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Skeletal muscle and bone share common embryological origins from mesodermal cell 
populations and also display common growth trajectories early in life. Moreover, muscle 
and bone are both mechanoresponsive tissues, and the mass and strength of both 
tissues decline with age. The decline in muscle and bone strength that occurs with aging 
is accompanied in both cases by an accumulation of adipose tissue. In bone, adipocyte 
(AC) accumulation occurs in the marrow cavities of long bones and is known to increase 
with estrogen deficiency, mechanical unloading, and exposure to glucocorticoids. The 
factors leading to accumulation of intra- and intermuscular fat (myosteatosis) are less 
well understood, but recent evidence indicates that increases in intramuscular fat are 
associated with disuse, altered leptin signaling, sex steroid deficiency, and glucocorticoid 
treatment, factors that are also implicated in bone marrow adipogenesis. Importantly, 
accumulation of ACs in skeletal muscle and accumulation of intramyocellular lipid are 
linked to loss of muscle strength, reduced insulin sensitivity, and increased mortality 
among the elderly. Resistance exercise and whole body vibration can prevent fatty 
infiltration in skeletal muscle and also improve muscle strength. Therapeutic strategies 
to prevent myosteatosis may improve muscle function and reduce fall risk in the elderly, 
potentially impacting the incidence of bone fracture.
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iNTRODUCTiON

Osteoporosis affects ~10 million people in the U.S. and results in over 1.5 million bone fractures per 
year. Hip fractures are a major cause of morbidity and mortality among the elderly: ~40% of those 
suffering a hip fracture will end up in a nursing home and 20% will never walk again. In addition, 
the 1-year mortality of hip fractures at age 70 is ~30%. Muscle weakness and postural instability are 
major contributors to the incidence of falls among the elderly, and falling is the primary etiological 
factor in more than 75% of hip fractures (1). Loss of muscle and bone mass with age is therefore a 
significant public health problem, as the morbidity that accompanies fractures in the elderly is costly 
both in terms of financial burden and quality of life. The mechanisms underlying loss of muscle 
and bone strength with age are complex and multifactorial in nature, but evidence suggests that 
common factors regulate the integrated growth, development, and degeneration of these two tissues. 
For example, skeletal muscle and bone share common embryological origins from mesodermal cell 
populations and also display common growth trajectories early in life. Moreover, muscle and bone 
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FiGURe 1 | Cell populations in muscle and their relationship to lipid accumulation. (A) Myofibers (pink) are multinucleated (NU, nucleus, black) and 
surrounded by satellite cells (SCs, blue) as well as multipotential cells of mesenchymal origin referred to as fibro-adipogenic progenitors (FAPs, green). FAPs are 
distinct from satellite cells and lack Pax7 expression but are Sca-1 and PDGFRα positive. Not shown are pericytes surrounding blood vessels within muscle. (B) 
Intramyocellular (IMC) lipid can accumulate within myofibers, which is one pathway for lipid deposition within skeletal muscle. (C) FAPs can also differentiate to 
adipocytes (ACs), contributing to the accumulation of intermuscular fat, often following muscle injury.
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are both mechanoresponsive tissues, and the mass and strength of 
both tissues decline with age. Importantly, the decline in muscle 
and bone strength that occurs with aging is accompanied in both 
cases by an accumulation of adipose tissue. This accumulation 
of fat in non-adipose depots, such as bone, liver, and muscle, is 
now recognized as a common feature of aging (2). The processes 
driving the accumulation of bone marrow adipocytes (ACs) are 
becoming more well understood (3, 4); however, the factors lead-
ing to the accumulation of fat in skeletal muscle (myosteatosis) 
with age are not yet as well defined. Evidence, to date, does suggest 
that many of the factors that have been observed to stimulate bone 
marrow adipogenesis, such as estrogen deficiency, glucocorticoid 
treatment, and disuse atrophy, also induce myosteatosis. In this 
study, we review these findings to highlight potential therapeutic 
strategies for the prevention of age-related myosteatosis as an 
approach for reducing fall risk and hence the likelihood of bone 
fracture.

