prosite1 (21). 
Although the presence of these consensus sites might indicate 
StAR as a possible substrate for the respective kinases, the occur-
rence of this phosphorylation in vivo and its impact on steroid 
production remain uncertain.

Recent studies by Sasaki et al. – using a transgenic model with a 
bacterial artificial chromosome expressing either wild-type (WT) 
StAR or mutant StAR S194A to rescue StAR knockout mice – have 
demonstrated that Ser194, a conserved site among species, is an 
essential residue for normal StAR function in mice adrenal cortex 
and testis (22). These data indicate that phosphorylation of the 
Ser194/195 residues of StAR may account, at least in part, for 
the immediate increase in cholesterol side chain cleavage as a 
result of enhanced StAR protein activity. Consistent with these 
results, it has been demonstrated that the mutation in Ser195 
in human mature StAR protein, which lacks the leader peptide, 
reduces pregnenolone production, as determined by an in vitro 
assay using mitochondria isolated from MA-10 Leydig cells (23). 
Strikingly, when cholesterol binding to StAR is measured with 
fluorescent or radioactive cholesterol, purified mutant S195A and 
WT StAR display equal binding activity. As determined by StAR 
structural analyses, Ser195 lies in a short loop opposite to the 
C-α helix, which is essential for cholesterol binding. Therefore, 
the addition of phosphate-negative charge in this Ser might influ-
ence StAR activity by modifying its interaction with hypothetical 
mitochondrial partners such as ACBD3 (previously known as 
peripheral benzodiazepine receptor-associated protein, PAP7) 

1 http://expasy.org
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(24). This could, in turn, anchor PKA to Ser194/195, rather than 
alter cholesterol binding to the sterol-binding pocket (23).

In the same line, work by Stocco’s group has explored the 
regulation mechanism of StAR expression and steroidogenesis in 
conjunction with PKA and PKC pathways in MA-10 Leydig cells 
(25). This study shows that PKC-dependent induction of steroid 
synthesis is low when compared to that observed with PKA signal-
ing, but it is capable of enhance LH/CG- and/or cAMP-stimulated 
steroidogenic response. On the one hand, the activation of PKC 
markedly increases StAR expression, but not phospho-StAR, with 
only a modest increase in progesterone production. On the other 
hand, PKA activation triggers a substantial increase in the band 
of StAR phosphorylated in Ser194 (25).

Role of eRKs in the Regulation of StAR 
Protein and Steroid Biosynthesis
In addition to PKA activation importance for trophic hormone-
stimulated steroid biosynthesis, it is also known that extracellular 
signal-regulated kinases 1 and 2 (ERK1/2) and upstream activa-
tor mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) 
participate in the regulation of steroidogenesis. Indeed, several 
reports describe the role of members of the MAPK family in the 
regulation of steroid synthesis acting at both genomic and non-
genomic levels.

One of the first published works in the field indicates that 
cAMP-induced steroid synthesis depends on ERKs phosphoryla-
tion and activation (26). These authors show that adenylyl cyclase 
activation with forskolin promotes a time-dependent increase in 
ERK activity and translocation of this enzyme to the nucleus in 
mouse adrenocortical Y1 cells. Similarly, Roy et  al. have dem-
onstrated that ACTH receptor activation leads to rapid ERK1/2 
phosphorylation in primary cultures of human fasciculata cells 
(27), an effect also observed in a human adrenocortical H295R 
cell line (28). Moreover, Ang II also promotes MAPK activation 
in adrenal glomerulosa cells (29, 30). Thus, ERK activation seems 
to be a common event in the stimulation of different steroidogenic 
systems.

Although already demonstrated, PKA involvement in ERK 
activation continues to generate controversy; Le and Shimmer 
have shown that ACTH increases MEK and ERK phosphoryla-
tion in Y1 adrenocortical murine cells. This effect has also been 
detected in Kin-8 cells, a PKA-deficient mutant Y1-derived cell 
line (31), which suggests that ERK activation is independent of 
PKA activity. H295R adrenocortical cells exhibit only a very mod-
est cAMP response to ACTH, yet ERK1/2 response is immediate 
and consistent. ERK activation is minimally reduced by PKA 
inhibitor H89, but unaffected by PKC and calcium inhibitors. 
Thus, ACTH-induced ERK1/2 activation in H295R cells does not 
appear to depend on the mechanism by which most G protein-
coupled receptors activate ERK1/2, but does seem to depend on 
receptor internalization (28). On the other hand, Roy et al. have 
demonstrated the participation of PKA in ERK activation in 
human fasciculata cells (27).

A role for ERK activity has also been demonstrated in adrenal 
and gonadal steroidogenesis. Gyles et al. have shown that ERK 
activation results in enhanced phosphorylation of steroidogenic 

factor 1 (SF-1) and increased steroid production through 
increased transcription of the STAR gene in Y1 cells (26). The 
activation of the ERK/MEK pathway correlates with an increase 
in StAR mRNA levels, StAR protein accumulation, and steroi-
dogenesis. Similarly, ERK inhibition leads to a reduction in the 
levels of forskolin-stimulated StAR mRNA, StAR protein, and 
steroid secretion (26).

Luteinizing hormone receptor cascade activation in Leydig 
cells also promotes ERK1/2 phosphorylation, which is mediated 
by PKA through Ras activation (32). More recently, and using 
mice with a Leydig-specific deletion of MEK1/2 as an experi-
mental model, Yamashita et  al. have concluded that the MEK/
ERK pathway is critical for maintaining a functional population 
of adult Leydig cells and fertility (33).

In agreement with findings in adrenocortical cells (26), 
Martinelle et al. have demonstrated the functional role of the ERK 
cascade in human CG (hCG)-induced steroidogenesis in primary 
cultures of immature rat Leydig cells (34). In this system, inhibi-
tion of MEK1/2 by U0126 suppresses several cellular responses 
to hCG.

In turn, 3-day treatment with Ang II in cultured rat adrenal 
glomerulosa cells increases aldosterone secretion through a 
mechanism involving both ERK1/2 and p38 MAPK pathways 
(30). In addition, the effect of Ang II on aldosterone synthesis 
also requires ERK1/2 activity in primary cultures of glomerulosa 
bovine cells (29).

