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The existence of a phase of prolonged suppression of TSH despite normalization 
of serum thyroid hormones over a variable period of time during the recovery of 
thyrotoxicosis has been documented in literature. Conversely, a temporary elevation 
of TSH despite attainment of euthyroid levels of serum thyroid hormones following 
extreme hypothyroidism has also been observed. This rate-independent lag time in 
TSH recovery is an evidence of a “persistent memory” of the history of dysthyroid 
states the hypothalamus–pituitary–thyroid (HPT) axis has encountered after the 
thyroid hormone perturbations have faded out, a phenomenon termed “hysteresis.” 
Notwithstanding its perplexing nature, hysteresis impacts upon the interpretation 
of thyroid function tests with sufficient regularity that clinicians risk misdiagnosing 
and implementing erroneous treatment out of ignorance of this aspect of thyrotropic 
biology. Mathematical modeling of this phenomenon is complicated but may allow 
the euthyroid set point to be predicted from thyroid function data exhibiting strong 
hysteresis effects. Such model predictions are potentially useful for clinical man-
agement. Although the molecular mechanisms mediating hysteresis remain elusive, 
epigenetics, such as histone modifications, are probably involved. However, attempts 
to reverse the process to hasten the resolution of the hysteretic process may not 
necessarily translate into improved physiology or optimal health benefits. This is not 
unexpected from teleological considerations, since hysteresis probably represents an 
adaptive endocrinological response with survival advantages evolutionarily conserved 
among vertebrates with a HPT system.

Keywords: memory effect, lagging TSH recovery, hysteresis, epigenetic regulation, histone modification and 
chromatin structure

iNTRODUCTiON

Given the exquisite potency of thyroid hormones on the body, the hypothalamus–pituitary–thyroid 
(HPT) axis is under extremely delicate homeostatic control to ensure that the circulating thyroid 
hormone levels are finely adjusted to physiological concentrations critical for normal cellular, tissue, 
and organ development, function as well as the overall survival of the organism (1–3). In human 
beings, the normal population range of serum-free thyroxine (FT4) lie approximately between 10 
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and 20  pmol/L, free triiodothyronine (FT3) between 4.0 and 
8.0  pmol/L, and that of serum thyrotropin (TSH) between 0.5 
and 5.0 mIU/L (4, 5). Within any given individual, there is clear 
evidence that the normal ranges of the above hormones are much 
narrower than the population ranges (6–8) and appear to oscillate 
around a relatively stable and unique mean operating level of FT4 
and TSH called the euthyroid set point that defines the individual’s 
optimal and physiological state of health (9, 10). The HPT axis is 
naturally regulated by a negative feedback loop in order to keep 
FT3 and FT4 from swinging off the normal limits. In this system, 
excessive FT4 (when deiodinated to FT3 intracellularly) and FT3 
suppresses the expression of TRH and TSH. Conversely, when 
FT4 and FT3 are deficient, their lack of inhibition on the hypo-
thalamus and pituitary leads to pronounced elevations of TRH 
and TSH. Thus, in states of thyroid hormone deficiency when 
FT3 and FT4 are falling away from the set point and have gone 
below their lower normal limits, serum TSH will increase and rise 
beyond the upper limit. During thyroid hormone excess when 
FT3 and FT4 are rising and have exceeded their upper limits, 
serum TSH will decline and even become suppressed below the 
lower limit of normal.

This inverse log-linear pattern of variation between TSH and 
FT3/FT4 is well known to physiology and medical students as 
well as doctors and endocrinologists (11, 12). However, a strange 
observation has been noticed by clinicians treating patients with 
thyroid hormone disorders. This pertains to elevated serum 
TSH for a variable period despite restoration of euthyroid levels 
of FT3/FT4, following treatment of severe hypothyroidism (13, 
14). Similarly, it has been noted for decades that serum TSH 
can become drastically suppressed sometimes for weeks or even 
months, following the recovery of severe thyrotoxicosis (15, 16). 
Such a phenomenon of persistent elevation or suppression of 
serum TSH in the face of normalized FT3/FT4 after recovery 
of hypo- and hyperthyroidism is termed as “hysteresis” and first 
described as such in a formal treatise in 2007 (12). Clinicians have 
been perplexed by this and have also wondered if this implies a 
residual thyroid dysfunction that deserves treatment to hasten 
the recovery of serum TSH to the normal range. The following 
review is devoted to the discussion of hysteresis of the HPT axis 
and its clinical implications.

