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The evolution of the melanocortin receptors (MCRs) is closely associated with the evo-
lution of the melanocortin-2 receptor accessory proteins (MRAPs). Recent annotation 
of the elephant shark genome project revealed the sequence of a putative MRAP1 
ortholog. The presence of this sequence in the genome of a cartilaginous fish raises the 
possibility that the mrap1 and mrap2 genes in the genomes of gnathostome vertebrates 
were the result of the chordate 2R genome duplication event. The presence of a putative 
MRAP1 ortholog in a cartilaginous fish genome is perplexing. Recent studies on mela-
nocortin-2 receptor (MC2R) in the genomes of the elephant shark and the Japanese 
stingray indicate that these MC2R orthologs can be functionally expressed in CHO cells 
without co-expression of an exogenous mrap1 cDNA. The novel ligand selectivity of 
these cartilaginous fish MC2R orthologs is discussed. Finally, the origin of the mc2r and 
mc5r genes is reevaluated. The distinctive primary sequence conservation of MC2R and 
MC5R is discussed in light of the physiological roles of these two MCR paralogs.
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introdUCtion

In many respects, the features of the melanocortin receptor (MCR) gene family (i.e., mc1r, mc2r, 
mc3r, mc4r, mc5r) are rather straightforward. These G Protein-coupled receptors are only found in 
chordates (1), and the proliferation of paralogous genes in this family has been influenced by the two 
genome duplication events that occurred during the early evolution of the chordates (2–4). In addi-
tion, these receptors appear to be predominately coupled to a cAMP/PKA pathway at their respective 
target cells (5). Finally, all of the MCRs are activated by one or more of the melanocortin-related 
peptides (i.e., ACTH, α-MSH, β-MSH, γ-MSH, or δ-MSH), which are derived from the precursor 
protein, POMC in gnathostomes (6), and the precursors POM or POC in lampreys (7).

There are also features of this gene family that are somewhat unique. For example, some of the 
MCRs interact with the accessory proteins melanocortin-2 receptor accessory protein (MRAP)1 and 
MRAP2 (8, 9), and these interactions can affect receptor trafficking and activation. In addition, for 
teleosts and tetrapods, the MC2R paralog has exclusive ligand selectivity for ACTH as compared to the 
more permissive ligand selectivity of the other MCR paralogs for ACTH and the MSH-sized ligands 
(10). Finally, while it is assumed that two genome duplications should yield four paralogous genes, 
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taBLe 1 | summary of the interactions between human melanocortin receptors and human Mrap1α and human Mrap2.

Mrap1α Mrap2

trafficking activation trafficking activation

MC1R Not required Not required Not required Lowers
MC2R Facilitates Required Facilitates Required
MC3R Not required Lowers Not required Lowers
MC4R Restricts Lowers Restricts Lowers
MC5R Restricts Lowers Restricts Lowers

Chan et al. (17) expressed individual human melanocortin receptors in CHO cells either in the presence or absence of either human MRAP1α or human MRAP2, and measured 
either trafficking to the plasma membrane or activation with human ACTH (1–39) (MC2R; single dose 10−6M) or NDP-MSH (MC1R, MC3R, MC4R, MC5R: single dose 10−9M). For 
the trafficking experiments, “not required” indicates that co-expression with an MRAP had no negative or positive effect on trafficking to the plasma membrane relative to CHO 
cells transfected with only the melanocortin receptor. “Facilitates” indicates that the receptor did not translocate to the plasma membrane in the absence of the MRAP. “Restricts” 
indicates that there was a decline in trafficking to the plasma membrane when the receptor was co-expressed with an MRAP. For activation experiments, “not required” indicates 
that co-expression with an MRAP had no negative or positive effect on activation relative to CHO cells transfected with only the melanocortin receptor. “Requires” indicates that 
the receptor could not be activated when expressed alone in CHO cells. “Lowers” indicates that there was a statistically significant drop in activation when the receptor was co-
expressed with an MRAP.
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there are five paralogous genes present in this family. Hence, the 
origin of the fifth gene and the physiological significance of the 
fifth gene are another issue that will be revisited.

pHyLoGeny and proposed 
eVoLUtion oF tHe Mraps

Following the initial cloning of the five MCRs, pharmacology 
studies for each receptor were done in heterologous non-
adrenal cortex-derived mammalian cell lines with one excep-
tion  –  MC2R (6). Mountjoy et  al. (11) found that in order to 
examine the ligand selectivity of human MC2R, the receptor 
cDNA needed to be expressed in Cloudman S91 melanoma cells; 
a cell line that endogenously expresses the Mc1r gene. Subsequent 
studies would show that mammalian MC2R orthologs could be 
functionally expressed in cell lines derived from adrenal cortex 
cells, but not in non-adrenal mammalian cell lines (12–15). 
These observations contributed to the discovery of the accessory 
protein, MRAP (16).