Even though several reports support a role for ERK1/2 in 
StAR mRNA induction and steroid biosynthesis, other studies 
show controversial results. Indeed, it has been demonstrated that 
MEK1/2 inhibitors, such as U0126 and PD98059, enhance the 
expression of StAR protein in MTLC-1 and primary Leydig cells 
(35). Also, in MA-10 Leydig cells stimulated with dibutyryl cAMP, 
inhibition of ERK1/2 activity increases STAR gene expression 
(25). Similarly, Seger et al. have demonstrated that ERK signaling 
cascade inhibits CG-stimulated steroidogenesis in granulosa-
derived cell lines (36). Taken together, the discrepancies on the 
role of ERK1/2 in StAR transcription might be due to different 
experimental conditions and cellular types, which generate dif-
ferent factor availability, such as transcription factors required 
for StAR expression. Nevertheless, the results of Yamashita et al. 
strongly support the requirement of ERK for StAR expression and 
steroidogenesis (33). Indeed, they analyzed the role of ERK1/2 
on steroidogenesis and fertility using as experimental models 
knockout mice carrying a deletion for MEK1/2 in Leydig cells 
and primary culture of Leydig cells isolated from these knockout 
mice. This study demonstrates that the deletion of MEK1/2 and 
concomitant reduction of phospho-ERK1/2 levels decreased tes-
ticular expression of several Leydig cells markers, including StAR 
protein. Then, a similar experimental model based on transgenic 
mouse should be a powerful tool to univocally demonstrate the 
role of ERK1/2 on ACTH action on steroidogenesis and cell 
growth.

Extracellular signal-regulated kinase activity seems to regulate 
key steroidogenic transcription factors by non-genomic and 
genomic actions. STAR gene transcriptional regulation requires 
transcription factors already present in the cell, which are activated 
by posttranslational modifications, such as SF1, and others which 
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must be de novo synthesized, e.g., NUR77, encoded by Nr4a1 
gene (37). Finally, it has been pharmacologically and molecularly 
demonstrated that ERK1/2 participates in cAMP-induced Nr4a1 
expression in both MA-10 Leydig and Y1 adrenocortical cells 
(38), in addition to SF-1 activation (26).

In addition to their role in steroid biosynthesis, ERK1/2 is also 
involved in adrenal cell proliferation and growth (39–41). ACTH 
stimulates adrenal growth in vivo, whereas in vitro ACTH has an 
inhibitory effect on adrenal cell proliferation. In serum-starved 
Y1 cells, a short pulse of ACTH produces a mitogenic effect, 
which is preceded by the rapid activation of ERK1/2 (39). This 
result is in accordance with the requirement of ERK activation 
for cell proliferation. However, it is well documented that ACTH-
mediated ERK activation is a transient process in Y1 cells. Thus, 
the early ERK activation could trigger StAR induction, steroido-
genesis, and also cell proliferation, while the following decrease in 
pERK levels could contribute to the inhibition of cell proliferation 
mediated by prolonged exposure to ACTH.

eRK-Mediated Phosphorylation  
of StAR Protein
The activation of the MEK1/2–ERK1/2 cascade appears to enhance 
steroid synthesis; nevertheless, the requirement of MEK1/2 and 
ERK1/2 cascade for the induction of STAR gene expression is less 
evident. Although it is well known the regulatory role of PKA on 
StAR protein activity, also this MEK1/2 and ERK1/2 cascade has 
been unveiled as a new mechanism of StAR activity modulation.

Our group has reported the role of MEK1/2–ERK1/2 cascade 
in the hCG/LH stimulation of StAR protein activity and steroido-
genesis (42). In line with reports by Manna et al. and Martinelle 
et  al. (25, 34), our work has shown that PKA acts upstream 
the stimulation of MEK and ERK activities. The inhibition of 
MEK1/2 on stimulated progesterone synthesis is not mediated 
by inhibition of PKA, as this enzyme activity is not altered in the 
presence of both inhibitors, U0126 and PD98095 (42).

Using a different strategy to study the role of active ERK1/2 
in steroidogenesis, the overexpression of a WT form of ERK2 in 
MA-10 Leydig cells was performed. We observed an increase in 
steroid production stimulated by submaximal concentration of 
cAMP (42). Furthermore, an inactive form of ERK2, the H230R 
variant, which fails to interact with MEK1, but retains the ability 
to interact with MEK2 in a weakened fashion, does not produce 
the effect of WT ERK2 (42).

In short, both kinases, PKC and PKA, are capable of phospho-
rylating ERK1/2 through MEK1/2 activation (25, 32). ERK1/2 
activity is involved in STAR gene expression induced by PKC or 
PKA activation, while a relevant role in StAR protein phospho-
rylation is attributed to PKA signaling pathway (25).

In summary, it is recognized that the ERK1/2 signaling 
cascade involved in regulating StAR expression and steroid 
synthesis is mediated by multiple factors and pathways, and is 
stimulus-specific.

MeK1/2 and eRK1/2 at the Mitochondria
The site of action of MEK inhibitors appears to be downstream of 
PKA activation and before of cholesterol transport, which implies 

that one of the targets may be located at the mitochondria. Gyles 
et al. have observed that activation of adenylyl cyclase causes a 
time-dependent increase in ERK activity and its localization from 
cytoplasm to nucleus (26), and our group has further proven a 
temporal ERK1/2 activation localized in the mitochondria, which 
is obligatory for PKA-mediated steroid synthesis in Leydig cells 
(42). Worth pointing out, the phosphorylation of mitochondrial 
ERK occurs before the increase in steroid production, and the hor-
mone dose that is required for ERK activation at the mitochondria 
is the equivalent for eliciting steroid synthesis. Phosphorylated 
ERK1/2 (pERK1/2) is located in the cytosol, mitochondria, 
and, in lower proportion, in the nuclear fractions after cAMP 
stimulation. In the mitochondria and the cytosol, an early peak in 
ERK1/2 phosphorylation is followed by a slow progressive signal 
reduction during the first hour of cAMP incubation, a profile 
similar to that observed in hCG stimulation, leading to pERK1/2 
activation. In contrast, pERK1/2 is mainly localized in the cytosol 
and nucleus, after epidermal growth factor (EGF) stimulation. 
Two different pools of MEK1/2 and pMEK1/2 have been found 
to be constitutively present in the cytosol and mitochondria. 
Remarkably, MEK1/2 differential distribution triggers different 
responses upon cellular stimulation (42).

Poderoso and coworkers have also shown that cAMP clearly 
induces sustained MEK1/2 phosphorylation in mitochondria, 
with a minor effect on the cytosolic kinases. Conversely, EGF 
induces a prolonged and strong cytosolic MEK1/2 activation, 
but only a discrete phosphorylation, in mitochondria. Although 
both EGF and cAMP increase total cytosolic MEK1/2, only EGF 
promotes its phosphorylation in this subcellular fraction (42).