BRieF HiSTORiCAL PeRSPeCTiveS  
OF HYSTeReSiS

Hysteresis is a Greek term that means “shortcoming” and “to be 
late.” It was originally proposed by the late Scottish engineer and 
physicist, Sir James Alfred Ewing, to refer to the phenomenon 

observed in systems exhibiting a memory effect such that the 
response to an input is delayed by a lag time (17). Hysteresis 
has since been identified in many fields, including physics, 
economics, and biology. In the area of physiology, hysteresis is 
encountered in pulmonary mechanics, parathyroid homeostasis, 
and even urodynamics (18–20). Although the phenomenon 
of persistent TSH suppression and elevation with consequent 
lagging of thyrotroph recovery following severe thyrotoxicosis 
and hypothyroidism had been observed for many years, the 
first formal description of hysteresis involving the HPT axis was 
enunciated in 2007 (12).

CLiNiCAL SCeNARiOS

Thyroid function test (TFT) data have revealed that mild depar-
ture of FT4 and TSH away from their respective normal ranges 
often led to the recovery of FT4 and TSH to their expected base-
line levels in a coupled fashion fairly rapidly. But when thyroid 
status swings all the way to the extremes far beyond the limits of 
the normal ranges, TSH inevitably remained either suppressed or 
amplified for a variable period of time before finally settling down 
to the baseline values for any given FT4 or FT3 level. The fol-
lowing illustrates some common examples of TFT disturbances 
encountered in usual clinical settings.

Patient 1
The first clinical vignette involves a 35-year-old woman with a 
history of acute lymphoblastic leukemia as a young child cured 
with high dose chemoradiation followed by allogeneic bone 
marrow transplant. She was diagnosed with stage 1 papillary 
thyroid carcinoma from fine needle aspiration biopsy of a solid 
2 cm × 2 cm nodule involving her right thyroid lobe. Pre-surgery 
TFT revealed a biochemically euthyroid status with serum-free 
T4 (FT4) level of 14 pmol/L and serum thyrotropin (TSH) level 
of 2.8 mU/L. Total thyroidectomy was performed, and she was 
allowed to become hypothyroid before undergoing high dose 
radioiodine remnant ablation using 100 mCi of I-131. She was 
then put on TSH-suppressive doses of l-thyroxine (L-T4) till she 
achieved an FT4 of 21  pmol/L and TSH of 0.09  mU/L. About 
2 years later, she was withdrawn from L-T4 for a stimulated thy-
roglobulin and whole body iodine scanning assessment followed 
by TSH-suppressive doses of L-T4. The anonymized Table  1 
shows her TFT data over time.

This can also be illustrated in the form of a graph of TSH 
vs. FT4 (Figure 1), which revealed the presence of two distinct 
clockwise hysteresis loops.

TABLe 1 | Change in thyroid function tests of “Patient 1” over time.

Day 1 (pre-op euthyroid  
set point values)

14 (total thyroid 
resection done)

60 (i-131 remnant 
ablation today)

88 (L-T4 started 2 weeks  
ago and titrated)

110 290 462 1200 1235 1330

FT4 (pmol/L) 14 8 3 11 16 19 21 4 15 20

TSH (mU/L) 2.8 20.4 66.8 36.3 7.56 0.32 0.09 42.6 24.1 0.15

L-T4 (μg/day) 0 0 0 50 75 112.5 125 0 100 125
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Patient 2
The next clinical vignette involves a typical case of Graves’ 
disease in a 46-year-old woman. From a TFT done as part of 
a pre-insurance checkup, her stable euthyroid set point was a 
FT4 of 15.7 pmol/L and a TSH of 1.25 mIU/L, done when she 
was 32  years of age. At diagnosis, her FT4 was 57.4  pmol/L, 
and TSH was suppressed to 0.015  mU/L. She was initiated 
on carbimazole (CMZ) 30  mg daily till she attained clinical 
euthyroidism. However, her serum TSH remained persistently 
suppressed for another 5  months prior to finally becoming 
biochemically euthyroid after 6  months of antithyroid drug 
treatment (Table 2).