Melanocortin-2 receptor accessory protein is a single chain 
polypeptide with one membrane-spanning domain. This trans-
membrane (TM) protein forms a homodimer at the endoplasmic 
reticulum in which the two monomers are oriented in an anti-
parallel manner [reverse topology; for reviews, see Ref. (8, 9)]. 
In the human genome, there are two paralogous MRAP genes, 
MRAP or MRAP1 (16), and MRAP2 (17). For this discussion, 
“mrap” will be used to refer to the ancestral accessory protein 
gene, and mrap1 and mrap2 will be used to designate the two 
paralogous members of the gene family. As a reference for the 
discussion that will follow, Table  1 summarizes the observa-
tions from Chan et al. (17) with respect to the effects of human 
MRAP1α and human MRAP2 on the activation and trafficking of 
the five human MCRs.

The salient features of the MRAPs are illustrated by mouse 
MRAP1 and MRAP2 (Figure  1). For MRAP1, the LKANKH 
motif is required for reverse topology (18), and the correspond-
ing reverse topology motif in mouse MRAP2 is LKAHKY, [(8); 
Figure  1]. Reverse topology motifs are also apparent in the 
chicken and zebrafish MRAP1 and MRAP2 orthologs (Figure 1).

The TM domain of mouse Mrap1 is required for the trafficking 
of MC2R to the plasma membrane (18), and the correspond-
ing sequence in mouse Mrap2 (Figure  1) has 43% amino acid 
sequence identity with the TM domain of mouse Mrap1. Among 
the MRAP1 orthologs presented in Figure  1, the amino acid 
sequence identity between mouse Mrap1 and chicken MRAP1, 
and mouse Mrap1 and zebrafish MRAP1 is 74 and 48%, respec-
tively. This level of sequence identity is apparently adequate since 
both chicken MC2R (19) and zebrafish MC2R (20) can be acti-
vated when co-expressed in heterologous mammalian cells with 
their respective MRAP1 ortholog. It is interesting that the amino 
acid sequence identity for the TM region of the MRAP2 orthologs 
presented in Figure 1 is 74%. Since MRAP2 is expressed in brain 
and adrenal cortex cells, there appears to be selection pressure 
to maintain the TM sequences of MRAP2 orthologs. The physi-
ological roles of the MRAP2 orthologs will be discussed later in 
this section.

Given the preceding comments on primary sequence similar-
ity, the most striking difference between mouse Mrap1 and Mrap2 
is the activation motif present in Mrap1 that is conspicuously 
absent in Mrap2 (Figure  1). As a result, although MC2R will 
move to the plasma membrane in the presence of MRAP2, activa-
tion of the receptor following an ACTH-binding event is barely 
detectable at concentrations of ACTH of 10−8M or less (8, 9, 21). 
Conversely, in the presence of MRAP1, the activation of MC2R 
is robust following an ACTH-binding event [(16); Table  1]. It 
would appear then, that when a mammalian MC2R ortholog is 
expressed alone, the receptor miss-folds, and is non-functional 
(22). When co-expressed with MRAP1, MC2R assumes an active 
conformation, and the MC2R/MRAP1 complex can be activated 
by ACTH. Interaction with an MRAP1 paralog to achieve func-
tional expression is a strict requirement for teleost and tetrapod 
MC2R orthologs (20, 23).

Sebag and Hinkle (18) found that if the activation motif 
(LDYI) in the N-terminal domain of mouse Mrap1 (Figure 1) 
was replaced with alanine residues, the activation of MC2R was 
blocked. Furthermore, a single alanine substitution of the Y 
residue in the mouse Mrap1 LDYI motif resulted in a 50% drop 
in activation. Note that similar activation motifs are present in 
the N-terminal domains of the chicken and zebrafish MRAP1 
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FiGUre 1 | amino acid sequence alignment of Mrap1 and Mrap2 paralogs. The amino acid sequences of mouse (m) MRAP1 (NP_084120.1), zebrafish (z) 
MRAP1 (XP001342923.2), chicken (c) MRAP1 (XR_001470382) elephant shark (es) MRAP1 (XM_007903550.1), mouse (m) MRAP2 (XP_006511239.1), chicken (c) 
MRAP2 (XP_015140201), zebrafish (zf) MRAP2a (XP_001342923.4), elephant shark (es) MRAP2 (XP_007906624.1), and lamprey (lp) MRAP2 (FAA00710.1) were 
aligned to the sequences of mouse MRAP1 and mouse MRAP2, respectively. Note that only a partial sequence for lamprey (Petromyzon marinus) MRAP2 has been 
reported (1). In addition, only the partial C-terminal sequences for the MRAP2 orthologs are presented. Predicted N-linked glycosylation sites are underlined. Note 
that there are two potential N-linked glycosylation sites in the putative elephant shark MRAP1 amino acid sequence. The amino acids in the activation motif for 
mouse MRAP1 are highlighted in red. Conserved amino acid positions in the proposed activation motifs of the chicken, zebrafish, elephant shark MRAP1 orthologs 
are also highlighted in red. The amino acids in the reverse topology motif of mouse MRAP1 were highlighted in green. Conserved amino acid positions in the reverse 
topology motif of chicken, zebrafish, elephant shark, mouse, and lamprey MRAP1 and MRAP2 sequences, respectively, were also highlighted in green. Finally, the 
amino acids in the transmembrane domain of mouse MRAP1 are highlighted in blue, and the conserved amino acid positions in the chicken, zebrafish, elephant 
shark, mouse and lamprey MRAP1 and MRAP2 sequences, respectively, were also highlighted in blue.
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orthologs (Figure 1). In addition, a recent study indicated that 
alanine substitution of the DY residues in the YDYV motif of 
zebrafish MRAP1 blocks activation of MC2R (24).