The inhibition of PKA activity with the compound H89 and 
by PKA knockdown experiments diminishes the increase in 
mitochondrial pMEK1/2 and pERK1/2 after cAMP action (42). 
In agreement, the increase in mitochondrial PKA activity occurs 
after 5 min of cAMP action in parallel with the appearance of the 
phosphorylated forms of MEK1/2 and ERK1/2 in this organelle.

In regard to PKA activity and subcellular organization, a family 
of proteins named A-kinase anchor proteins (AKAPs) enhances 
cAMP-dependent pathways (43, 44). AKAPs raise cAMP signal 
by anchoring PKA near its cellular substrate, while mouse-
derived AKAP121 binds PKA to the mitochondrial outer surface 
(45, 46). In addition, purified AKAP121 KH domain binds the 
3′-untranslated regions of transcripts encoding the Fo-f subunit 
of mitochondrial ATP synthase and manganese superoxide dis-
mutase (47). A special member of the AKAP family, AKAP121, 
can be anchored to mitochondria and may compartmentalize 
PKA and other proteins on the outer mitochondria membrane 
(OMM) (48). In Leydig cells, cAMP-induced StAR expression and 
steroidogenesis were found to correlate with the extent of AKAP 
121 expression (49). Expression and role of AKAP121 in H295R 
cells deserve elucidation. Another relevant AKAP in steroidogenic 
tissues is the ACBD3 protein, an acyl CoA-binding protein, known 
previously as PAP7 (24). Human ACBD3 is highly expressed in 
steroidogenic tissues, where it follows the pattern of PRKAR1A 
expression, suggesting that it participates in PRKAR1A-mediated 
tumorigenesis and hypercortisolism (50). Therefore, StAR protein 
is likely to be phosphorylated at the mitochondria by the activa-
tion of a cascade of kinases, including ERK.
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StAR Protein as a Substrate of eRK1/2
Steroidogenic acute regulatory protein structural analyses have 
revealed a consensus sequence that would allow the docking 
of StAR protein to ERK1/2 and a consensus site for ERK1/2 
phosphorylation. A typical docking site known as the D domain 
(KTKLTWLLSI) lies between amino acids 235 and 244 and 
is conserved among MEK1/2, MAPK phosphatase, and ERK 
substrates (51). Regarding the ERK1/2 phosphorylation site in 
StAR protein, it was possible to detect only two Ser-Pro motifs, 
at Ser232 and Ser277, targets for ERK1/2 phosphorylation in the 
mature form of the murine StAR protein. In accordance with 
the database Expasy Prosite,2 Ser232 (PLAGS232PS) has a 90% 
probability of phopshorylation and is adjacent to the docking 
D domain, while the probability of Ser277 is only 5%. Besides, 
Ser277 is relatively less conserved among species. In agreement of 
a predicted StAR–ERK binding, the treatment of subcellular frac-
tions with pERK–GST has shown that StAR protein interacts with 
pERK1 just in the mitochondrial fraction, but not in the cytosol. 
Together, MEK phosphorylation PKA-dependent, mitochondrial 
StAR and pERK1/2 activity increase cholesterol transport and 
mitochondrial synthesis of progesterone in cell-free assays (42).

In vitro phosphorylation assays using recombinant 30-kDa 
form of StAR protein and WT and the inactive mutant K71A 
forms of ERK1 demonstrated that the StAR protein is indeed 
phosphorylated by ERK1 and not by the K71A mutant. 
Remarkably, phosphorylation of StAR by ERK1 is dependent on 
the presence of cholesterol, while phosphorylation by PKA is not. 
Besides, StAR phosphorylation by PKA does not require previous 
ERK phosphorylation. By means of directed mutagenesis of Ser 
232 (S232A), we demonstrated that this residue is indeed the 
target of ERK (42).

Expression of S232A mutated form of StAR partially blocks 
progesterone production enhanced by cAMP treatment in 
MA-10 cells. In contrast, the StAR mutant in which Ser 232 is 
replaced by a glutamic acid (S232E) does not produce such effect, 
which suggests that the negatively charged amino acid partially 
mimics the negative charge of the phosphate group present in the 
phospho-Ser (42).

Taking together, PKA phosphorylates StAR protein and also 
activates mitochondrial MEK1/2. Then, phosphorylated MEK1/2 
activates a non-phosphorylated mitochondrial pool of ERK1/2 
when the three kinases interact at the OMM, a crucial site for 
cholesterol transport forming a mitochondrial multi-complex 
with StAR.

PROTeiN DePHOSPHORYLATiON

Regulation of Protein Tyrosine 
Phosphatases by Steroidogenic Hormones
The degree of tyrosine phosphorylation of a given protein is the 
result of the action of protein tyrosine kinases and protein tyros-
ine phosphatases (PTPs). Protein kinases have been the focus of 
the research for a long time. Proportionately much less research 
has focused on protein phosphatases.

2 http://expasy.org/prosite/

Whereas PTPs were initially regarded as household enzymes 
with constitutive activity and capable of all-substrate dephos-
phorylation, evidence in favor of tight regulation of PTP activity 
by various mechanisms is now accumulating. Like protein 
phosphorylation, dephosphorylation by PTPs is required in a 
cell compartment-specific manner. Protein–protein interaction 
domains and compartment-specific targeting domains in PTPs 
serve to localize PTPs all over the cell compartments (52).

Based on the amino acid sequence of their catalytic domain, 
PTPs are classified into four groups, Class I, II, III (all Cys-
based PTPs), and IV (Asp-based PTPs), each with a specific 
range of substrates. The largest family is the Class I (Cys-based 
PTPs), comprising the 38 “classical” PTPs, and the 61 “dual-
specificity” PTPs (DSPs), which is the most diverse group in 
terms of substrate specificity. The group of the classical PTPs, 
with strict tyrosine specificity, consists of the receptor-like 
(transmembrane) and non-receptor (intracellular) classes. In 
the human genome, these PTPs comprise 21 and 17 genes, 
respectively (52, 53).