This TFT trajectory circumscribes a clockwise hysteresis, as 
illustrated below (Figure 2).

Patient 3
The final clinical vignette describes a 54-year-old woman with a 
strong family history of autoimmune thyroid disease. She pre-
sented to the clinic with progressive weight gain, cold intoler-
ance, and constipation. Investigations confirmed Hashimoto’s 
thyroiditis, and she was put on lifelong L-T4 replacement. 
She had a normal TFT result taken during a previous medi-
cal screen as part of a staff benefit of her employment done 
about 10 years ago that showed a FT4 of 16 pmol/L and TSH of 
1.98 mU/L. The Table 3 shows the TFT trend and the associated 
graph (Figure 3).

FiGURe 1 | Arrows trace the trajectory of FT4–TSH, as the patient 
transited from TSH suppression to persistent TSH elevation, showing 
hysteresis in operation.

FiGURe 2 | The course of recovery from hyperthyroidism follows a 
clockwise hysteresis as illustrated in this graph. This is typically 
observed in patients with Graves’ disease treated with antithyroid drugs.

FiGURe 3 | Graph illustrating the hysteretic path of FT4–TSH in a 
patient with severe hypothyroidism recovering to a euthyroid state 
following l-thyroxine replacement.

eXPeRiMeNTAL eviDeNCe OF 
HYSTeReSiS iN LOweR veRTeBRATeS

In a study where healthy euthyroid C57BL/6 mice were ren-
dered thyrotoxic with intraperitoneal triiodothyronine (T3), 

TABLe 2 | Change in thyroid function tests of “Patient 2” over time.

Day Age 32 (euthyroid  
set point)

Age 46  
(diagnosis – Graves’)

Day 42 (CMZ started  
6 weeks ago)

84 120 170 215 300 420 600

FT4 (pmol/L) 15.7 57.4 18 16 14 13 10 12 11 14

TSH (mU/L) 1.25 0.015 0.02 0.05 0.16 0.23 2.38 1.60 2.99 1.47

CMZ (mg/day) 0 0 30 20 20 15 10 5 5 2.5
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it was observed that serum TSH was suppressed below the 
normal limit and remained low for a few days despite recovery 
of serum FT3/FT4 to normal (21). Taking into consideration 
of the fact that the time scale in small mammalian vertebrates, 
such as a mouse or rat, is significantly compressed relative to 
a human being (22–24), this brief period of delayed recovery 
of TSH is an evidence that the hysteresis phenomenon also 
occurs in other mammalian species. This demonstrates that 
hysteresis of the HPT axis occurs most likely through an evo-
lutionarily conserved mechanism and that hysteresis confers 
a survival advantage (25). Interestingly, it was found that a 
number of genes were also suppressed to levels below their 
pre- thyrotoxicosis baseline expression despite normalization 
of serum T3 and TSH. This implied that thyrotoxicosis is a 
state that not only leads to a lag time in recovery of TSH but 
also a delayed recovery of other genes that are regulated by 
thyroid hormones especially since thyroid hormones regulate 
an enormous spectrum of genes throughout the body (26, 27). 
We  also discovered that the expression of target thyroid 
hormone-responsive genes vary according to whether the state 
of thyroid hormone excess was acute or chronic. Even more 
interestingly, we have shown for the very first time that epige-
netic histone modifications are involved in these differential 
gene expressions triggered by the thyrotoxic state and that the 
type of histone mark mediating this was different in acute (H3 
acetylation) vs. chronic (H3K4 trimethylation) thyrotoxicosis 
(Figure 4). Moreover, upon withdrawal of T3 and during the 
transition from thyrotoxicosis to euthyroidism T3 levels, we 
showed that about 10% of genes showed incomplete recovery 
despite normalization of serum T3 and TSH, with some per-
sistently above or below baseline expression (Figure 5). Also, 
the same pattern was observed among the negatively regulated 
genes. Hence, at least one of the molecular mechanisms gov-
erning the prolonged suppression of the TSH gene is likely to 
be due to epigenetic histone modifications.