FACTORS CONTRiBUTiNG TO BONe 
MARROw ADiPOGeNeSiS

Bone cell populations are heterogeneous and include cells of both 
hematopoietic (e.g., megakaryocytes and osteoclasts) and mesen-
chymal (e.g., osteoblasts and AC) origin. Aging is accompanied 
by an accumulation of AC as well as increase in ACs size within 
the bone marrow cavity (5). Adipose tissue represents ~20% of 
bone marrow tissue before the third decade in life but increases 
to nearly 50% by the ninth decade (6). This accumulation of bone 
marrow fat shows a strong association with bone loss, reduced 
bone formation, and fracture risk (6–9). Mesenchymal progeni-
tors (MSCs) within bone marrow can be directed toward the AC 
or osteoblast lineage, and conditions that favor adipogenesis 
such as estrogen depletion (10), disuse (11), anorexia/calorie 
restriction (12, 13), and exposure to microgravity (14) are also 
associated with reduced osteoblast differentiation.

In addition, there are a number of pharmaceutical treat-
ments that can mediate bone marrow adipogenesis. For 

example, glucocorticoids and PPAR gamma agonists will 
 stimulate  adipogenesis in mesenchymal progenitors (15, 16), 
whereas lipid-lowering statins can inhibit adipogenic differen-
tiation (17). Importantly, the microenvironment of the MSCs 
plays a key role in modulating this reciprocal switch between 
adipogenic or osteogenic differentiation, particularly with aging, 
as young MSCs transplanted into old animals or young MSCs 
exposed to serum of old donors will tend to differentiate down 
the adipogenic pathway rather than become osteogenic (18, 19). 
Finally, epigenetic programing also appears to play an important 
role in modulating bone marrow adipogenesis. For example, 
conditional deletion of Hdac3 in preosteoblasts increases mar-
row AC number and lipid storage in preosteoblasts (20). It is 
worth noting that marrow ACs are themselves not homogenous 
in their gene expression and secretory profile. For example, some 
marrow ACs are similar to “white” fat in being rich in saturated 
fatty acids, whereas other marrow ACs are more “beige-like” fat 
in having greater thermogenic potential (4).

FATTY iNFiLTRATiON iN SKeLeTAL 
MUSCLe: CeLLULAR AND  
MOLeCULAR MeCHANiSMS

Aging in humans is accompanied by a loss of subcutaneous fat but 
an accumulation of AC and lipids in non-adipose depots, such as 
bone marrow, liver, and skeletal muscle (2). Fatty infiltration of 
skeletal muscle (myosteatosis) has, in particular, been recognized 
as an important component of aging and frailty (21–26). Lipid 
accumulation in muscles of the lower limb is also associated with 
increased fracture risk in the elderly (27). The cellular origins 
of fatty accumulation in muscle arise through several different 
pathways (Figure 1). One direct route is via the accumulation of 
lipid within myofibers themselves, known as intramuscular fat or 
intramyocellular (IMC) lipid (28–30). Accumulation of IMC lipid 
is now known to be associated with insulin insensitivity, inflam-
mation, and functional deficits in skeletal muscle. Accumulation 
of the sphingolipid ceramide appears to have a particularly 
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FiGURe 2 | Conditions favoring the accumulation of fat (yellow) in muscle and bone versus those conditions that can either prevent or possibly 
reverse fatty deposition in muscle and bone.
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detrimental effect on skeletal muscle function (30). Recent data 
also suggest that the lipid metabolites diacylglycerols (DAG) are 
responsible for mediating insulin resistance in skeletal muscle 
through disrupting the insulin signaling pathway (31).

Another pathway for myosteatosis is an accumulation of AC 
within skeletal muscle, known as intermuscular fat. There are sev-
eral stem cell populations in skeletal muscle, the most well defined 
being muscle satellite cells (SCs), which lie below the basil lamina 
of muscle fibers and contribute to myogenesis during the process 
of muscle regeneration. A second, more recently described, 
population of cells is termed fibro/adipogenic progenitors (FAPs) 
or mesenchymal interstitial cells [Figure 1; Ref. (32–35)]. These 
cells are distinct from SCs and lack Pax7 expression but are Sca-1 
and PDGFRα positive. SCs are generally resistant to adipogenic 
differentiation, whereas FAPs readily differentiate into ACs under 
various conditions such as muscle injury or glucocorticoid treat-
ment (34, 36). Endogenous glucocorticoid levels increase with 
age (37), which may contribute not only to accumulation of bone 
marrow ACs but also to the deposition of intermuscular fat with 
age. Multipotent mesenchymal stem cells and other progenitors 
may also contribute toward skeletal muscle adipogenesis. For 
example, PW1+ interstitial cells (PICs) have shown adipogenic 
potential in vitro (38); however, the extent to which this popula-
tion overlaps with FAPs is unclear. Additionally, type-1 pericytes 
expressing PDGFRα have been shown to commit to the adipo-
genic lineage in vivo in the presence of glycerol (39).