The cross talk between pathways that involve Ser/Thr phos-
phorylation and Tyr dephosphorylation has been described in 
the regulation of steroid synthesis. Our group has reported that 
ACTH treatment causes an increase in the activity of PTPs located 
in the cytosol of adrenal zona fasciculata (ZF). The stimulation is 
detected very soon after ACTH stimulation (5  min), reaches a 
maximum (twofold) after 15 min, and returns to basal levels after 
30 min (54). Incubation of adrenal ZF with 8Br-cAMP (permeant 
analog of cAMP) also produces PTPs activation, suggesting that it 
can be mediated by PKA-dependent phosphorylation. Moreover, 
detection of PTP activity by in-gel assays has shown at least two 
ACTH-stimulated soluble PTPs with molecular masses of 115 
and 80 kDa (54).

Protein tyrosine phosphatases are regulated by Ser/Thr or 
Tyr-kinases. Indeed, several PTPs are known to be phospho-
proteins in vivo (55, 56), which reflects the potential of cross-
regulation between kinases and phosphatases, either PTPs or 
Ser/Thr phosphatases, for the fine control of cellular activity. 
Among those phospho-PTPs, there is a membrane-bound form, 
which can be activated by treatment of intact cells with isopro-
terenol, forskolin, or cAMP analogs (55), and a soluble form 
of PTP, known as PTP-PEST, which is inhibited after in  vitro 
phosphorylation by PKA and in HeLa cells after forskolin or 
methylisobutylxanthine treatment (56). Our current studies 
demonstrate the expression of PTP-PEST in Y1 cells and in rat 
adrenal ZF and suggest that the ACTH-activated PTP of 115 kDa 
could be PTP-PEST. Furthermore, when paxillin is precipitated 
from the cytosol of ACTH-treated rats, a PTP of 115  kDa is 
coprecipitated according to the analyses of precipitate by in-gel 
PTP assay (57).

The Src homology domain (SH) 2-containing PTP (SHP2) 
is classified among the non-receptor, classical PTPs. It is widely 
expressed and plays an essential role in many organisms from 
lower eukaryotes to mammals (58). In contrast to other PTPs that 
inactivate intracellular signaling pathways, SHP2 activates them 
(59). The ACTH-activated PTP of 80 kDa from adrenal ZF has 
been recognized by a commercially available antibody against 
SHP2 in Western blot analyses (unpublished results), which 
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suggests that SHP2 is a PTP activated by ACTH in rat adrenal ZF. 
In line with our results, Rocchi et al. have demonstrated SHP2 
expression in bovine adrenocortical cells and its activation by 
ACTH through PKA-dependent phosphorylation (60). Finally, 
our group has also shown that SHP2 is expressed in MA-10 
Leydig cells (61).

PTP Activity and Steroidogenesis
The rapid increase in PTP activity induced by ACTH may prove 
that this activity is necessary in the stimulation of steroidogen-
esis. Studies on PTPs role in the acute steroidogenic response to 
hormones have been performed using incubation of rat adrenal 
ZF cells with two powerful cell permeant PTP inhibitors, pheny-
larsine oxide (PAO) and pervanadate (PV), and evaluation of the 
steroid production upon stimulation by ACTH and 8Br-cAMP. 
It has been proven that those PTP inhibitors block ACTH- and 
cAMP-stimulated corticosterone production, but exert no effects 
on basal steroidogenesis (54). Similar conclusions were obtained 
using Y1 cells (62, 63).

Phenylarsine oxide and PV also reduce LH/hCG- and cAMP-
stimulated steroid production in testicular interstitial cells (64) 
and in MA-10 cells (65). PTP inhibitors affect StAR induction 
at the protein and mRNA levels in MA-10 Leydig cells (65), as 
well as in Y1 cells (63). PTP inhibitors affect neither cell viability 
nor mitochondrial enzymatic activity evaluated as steroidogen-
esis triggered by 22-OH-cholesterol treatment. Thus, hormone-
dependent steroid synthesis requires PTP activity in a site 
localized beyond PKA actions and before cholesterol transport 
across the IMM.

Phenylarsine oxide oxidizes the thiol group of a cysteine 
present in the active site of all PTPs. Benzyl phosphonic acid 
(BPA) has a structure very similar to the PTP substrate, exerting 
its inhibitory action on PTPs by competitive inhibition of the 
enzyme. However, both inhibitors, PAO and BPA, inhibit Ang 
II- or K+-induced steroid synthesis in a dose-dependent fashion 
in H295R cells, a cell line derived from human ZG tumor (66), 
and in Y1 cells (63).

Collectively, our group’s work demonstrates that steroidogenic 
stimulus (ACTH, LH, Ang II, and K+), acting by different signal 
transduction pathways, conveys on PTPs as common intermedi-
aries (63–66).

In regard of substrates downstream PTP activity, in  vivo 
ACTH treatment decreases phosphotyrosine contents in several 
proteins, one of them identified as paxillin, a focal adhesion 
protein (54). In Y1 cells, ACTH and cAMP elicit a rapid morpho-
logical transition from a flat epithelioid morphology to rounded 
cells (11). cAMP causes a rapid and selective Tyr dephosphoryla-
tion of paxillin in these cells (67). Moreover, the inhibition of 
PTP activity blocks changes in cell shape promoted by ACTH 
(67). Taken together, these results indicate that PTP activity is 
involved in cAMP-dependent paxillin dephosphorylation and 
this might mediate hormone-stimulated cell shape changes in 
adrenocortical cells.

In summary, results presented here support the view that the 
morphological and functional responses to ACTH in adrenocor-
tical cells are intimately linked to and mediated by PTP activity.

Links between PTP Activity and 
Arachidonic Acid Release
cAMP- and PKA-dependent pathways triggered by trophic 
hormones in steroidogenic cells stimulate arachidonic acid (AA) 
release (68, 69). AA and its metabolites take part in the acute 
stimulation of steroid production. The effect is exerted on both 
the expression and function of StAR (70, 71). Previously, we 
proposed that free AA levels in steroidogenic cells are deter-
mined by a novel hormone-regulated mechanism (69, 72, 73). 
This mechanism involves the concerted action of an acyl-CoA 
synthetase (Acsl4) and an acyl-CoA thioesterase (Acot2). Acsl4 is 
a long chain fatty acid acyl-CoA synthetase, with high affinity for 
AA, and it is preferentially expressed in steroidogenic tissues (72, 
74). Acot2, a thioesterase that acts on long chain fatty acyl-CoA, 
associates with the matrix face of mitochondrial cristae (75–77). 
Acot2 mRNA and protein are present in adrenal cortex, ovary, 
testis, placenta, and brain, among other tissues. The activity of 
both enzymes is acutely modified after hormone stimulation of 
steroidogenic cells. Acot2 is activated by phosphorylation and 
substrate availability (78), and Acsl4 is rapidly induced after 
hormone treatment (79).