MODeLiNG

The mathematical modeling of the hysteresis phenomenon is 
complex and is rarely applied in the field of biology. Hysteresis 
modeling has a long history dating back to the landmark 
Preisach paper published in 1935 (28). The Preisach model 
introduces a hysteresis operator denoted by γαβ that repre-
sents a rectangular input–output loop, where α and β refer 
to switch in inputs from “up” to “down,” respectively. As an 
input u(t) is monotonically increased, the function proceeds 

according to an ascending path while the function switches 
along a descending path distinct from the ascending path when 
u(t) is monotonically decreased. Factoring an arbitrary weighted  
Preisach function, μ(α,β), this hysteresis operator is given by 
the double integral as follows:
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where Γ is the Preisach hysteresis operator.
It is instructive to consider various models of HPT axis nega-

tive feedback regulation, which can then be modified to include 
an element of hysteresis as a modeling approach. One such model 
is exemplified by Pandiyan et al (29). Goede and Leow in 2013 
(30) described a simplified hysteresis model of the HPT axis 

FiGURe 4 | C57BL/6 mice were divided into two groups – one given a 
single acute T3 injection (red arrow) and another group given multiple 
T3 injections intraperitoneally over 14 days (violet arrows). Microarrays 
on liver tissue to study gene expression patterns were done 6 h after acute 
and chronic T3 injections. Certain target genes responded acutely with a brief 
increase in mRNA expression, which subsequently became desensitized to 
T3 and declined (e.g., Bcl3, Thrsp) (red line). There were also target genes 
positively regulated only by chronic T3 exposure, but initially unresponsive to 
T3 (e.g., Fgf21, Cyp17a1) (violet line). A third group of genes were positively 
regulated by both acute and chronic T3 exposure (e.g., Dio1, Fndc5, Idh3a) 
(green line). Different histone modifications influence differential temporal 
expression patterns during the development of thyrotoxicosis, with H3 
acetylation regulating acute T3 responses and H3K4 trimethylation regulating 
chronic T3 stimulation (21).

TABLe 3 | Change in thyroid function tests of “Patient 3” over time.

Day Age 29 (normal  
euthyroid set point)

Age 44 (diagnosis:  
Hashimoto thyroiditis)

Day 14 (L-T4 started 
2 weeks ago)

30 90 210 350 450 530 620

FT4 (pmol/L) 16 1 6 9 11 13 19 17 16 17

TSH (mU/L) 1.98 105.21 86.92 39.64 15.33 3.86 0.17 0.79 1.65 1.32

L-T4 (μg/day) 0 0 25 25 50 75 100 87.5 87.5 87.5
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formed by generalization of a negative exponential model. This 
was based on a clinically validated HPT axis model, represented 
by this equation (31):

FiGURe 6 | Hysteresis model showing a clockwise loop formed by an ascending limb represented by the pink curve during recovery of severe 
thyrotoxicosis and a blue descending limb during recovery from severe hypothyroidism. The black curve represents the TSH response trajectory that can 
be followed with more gentle deviations of FT4 from the euthyroid set point indicated by the red diamond. [Figure adapted from Ref. (30)].

FiGURe 5 | After the final T3 dose injected, most genes returned 
rapidly to baseline expression levels (green line), while some genes 
remained persistently upregulated (red line). Still other genes were 
suppressed below the baseline levels (violet line). Similar patterns of 
differential temporal expression were also observed in negatively regulated 
genes (21).

[TSH] = S exp (–φ [FT4])

When remodeled by incorporating a hysteresis factor, ψ, the 
above model can be expressed as: 

[TSH] = S/[ψS + exp (φ [FT4])]