Just as glucocorticoids can stimulate adipogenesis in both 
bone and muscle, other signaling pathways appear to be shared 
that regulate adipogenesis in muscle and bone (Figure  2). 
Wnt10b is well recognized to inhibit adipogenesis and stimulate 
bone formation in bone tissue (40). Wnt10b also suppresses 

the accumulation of IMC lipid in myofibers, increases insulin 
sensitivity, and inhibits adipogenic differentiation of aged, 
muscle-derived stem cells (41, 42). Similarly, inhibition of histone 
deacetylases (HDAC) can inhibit the adipogenic differentiation 
of MSCs in vitro and enhance their differentiation to osteoblasts 
(43), and HDAC inhibitors also inhibit the adipogenic differen-
tiation of FAPs during the process of muscle regeneration (44). 
Altered leptin signaling, either due to absence of leptin or leptin 
receptors, is associated with increased bone marrow fat (45) as 
well as increased intra- and intermuscular fat (Figure  3). The 
leptin receptor is a key marker of bone marrow mesenchymal 
stem cells that mediate marrow adipogenesis (46), and the leptin 
receptor is also expressed in skeletal muscle (47). Whether or 
not the accumulation of inter- and intramuscular fat is directly 
mediated by the leptin receptor is, however, not well understood. 
Leptin deficiency associated with calorie restriction results in 
increased marrow adiposity (12), as does anorexia nervosa (48), 
but calorie restriction decreases lipid stores and lipid droplet size 
in skeletal muscle (49).

Unloading through either prolonged bedrest or spaceflight 
increases bone marrow adipogenesis (11, 14), and prolonged 
bedrest also decreases muscle strength and increases IMC lipid in 
skeletal muscle (50), which can ultimately lead to postural insta-
bility (51). Finally, estrogen deficiency is implicated in bone loss 
and marrow AC accumulation in women. Estrogen deficiency 
increases lipid content in skeletal muscle, the expression of adi-
pogenic genes, and decreases relative satellite cell proportions in 
ovariectomized rodents (52, 53). Androgen deprivation therapy 
also increases fatty infiltration of skeletal muscle in men with 
prostate cancer, although CT imaging does not enable a distinc-
tion between IMC or intermuscular lipid accumulation and so 
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FiGURe 3 | Cross sections of muscle fibers from normal, lean mice (left), or mice that lack leptin receptors (lb/lb, right) stained for oil red O. The 
asterisks indicate the accumulation of intramyocellular lipid, and the arrows indicate intermuscular fat. Note also the relatively small diameter of fibers that are 
positive for intramyocellular lipid. POUND mice (lb/lb) lack both short and long forms of the leptin receptor and are obese and hyperphagic (47).

4

Hamrick et al. Fatty Infiltration of Skeletal Muscle

Frontiers in Endocrinology | www.frontiersin.org June 2016 | Volume 7 | Article 69

the actual site of lipid deposition is not clear in this case (54). 
Together, these findings indicate that many of the conditions that 
induce marrow adipogenesis and bone loss in men and women 
such as disuse, sex steroid deficiency, altered leptin signaling, and 
glucocorticoid treatment also stimulate the accumulation of ACs 
and IMC lipid in skeletal muscle (Figure 2).

FUNCTiONAL CONSeQUeNCeS OF FATTY 
iNFiLTRATiON iN MUSCLe

Protein synthesis enhances muscle hypertrophy and the main-
tenance of muscle strength, whereas impaired protein synthesis 
contributes to muscle atrophy. Insulin is an anabolic factor for 
skeletal muscle, and accumulation of muscle ACs and IMC lipid 
decreases insulin sensitivity, impairing the capacity for normal 
protein synthesis in skeletal muscle (30). Thus, decreased insulin 
sensitivity with fatty infiltration in skeletal muscle is one pathway 
by which fatty infiltration can directly affect muscle mass and 
muscle strength. The accumulation of IMC lipid with aging or 
with disuse is not homogenous across different muscles or differ-
ent fiber types. This may be analogous to the unequal distribution 
of ACs throughout bone marrow in the appendicular skeleton, 
where fatty infiltration begins at more distal skeletal locations 
(55). For example, within the posterior compartment of the leg, 
the gastrocnemius accumulates more lipid with age than other 
calf muscles (21). Type I fibers, also referred to as “slow-twitch 
oxidative fibers,” tend to accumulate more IMC lipid with age 
in human subjects than fast-twitch oxidative fibers (23, 25), and 

fast-twitch fibers typically show greater atrophy with age than 
type I fibers (23, 56). It is possible that lipid accumulation alone 
may even support a transition of type II fibers to more of a type 
I phenotype (57). These changes ultimately lead to muscles with 
impaired contractile capacity of both type I and type II fibers, 
which together lead the dramatic decrease in muscle power 
(product of force and speed) observed with age (58).