The activity of Acsl4 and Acot2 are needed for AA release, 
StAR induction, and steroidogenesis. This statement is supported 
by the fact that the reduction of the expression of both, Acsl4 and 
Acot2, causes an inhibition of steroid production in two steroi-
dogenic systems (79, 80). Moreover, this effect is overcome by 
addition of exogenous AA (80). On the basis of these results, we 
propose that upon hormone treatment, Acsl4 would convert free 
AA in AA–CoA. The action of mitochondrial Acot2 on AA–CoA 
would release AA, specifically in the mitochondria, to increase 
StAR and steroidogenesis (69).

Our group has also linked the sequential action of PTPs, Acsl4, 
and StAR to the hormone-stimulated steroid production (66, 81). 
In Y1 cells, inhibition of PTP activity prevents Acsl4 and StAR 
induction exerted by 8Br-cAMP (81). Moreover, the effect of PTP 
inhibition is overcome by addition of exogenous AA (81). These 
results indicate that there is a consecutive action of PTP and Acsl4 
to release AA before StAR induction. Moreover, the effect of PTPs 
on Acsl4 is also described in Leydig (81) and adrenocortical ZG 
cells (66) (Figure 1), indicating that the action of PTPs on Acsl4 
may be a regulatory event that controls the steroidogenesis.

These results brought about a challenge to determine the iden-
tity of the PTP involved in the stimulation of steroid synthesis 
through AA release.

SHP2 involvement in Steroid Synthesis
By means of overexpression and suppression approaches, SHP2 
has been proven to be at least one of the PTPs playing an obliga-
tory role in steroidogenesis. NSC87877, a specific inhibitor of 
the tyrosine phosphatase SHP2, has been shown to reduce 
Acsl4 protein levels in Acsl4-rich breast cancer cells and ster-
oidogenic cells. In addition, overexpression of an active form 
of SHP2 has increased Acsl4 protein levels in MA-10 Leydig 
cells. SHP2 has to be activated through a cAMP-dependent 
pathway to exert its effect on Acsl4, which could be specifically 
attributed to SHP2, as phosphatase knockdown reduces Acsl4 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FiGURe 1 | Proposed model for the role of MAPK and phosphatases in steroidogenesis. Steroidogenic hormones trigger the activation of PKA, which leads 
to the rapid phosphorylation of ERK1/2. Activated ERK (P-ERK) translocates to the nucleus, where it phosphorylates and activates transcription factors, leading to 
STAR gene induction. Then, StAR protein acts in the mitochondria facilitating steroid synthesis. Simultaneously, activated PKA also induces MKP-1 gene 
transcription. MKP-1 is stabilized by ERK-mediated phosphorylation; therefore, the stabilization promotes its accumulation in the cell. In turn, MKP-1 
dephosphorylates ERK1/2, generating a negative feedback mechanism on its activity, thus terminating MAPK-regulated events involved in steroidogenesis. Inactive 
PTPs (PTPi) are activated by PKA (PTPa) and participate in Acsl4 regulation, which in turn, through arachidonic acid (AA) metabolism, leads to the increase of StAR 
gene expression. Direct effects are indicated by solid lines, whereas indirect effects are indicated as dotted lines.

7

Paz et al. Phospho/Dephosphorylation in Adrenal Steroidogenesis Regulation

Frontiers in Endocrinology | www.frontiersin.org June 2016 | Volume 7 | Article 60

mRNA and protein levels. Through the action on Acsl4 protein 
levels, SHP2 affects AA–CoA production and metabolism and, 
finally, the steroidogenic capacity of MA-10 cells: overexpres-
sion (or knockdown) of SHP2 leads to increased (or decreased) 
steroid production (82).

The downregulation of SHP2 also modifies StAR expression. 
StAR expression increases in MA-10 Leydig cells treated with 
cAMP, an effect impaired by a short hairpin RNA (shRNA) 
against SHP2. Also, cAMP treatment causes a significant 
increase in StAR levels in mock-transfected cells, whereas 
SHP2 shRNA treatment prevents this effect. The involvement 
of AA in this process receives strong support from the fact 
that AA addition to SHP2 shRNA-treated cells bypasses the 
inhibitory effect produced by SHP2 knockdown (61). In this 

context, the hypothesis that arises is that a putative transcrip-
tion factor, inhibited by tyrosine phosphorylation, is involved 
in ACTH-mediated Acsl4 induction. SHP2 could promote 
the tyrosine dephosphorylation of this factor, thus increasing 
steroid synthesis.

The Src homology domain (SH) 2-containing PTP is phospho-
rylated upon ACTH treatment (60). Moreover, in vitro phospho-
rylation of SHP2 by PKA dramatically increases its phosphatase 
activity (60). Although the phosphorylation of SHP2 by cAMP-
independent kinases has not been demonstrated in steroidogenic 
cells, SHP2 may be phosphorylated by several different kinases to 
become Ser/Thr- or Tyr-phosphorylated. Indeed, SHP2 itself is 
Tyr-phosphorylated and activated through the action of different 
growth factors (83–86).
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The Src homology domain (SH) 2-containing PTP has been 
identified in mitochondria, being the first evidence of the presence 
of a tyrosine phosphatase in such organelle (87). Several tyrosine 
kinases are present in the mitochondria (88). Particularly, c-Src is 
involved in the modulation of the efficiency of the mitochondrial 
electron transport chain (88). These data become important as 
stimulation of steroidogenesis needs energized mitochondria, 
and AA export and StAR induction need the activity of complexes 
III and V (73). In case, SHP2 is also located in the mitochondria 

of steroidogenic cells, this phosphatase would be involved in the 
regulation of mitochondrial respiration.

The translocation of ERK to mitochondria is abolished by 
SHP2 knockdown in MA-10 cells. Moreover, the pronounced 
rearrangement of mitochondria that occurs after hCG stimulation 
is reduced by the downregulation of SHP2 expression (89). Then, 
the complete description of the steroid synthesis and secretion 
after hormone stimulation needs the study of SHP2 activation 
and mitochondrial reorganization (Figure 2).
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MAPK Phosphatases in  
Steroidogenic Cells
Given that MAPK activation depends on Thr/Tyr protein phos-
phorylation, the magnitude and duration of their activity are 
related to protein phosphatases. MAPK phosphatases (MKPs) 
are a family of dual activity (Thr/Tyr) protein phosphatases, 
which dephosphorylate specifically members of MAPKs (90, 
91). Several distinct mammalian MKP family members have 
been identified and characterized and can be divided into two 
broad classes. One group, typified as MKP-1, comprises nuclear 
enzymes rapidly induced by growth factors or stress signals. 
This group also includes MKP-2, a nuclear enzyme induced by 
the same stimuli that induce MKP-1, but with a slower kinetics. 
The second group, typified as MKP-3, includes predominantly 
cytosolic enzymes, and their transcripts are induced with delayed 
kinetics by specific stimuli, but not by environmental stress.