This results in saturation effects at the extrema of [FT4] with 
displacement of the [TSH] function such that the sigmoidal 
curve is translated horizontally to the left when [FT4] recovers 
from severe thyrotoxicosis, while the original curve is shifted 
to the right when [FT4] recovers from severe hypothyroidism. 
This can be illustrated by the Figure 6. Such a simplified hys-
teresis model assumes that the maximum TSH response of any 
individual is known. Obviously, it is difficult in reality to know 
what the maximum TSH response of any given person is. Based 
on clinical experience, the [TSH] level of those patients who 
are severely hypothyroid can range from anywhere between 
100 mU/L and well above 400 mU/L or so, giving an idea of 
the usual maximal magnitude of TSH responses in humans 
(32). On the contrary, many clinicians have encountered how 
[TSH] can be suppressed to levels practically close to zero or 
undetectable (e.g.,<0.005  mU/L) in severe hyperthyroidism. 
In practice, a realistic value that this hysteresis factor ψ will 
take that applies to the majority of [TSH] responses is there-
fore about 0.01. Using this value, it is theoretically possible to 
deduce what a likely normal euthyroid set point of a patient will 
be in the absence of hysteresis (i.e., when the effect of hysteresis 
has fully resolved).
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FiGURe 7 | The relationship of FT4 and TSH is a negative exponential 
function with saturation characteristic, as shown by the green curve 
(12). Within the normal range of FT4 and slightly beyond on either sides 
denoted by mild hypothyroidism and hyperthyroidism, respectively, recovery 
of TSH is more rapid and not subjected to hysteresis. The FT4–TSH 
relationship within the non-hysteresis boundaries may be approximated by 
the dashed blue negative exponential curve without saturation (10). In severe 
hypothyroidism and hyperthyroidism, recovery of TSH lags behind recovery 
of FT4 significantly due to hysteresis (violet and red lines, respectively).

This is understandably a simplified model depicting two 
hysteresis curves – the forward (recovery from hypothyroidism 
in blue) and reverse (recovery from hyperthyroidism in red) in 
a “symmetrical” fashion that are horizontally translated from the 
original HP curve. In reality, these hysteresis curves are often 
asymmetric with a more “refractory” reverse hysteresis limb and a 
relatively more transient forward hysteresis limb. For the purpose 
of illustration of the concept of hysteresis, a simple model stripped 
down to the bare essence that contains the elements of delayed 
recovery to euthyroid TSH levels is shown. This is mainly useful 
for simulation and teaching purposes. More complex mathemati-
cal models of hysteresis will be required to mimic the delayed 
recovery of TSH for application to individualized patient care. 
However, such an endeavor is beyond the scope of this article, 
which is meant to be a brief overarching review of the hysteresis 
phenomenon in the HPT axis.

BiOLOGiCAL SURvivAL ADvANTAGeS  
OF HYSTeReSiS

An intriguing question facing physicians is whether the rapid 
restoration of suppressed or overexpressed [TSH] to normal in 
thyrotoxic and hypothyroid patients, respectively, who recently 
achieved normal [FT4] is necessarily a desirable outcome. 
Occasionally, this poses a concern to anesthesiologists who 
wondered if it is possible for physicians to normalize [TSH] 
rapidly in addition to normalizing [FT4] as an optimization 
of perioperative risk prior to major surgery. Additionally, once 
[FT4] has been rendered to normal levels but associated with 
an elevated or suppressed [TSH], it is arguable if this state is 
pathologically similar to subclinical thyrotoxicosis or subclinical 
hypothyroidism. Unlike the latter states, what is clear is that 
the abnormal [TSH] during the recovery of thyrotoxicosis and 
hypothyroidism is temporary and will ultimately resolve when 
given time.

Although it may require preclinical and clinical research to 
elucidate the factors influencing the duration to recovery from 
prolonged elevated or suppressed [TSH], an important clue 
comes from questioning the reason why nature has engineered 
such a response to cope with swings in hormones with great 
potency. Thyroid hormone belongs to this category in which 
adequate levels are critical to survival and yet life threatening 
when excessive or deficient. Is it any wonder then that [TSH] 
should remain suppressed for weeks that sometimes dragged 
to months or years in someone suffering from severe hyper-
thyroidism whose [FT4] has been brought down effectively by 
antithyroid drugs? When one analyzes this situation, it becomes 
apparent that the hysteresis with a lagging recovery in [TSH] 
helps to protect the individual from accelerated rebound 
hyperthyroidism in case antithyroid drugs are suddenly discon-
tinued prematurely for whatever reason because the persistent 
suppressed [TSH] implies negligible TSH stimulation on the 
unrestrained overactive thyroid. Had [TSH] been normalized 
rapidly following severe hyperthyroidism, then sudden cessa-
tion of antithyroid drugs leading to rapid escalation of [FT4] 
will be compounded further by extra TSH stimulation on the 

thyroid follicles to generate even greater [FT4]. In the same 
vein, for an individual who requires l-thyroxine replacement 
for severe primary hypothyroidism, the prolonged elevation in 
[TSH] meant that there is an attempt by the body to continue 
maximally stimulating the thyroid, in case l-thyroxine should 
be unexpectedly stopped.