Aging and disuse can induce the accumulation of IMC lipid, 
but muscle injury is associated with a marked accumulation of 
intermuscular fat (ACs), likely derived from the FAPs referenced 
above. This phenomenon has been most well described in patients 
with Duchene muscular dystrophy (DMD), where the prolonged 
cycle of muscle injury and regeneration that accompanies dystro-
phin deficiency ultimately results in an accumulation of ACs and 
fibrous tissue in areas where muscle fibers are lost (59, 60). The 
loss of muscle fibers and replacement with fatty and fibrous tis-
sues leads to muscle weakness. The extent to which muscle injury 
with aging, which might occur with frequent eccentric muscle 
contractions, contributes to accumulation of intermuscular fat 
is not well documented. Fatty infiltration of skeletal muscle is 
also common following rotator cuff muscle injury and is a major 
factor that limits functional recovery (61). Attenuation of fatty 
infiltration following rotator cuff injury with statin treatment can 
have a protective effect on muscle atrophy in rats (62); however, 
a number of studies in human subjects indicate that fatty infiltra-
tion and muscle atrophy after rotator cuff repair is very difficult 
to reverse (63, 64). Hyperlipidemia and type 2 diabetes are 
independent risk factors for rotator cuff injury (65). It is certainly 
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possible that these risk factors may not only increase the risk of 
rotator cuff injury but also may contribute to an attenuated repair 
response following treatment by exacerbating fatty infiltration of 
the injured rotator cuff muscles.

DiSCUSSiON: TARGeTiNG 
ADiPOGeNeSiS AND LiPiD 
ACCUMULATiON iN MUSCLe TO 
PReveNT FRACTURe

One of the most effective countermeasures against fatty infiltra-
tion of muscle with aging is physical activity and regular exer-
cise. Previous work indicates that 6  months of regular aerobic 
exercise combined with weight loss reduced low-density muscle 
(lipid measurement) and improved glucose tolerance in men 
aged 60+ years compared with those who just exercised alone 
(66). Resistance training 3  days/week in adults’ age 55+ years 
decreased thigh intramuscular adipose tissue (67), and 1 year of 
brisk walking prevented fatty infiltration of muscle in older sub-
jects (68). Importantly, resumption of physical activity following 
periods of sedentary activity could reverse the fatty infiltration 
that occurred in older adults following cessation of resistance 
training (69). Fracture risk in women declines with higher levels 
of weekly physical activity (70), and hip fracture in men is more 
common in those individuals with low physical activity compared 
with men with higher levels of physical activity (71). Resistance 
exercise increases leg strength and power in both older (aged 
70 years) men and women (72), and this increase is associated 
with increased muscle fiber size (73). While the effects of exercise 
on bone and perhaps bone marrow ACs are more modest (74), 
resistance training may have a positive effect on reducing fracture 
risk by reducing intramuscular fat and increasing muscle strength 
and power.

Alternative forms of mechanical signals that are safe and can 
help prevent accumulation of muscular or bone marrow fat may 

be desirable, particularly, for the elderly or injured who are unable 
to exercise or have increased risk of fracture. Low magnitude 
(<1 g; g = earth’s gravitational field), whole body vibration has 
been observed to reduce adipose tissue as well as the expression 
of adipogenic genes in muscle (53, 75) while also acting as an 
anabolic signal and increasing muscle fiber area (76). Similarly, 
vibration has reduced bone marrow adiposity in a model of 
postmenopausal osteoporosis (77) and reduced bone marrow-
derived mesenchymal stem cell commitment to the adipogenic 
lineage (78). Reduced indices of adipogenesis with the applica-
tion of these mechanical signals as seen in both muscle and bone 
may occur through a similar mechanism – bias of mesenchymal 
stem cell or fate away from the fat differentiation pathway. These 
findings suggest that mechanical stimulation in a relatively low 
magnitude, high-frequency domain may have the potential to 
preserve muscle function with age by reducing the accumulation 
of lipids and ACs in skeletal muscle.
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