On the basis of evidence showing that ACTH can regulate 
the activity of MAPKs (31, 92), the regulation of MKPs by this 
hormone is expected. Analyses on MKP-1 induction in serum-
starved Y1 cells demonstrated that ACTH stimulation results in 
a transient increase in MKP-1 mRNA followed by an increase in 
protein levels (93). Sewer and Wateman have also described the 
regulation of MKP-1 expression by cAMP in H295R cells. In this 
regard, they demonstrated that MKP-1 mRNA and protein levels 
are induced by cAMP, and overexpression of this phosphatase 
stimulates hCYP17 reporter gene activity. Besides, this study also 
demonstrates that PKA phosphorylates MKP-1 (94).

The hormone-dependent expression of MKP-1 has also been 
analyzed in MA-10 Leydig cells, where hCG/cAMP rapidly 
increases MKP-1 gene induction in a transient manner (95). 
Besides, MKP-1 protein levels increased in both nuclear and 
mitochondrial compartments. Moreover, MKP-1 increase (95) 
and ERK1/2 dephosphorylation in the mitochondria (42) are 
temporally coordinated events. In addition, our group has 
demonstrated that, in cells expressing flag-MKP-1 protein, hCG/
cAMP trigger the phosphorylation and the accumulation of the 
recombinant protein in a time-dependent manner. Altogether, 
these results indicate that hCG modulates MKP-1 expression by 
transcriptional and posttranslational actions.

The functional role of MKP-1 in the regulation of steroidogen-
esis has also been analyzed in MA-10 Leydig cells. Work by our 
group demonstrates that MKP-1 overexpression downregulates 
the effects of cAMP on phospho-ERK1/2 levels, StAR expression, 
and steroidogenesis, while MKP-1 downregulation produces 
opposite effects. In summary, these data demonstrate that in 
Leydig cells, MKP-1 expression is regulated at multiple levels 
as a negative feedback regulatory mechanism to modulate the 
hormonal action on ERK1/2 activity and steroidogenesis (95).

Casal et al. have demonstrated the expression and regulation 
of MPK-1 also in primary cultures of bovine adrenal glomerulosa 
cells (29). These authors show that Ang II markedly increases 
MKP-1 protein levels in a time- and concentration-dependent 
manner. Ang II-induced phosphorylation of ERK1/2 leads to 
MKP-1 phosphorylation and, in turn, MKP-1 promotes ERK1/2 
dephosphorylation. MKP-1 overexpression in bovine adrenal 
glomerulosa cells results in decreased phosphorylation of ERK1/2 

and aldosterone production in response to Ang II stimulation. 
These results strongly suggest that MKP-1 is induced by Ang 
II and that it is involved in the negative feedback mechanism, 
ensuring adequate ERK1/2-mediated aldosterone production in 
response to the hormone.

In MA-10 Leydig cells, LH receptor stimulation also induces 
MKP-2 (96) and MKP-3 (97) through multiple mechanisms. 
While MKP-2 completes the ERK1/2 dephosphorylation in the 
nucleus initiated by MKP-1, MKP-3 dephosphorylates ERK1/2 
in the cytoplasm.

In conclusion, stimuli promoting MAPK activity also regu-
late MKPs expression at multiple stages as a negative feedback 
regulatory mechanism to modulate hormonal actions on ERK1/2 
activity and steroidogenesis (Figure 1).

KiNASeS AND PHOSPHATASeS iN THe 
ReGULATiON OF MiTOCHONDRiAL 
DYNAMiCS: ROLe iN StAR ACTiviTY  
AND STeROiDOGeNeSiS

StAR Structural Changes
Several protein kinases, such as PKA, MEK, and ERK – which 
are essential to complete steroidogenesis – form a mitochondria-
associated complex and are completely required for mitochon-
drial cholesterol transport along with StAR and other proteins 
such as Acsl4, voltage-dependent anion channel (VDAC1), and 
adenine nucleotidetranslocase (ANT) (42, 98).

The precise mechanism of StAR action has been widely 
explored, but still remains elusive. StAR is synthesized as a 37-kDa 
protein with a typical mitochondrial leader sequence that directs 
the protein to the mitochondria for the import and cleavage to 
an intramitochondrial form of 30-kDa (99–102). After reaching 
the matrix, the 30-kDa StAR is controlled by the ATP-dependent 
Lon protease (103) and proteolysed, its half-life being 4–5  h 
(101,  104). A tight regulation of mitochondrial StAR levels is 
imperative since excessive accumulation of StAR protein in the 
matrix provokes mitochondrial damage and a “mitochondria 
to nucleus” signaling which, in turn, activates transcription of 
genes that encode mitochondrial proteases crucial for complete 
clearance of StAR (105). In this regard, we have observed that the 
presence of mitochondrial ERK is strictly necessary for protect-
ing StAR from unknown proteases to avoid further degradation, 
which constitutes one of the mechanisms playing a role in mito-
chondrial StAR levels regulation (106).

This mechanistic model of StAR action suggests that the 
active form of StAR is partially unfolded, with the N-terminal 
domain entering the mitochondria and the partially unfolded 
C-terminus interacting with the OMM. Direct evidence has been 
presented showing that StAR exists as a molten globule. While 
certain native structure is retained at the N-terminal domain, the 
C-terminal domain folding appears to be less tight at the low pH 
that StAR may undergo on the mitochondrial membrane. Then, 
the tightly folded N-terminal domain could make StAR halt as 
it enters the mitochondria, extending the time window for the 
C-terminus to act.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


10

Paz et al. Phospho/Dephosphorylation in Adrenal Steroidogenesis Regulation

Frontiers in Endocrinology | www.frontiersin.org June 2016 | Volume 7 | Article 60

Steroidogenic acute regulatory protein exhibits constitutive 
activity on the OMM, but no activity when localized to the inter-
membrane space (IMS) or to the matrix (107). Mitochondrial 
StAR protein import experiments using a modified leader peptide 
confirmed StAR exclusive activity on the OMM, as reflected by 
a negative correlation between the time of StAR mitochondrial 
entry and its activity. Once again, StAR role in promoting ster-
oidogenesis is proportional to the time it spends on the OMM 
(107, 108).