Therefore, hysteresis of the HPT axis serves as a buffering 
mechanism to reduce the magnitude of the biological impact of 
severe hyperthyroidism or hypothyroidism on the organism, espe-
cially when thyroid hormones escalate to extreme levels at either 
side of the normal (Figure 7). While speculative, this buffering 
capacity offered by the hysteresis phenomenon probably confer 
a survival advantage and is thus expected to be evolutionarily 
conserved among all vertebrate species depending on a thyroid 
system for development, metabolism, and survival. Although 
the TSH gene is the focus of this treatise on the hysteresis of the 
HPT axis, it is likely that the multitude of other crucial genes 
governed by thyroid hormones are also potentially subjected to 
this hysteresis phenomenon and may thus take a variable period 
of time to return back to baseline following severe hypothyroid-
ism or hyperthyroidism.

CLiNiCALLY ReLevANT 
CONSiDeRATiONS AND APPLiCATiONS

Although suppressed or elevated [TSH] in a real situation of 
hysteresis is often obvious, it is important to consider the 
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possibility that TSH abnormalities can occasionally be the 
result of drug or antibody interferences with assay platforms 
(33–35). In  this  respect, the presence of certain heterophile 
antibodies, such as human anti-mouse monoclonal antibodies 
(HAMA), can lead to artifactual elevations [TSH] depending on 
the reactivity of these heterophile antibodies with the detection 
antibodies in the assay systems. Patients taking biotin supple-
ments can also face the issue of falsely elevated or suppressed 
[TSH] in biotin-streptavidin affinity-based assays (36). In addi-
tion, the prolonged suppression of TSH itself may be contributed 
by the regulation of TSH secretion via ultrashort autocrine 
loop at the hypothalamic–pituitary level, as supported by the 
expression of TSH receptors in the folliculo-stellate cells in the 
anterior pituitary (37–39). Rate-dependent “hysteresis” due to a 
dynamic lag between input and output such as turnover kinetics 
of hypothalamic TRH biosynthetic enzymes coupled with vary-
ing degrees of enzymatic induction or repression in response to 
signals establishing new homeostatic equilibria may potentially 
contribute to the overall observed hysteresis as well. Finally, 
there is a theoretical possibility among those on l-thyroxine 
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[TSH], as an increase of up to 14% in [FT4] would be expected if 
L-T4 was ingested prior to blood sampling, assuming a half-life 
of 7 days for [FT4]. In practice, this is probably insignificant, 
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CONCLUSiON

The relationship of [FT4] and [TSH] is a reciprocal one best 
described by a negative exponential model. Hyperthyroidism 
and hypothyroidism lead to temporary suppression and over-
expression of TSH out of the normal reference range. Even 
fluctuations of [FT4] within its normal reference range are 
associated with perceptible reciprocal changes in [TSH]. Mild 
displacements of [FT4] off the normal limits seldom result in 

any lagged recovery in TSH. However, in more extreme cases of 
hyperthyroidism or hypothyroidism, TSH is often appropriately 
suppressed or overexpressed for a protracted period of time 
despite adequate treatment that renders [FT4] into the normal 
range. This phenomenon is now recognized as hysteresis of the 
HPT axis and probably represents an adaptive response that 
confers a biological survival advantage for the organism. Hence, 
HPT axis hysteresis may be evolutionarily conserved and could 
well operate in vertebrates other than humans, as has been 
demonstrated in a mouse model. The implication of hysteresis 
acting as protective buffer may imply that rapid restoration of 
[TSH] to normal during this lagging recovery phase is not neces-
sarily desirable or advantageous in terms of optimization of the 
euthyroid state compared to recovery of [TSH] along a slower 
trajectory.
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