Even when N-62 StAR form (which lacks mitochondrial pep-
tide leader) does not access to the mitochondria, a few molecules 
of this protein are associated with the OMM as it is shown by 
immuno-electron microscopy (108, 109). This truncated StAR 
form would transport several cholesterol molecules, while com-
plete StAR protein is able to bind just one. This suggests that StAR 
could transport several cholesterol molecules before entering 
mitochondria and be processed.

Mitochondrial Dynamics and its 
Regulation by Protein Kinases in 
Steroidogenic Cells
“Mitochondrial dynamics,” which includes fusion/fission events, 
is relevant for maintaining mitochondrial integrity. Indeed, mito-
chondrial plasticity is important for several cellular functions 
and for protection against aging-related changes. Among these 
functions, mitochondrial dynamics play a role in mitochondrial 
replication and repair, propagation of intramitochondrial cal-
cium waves, and in the elimination, via mitophagy, of depolarized 
mitochondria (110). Two GTPases located on the OMM have a 
crucial role in mitochondrial fusion, mitofusin (Mfn) 1 and 2. 
These proteins, structurally related to dynamin, are expressed in 
several tissues, as brain (mainly Mfn2), liver, adrenal glands, and 
testis. Mfn1 and Mfn2 modulate the interactions mitochondria–
mitochondria and endoplasmic reticulum (ER)–mitochondria 
and also mediate mitochondrial fusion acting in a concerted 
fashion with another GTPase located in the IMM, optic atrophy 
1 (OPA1).

Mitochondria have been shown to be in constant move-
ment within the cells, and this movement can be induced after 
steroidogenic hormone action. This event would allow the 
contact between mitochondria and other membranes. It is well 
known that the contact between mitochondria and ER plays an 
important role in cell metabolism and signaling transduction 
pathways. Indeed, it is considered as a unique subdomain termed 
the mitochondria-associated ER membrane (MAM), with a 
vast importance in regulation of Ca2+ signaling, mitochondrial 
bioenergetics, apoptosis, and lipid metabolism (111–113).

Mfn2 in the ER bridges mitochondria and ER by forming 
homotypic and heterotypic complexes, with Mfn2 or Mfn1 on 
the mitochondrial surface. Therefore, Mfn2 is critical for MAM 
formation by tethering ER to the mitochondria. A mitochondrial 
ubiquitin ligase, MITOL, has been described as the regulator 
of the ER–mitochondria interaction by controlling Mfn2 activ-
ity (114). Interestingly, Acsl4, the key enzyme involved in the 
regulation of steroidogenesis through AA release and induced by 

steroidogenic hormones (66, 79, 80), is localized and active in the 
MAM subdomain (115).

Dynamin-related protein 1 (Drp1) is required for mitochon-
drial fission. It is a cytosolic protein, which is recruited to the OMM 
by a poorly characterized multiprotein complex. In neurons, 
Drp1 phosphorylation by PKA in the mitochondria results in its 
inactivation and concomitant mitochondrial elongation (116). 
On the other hand, Drp1 phosphorylation by PKCδ at Ser579 
increases mitochondrial fragmentation (117). In summary, sev-
eral works support a key regulatory role for phosphorylation in 
mitochondrial morphology maintenance.

Although it is well recognized the relevance of mitochondrial 
dynamics in several cellular processes, its role in steroid synthesis 
is poorly described. Nevertheless, a work published 30 years ago 
described hormone-induced changes in intracellular location 
of the mitochondria and in the morphology of this organelle 
(118). Later, it was described that mitochondria move across 
the cell in a PKA-dependent manner after ACTH stimulation in 
H295R adrenocortical cells (119). This work demonstrates that 
ACTH/cAMP-stimulated mitochondrial movements depend 
on microtubules and have a role in the regulation of cortisol 
production, facilitating the shuttle of steroidoigenic substrates 
between the ER and mitochondria (119). In this cell line, the 
reduction of OPA1 facilitates the transfer of cytosolic Ca2+ signal 
into the mitochondrial matrix (120), which results in turn in 
enhanced aldosterone production (121). The authors stated that 
this is probably due to the altered diffusion conditions under 
OPA1 knockout. The study of an extramitochondrial form of 
OPA1 closely related to the lipid droplets ruled out any role 
of this fraction of OPA1 in cAMP-mediated steroid hormone 
production, the specific biological function of adrenocortical 
cells (66, 120). Moreover, the reduction of OPA1 in Leydig cells 
did not affect steroid production (98), suggesting that OPA1 is 
not critical for hormone-induced steroidogenesis. Then, the con-
tribution of OPA1 and cristae remodelation to steroid synthesis 
needs further investigation.

Mitochondrial Dynamics and 
Steroidogenesis
Steroid synthesis requires mitochondrial fusion induced by in 
a hormone-dependent fashion (89). The fact that Mfn2 is rap-
idly induced after the steroidogenic stimuli, and that blocking 
mitochondrial fusion by Mfn 2 knockdown expression reduce 
steroid synthesis, further supports a role of mitochondrial 
dynamics on steroidogenesis (89). The hormone-induced mito-
chondrial fusion might also be crucial for the generation of the 
mitochondrial multiprotein complex that facilitates the access 
of cholesterol to the P450scc system, since the mitochondrial 
rearrangement after cell stimulation is necessary for the relocali-
zation of ERK1/2 to mitochondria. Moreover, the abrogation of 
mitochondrial fusion prevents the association of Acsl4 with the 
mitochondria, showing clearly that MAM formation depends 
on mitochondrial fusion (89). As previously mentioned in this 
review, SHP2 modulates mitochondrial fusion, suggesting that 
protein tyrosine dephosphorylation could be involved in the 
mechanism of mitochondrial dynamics (89). According to a 
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published work (119), mitochondrial fusion might represent 
a limiting step in the onset of processes that require transport 
of intermediate products, e.g., liposoluble steroid hormones 
between organelles, probably mediated by MAM. In agreement 
with the previous results from our group, recent work demon-
strate that hormone-induced MAM formation participates in 
the optimum transfer of cholesterol from the ER into the IMM 
increasing steroidogenesis rates (122). Then, steroid hormones 
might reach the plasma membrane without moving across the 
hydrophilic cytoplasm. Our group has shown that mitochondrial 
fusion is an essential process in regulating StAR mRNA levels 
and driving StAR to the mitochondrial context, probably partici-
pating in StAR mRNA stabilization and/or tethering the protein 
to the OMM (106) (Figure 2).

Role of StAR Phosphorylation and 
Mitochondrial Fusion in StAR Localization
In silico molecular modeling has demonstrated that cholesterol 
binding to StAR could elicit a conformational change in StAR 
C-terminal domain, which in turn might favor the exposure of 
StAR Ser 232 and the docking domain for ERK. Therefore, StAR 
could be a substrate for ERK binding and phosphorylation, only 
when this protein is bound to cholesterol (42). This model is 
sustained by the fact that cholesterol binding to StAR promotes 
a decrease in its helical structure (123). The OMM is the most 
probable environment for the interaction between StAR and 
ERK since this submitochondrial domain anchors both StAR 
and ERK, as demonstrated in the previous work (42, 53). In 
turn, the overexpression of the mutated form of StAR, S232A, 
in steroidogenic cells prevents StAR phosphorylation by active 
ERK, thus proving that the kinase indeed phosphorylates this 
residue.

Cholesterol acts as an allosteric modulator of its own binding 
to StAR (123) and is strong stabilizing of the partially unfolded 
state in the StAR molecule (124). However, when cholesterol has 
to reach the P450scc, its release from StAR hydrophobic pocket 
is obligatory. Since ERK phosphorylation of StAR requires cho-
lesterol, it is conceivable to think that StAR phosphorylation at 
Ser232 occurs after cholesterol binding. Thus, a conformational 
change in StAR induced by a negative charge at the Ser232 might 
reduce StAR affinity for cholesterol, favoring its release. This 
might in turn facilitate cholesterol transport into mitochondria 
to achieve high rates of pregnenolone synthesis.

Steroidogenic acute regulatory protein molecular structure 
has been partially studied (123–126), and the Ser232 residue 
is predicted to be localized in one of the last β barrels of the 
StAR-related lipid-transfer (START) domain (126, 127). It is well 
known that protein stability and interaction with several com-
ponents are modulated by phosphorylation. Phosphorylation of 
proteins promotes acidic loops formation in their structure, as 
it has been described (128). The pH-dependent transition to the 
molten globule structure in the mitochondrial context (OMM) 
could provoke a weakened association between StAR C-terminal 
α-helix and lipid molecules, thus releasing cholesterol from StAR 
hydrophobic pocket. Under acidic pH conditions, the cholesterol 

affinity for START domain is significantly decreased (127). Thus, 
the addition of a phosphate group to StAR by ERK could establish 
a local decrease in pH, directing a conformational change in 
StAR, to a form with a lower affinity for cholesterol.

Our group has shown that StAR S232A expression significantly 
diminishes the localization of StAR in the mitochondria induced 
by hCG or cAMP. ERK phosphorylation affects mitochondrial 
StAR levels posttranscriptionally, as the expression of transfected 
StAR S232A is independent of cellular endogenous regulation 
(106). The mitochondrial module includes MEK, ERK, and 
cholesterol with a direct physical association between StAR and 
ERK (42). Their interaction facilitates StAR phosphorylation by 
ERK. Therefore, it could lead to phospho-StAR retention in the 
mitochondria, particularly on the OMM where ERK resides (53) 
(Figure 2).

Steroidogenic acute regulatory protein activity is determined 
by its localization on the OMM, and not its cleavage from the 
37- to 30-kDa form (107). Hence, the longest StAR retention 
time on the OMM might render the maximal StAR activity in 
cholesterol transport, in agreement with the previous data (102). 
As described above, ERK is transiently activated after hormone 
stimulation in MA-10 cells (42). Its dephosphorylation could be 
mediated by MKP-1, since the temporal profile of mitochon-
drial MKP-1 and ERK dephosphorylation are compatible (95). 
Mitochondrial phospho-StAR and ERK interaction could avoid 
ERK dephosphorylation and inactivation. The temporal frame of 
ERK activity in this organelle correlates with highest StAR activ-
ity and cholesterol transport after hormone stimulation. These 
results agree with the fact that MKP-1 downregulation leads an 
increase in progesterone levels (95). The hormone-dependent 
induction of Mfn2 and mitochondrial fusion play an essential 
role in localization of ERK and StAR on the OMM and on the 
steroidogenesis (89, 129).

Taken together, these results offer new insights into StAR 
regulation by kinases and phosphatases and their impact on StAR 
site of action. The phosphorylation–dephosphorylation of StAR 
would contribute to modulate its affinity for cholesterol and to 
increase pregnenolone synthesis with a few molecules of StAR. 
In this work, we have reviewed StAR mechanism of action on 
cholesterol transport to the P450scc to achieve maximal steroid 
production. We have also described the role of phosphorylation–
dephosphorylation events and mitochondrial fusion as novel 
regulators of the localization of StAR protein in order to carry 
out its action in steroidogenic cells.

CONCLUDiNG ReMARKS

Serine/threonine phosphatases have an important role in the 
regulation of adrenocortical cell functions, mainly steroid syn-
thesis. In this context, the participation of PKA and PKC appears 
relevant, as phosphorylation events mediated by these kinases 
are involved in the expression and activation of StAR. Although 
StAR activation mechanism has not been fully described, it is 
known to require hormonal action on mitochondrial dynamic. 
Studies from other and our laboratory show that MAPKs, par-
ticularly ERK1/2, play an important role in StAR induction as 
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well as in its posttranslational regulation in the mitochondria. 
In addition, ACTH-activated ERK1/2 regulates adrenal cell 
proliferation.

A field scarcely described is the role of PTPs in steroidogenic 
cells. We presented data on PTP activation triggered by ACTH 
through a PKA-dependent mechanism. In this context, PTP 
SHP2 has a role in the stimulation of steroidogenesis involving 
Acsl4 protein induction. In turn, Acsl4 promotes AA release, 
StAR induction, and steroidogenesis. Moreover, SHP2 along with 
ERK could also have a role in steroidogenesis promoting mito-
chondrial fusion. MKPs, a group of dual activity phosphatases 
that inactivate MAPK, are also regulated by steroidogenic 
hormones at multiple levels. While MAPK activation is linked to 
steroid production activation and cell proliferation, MKP induc-
tion is associated with the turn-off of hormonal signal through 
MAPK inactivation and, consequently, the downregulation of 
ERK-dependent events.
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