While it appears that the direct interaction of mammalian 
MRAP2 orthologs with mammalian MC2R orthologs might be 
pharmacological rather physiological [Table 1; (8, 9, 21)], there 
are cells such as mouse adipocytes (25) and embryonic mouse 
adrenal cortex cells (26) that co-express Mrap2 as well as Mc2r 
and Mc5r. Sebag and Hinkle (27) found that when human MC5R 

and mouse Mrap2 were co-expressed in CHO cells, the traffick-
ing of human MC5R to the plasma membrane decreased. The 
implication of these experiments was that by decreasing the num-
ber of MC5 receptors on the plasma membrane, Mrap2 would 
make the target cells more selective for stimulation by ACTH, 
rather than α-MSH. Since, MC2R and MC5R are co-expressed 
in chicken adrenal cortex cells (28), frog interrenal tissue (23), 
and rainbow trout interrenal tissue (29), an interaction between 
MC5R and MRAP2 could have physiological implications for 
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non-mammalian vertebrates as well. Hence, an evaluation of the 
pharmacological interactions of MC5R and MRAP2 orthologs 
with respect to trafficking to the plasma membrane and ligand 
selectivity in these species is warranted.

When considering a physiological role for MRAP2, a promis-
ing area of study has been the interaction between MRAP2 and 
MC4R in the modulation of feeding behavior by neurons in the 
hypothalamus (30). In both zebrafish (31) and mice (32), endog-
enous MRAP2 orthologs appear to play roles in the ligand sensi-
tivity of the MC4 receptor. For example, Asai et al. (32) observed 
that when mouse Mc4r and Mrap2 are co-expressed in HEK-293 
cells, Mc4R has a higher sensitivity for α-MSH; an outcome that 
would decrease feeding activity in vivo. Conversely, in mice in 
which the Mrap2 gene was selectivity deleted from neurons in 
the hypothalamus, the result was an obese phenotype. While the 
implications of these results are intriguing from a biomedical 
perspective, it appears that for mammals there may be species 
specific difference in the regulation of MC4R. For example, Kay 
et  al. (33) observed that co-expression of human MC4R and 
human MRAP2 in HEK-293 cells had no effect on ligand sen-
sitivity. However, a shift in ligand sensitivity was observed when 
human MC4R was co-expressed with human MRAPα. Clearly, 
studies are needed on other tetrapods (i.e., amphibians, reptiles, 
and birds) are needed to determine the role that MRAP2 may play 
in modulating the ligand selectivity of MC4R in the regulation of 
feeding behavior in these organisms.

A more complex mechanism for the role of MRAP2 in regulat-
ing feeding behavior has been observed for the zebrafish (31, 34). 
As a result of a teleost-specific genome duplication [3R event; 
(35)], two paralogs of the mrap2 gene (mrap2a and mrap2b) are 
present in the zebrafish genome (20). Furthermore, the expres-
sion of these paralogs appears to be developmentally regulated. 
Sebag et al. (31) report that during the larval stage of develop-
ment, MRAP2a lowers the ligand sensitivity of zebrafish MC4R 
(as measured by Vmax), and as a result the animal eats more; 
an outcome that would favor growth. During larval develop-
ment, the expression levels of the zebrafish mrap2b gene are low. 
Conversely in the adult stage, zebrafish mrapb gene expression 
is elevated, and zebrafish mrapa gene expression declines. Sebag 
et al. (31) also report that co-expression of zebrafish MC2R and 
zebrafish MRAP2 in HEK-293 cells increases the sensitivity of 
zebrafish MC4R for α-MSH. These results are interpreted as 
giving the adult zebrafish fine control over food consumption; 
a trait that would be considered adaptive (31). Hence, it would 
appear that zebrafish MRAPb is functioning in a manner 
analogous to mouse Mrap2 (32). However, Aguilleiro et al. (34) 
observed that co-expression of zebrafish MC4R and zebrafish 
MRAP2a in HEK-293 cells resulted in a higher sensitivity of the 
zebrafish MC4R for ACTH as compared to α-MSH. The latter 
study proposes that ACTH may be playing a role in the control of 
feeding behavior, and that role can be influenced by the expres-
sion levels of zebrafish MRAP2a. In the later study, the in vitro 
effect of zebrafish MRAP2b on zebrafish MC4R ligand selectivity 
was not apparent. Finally, zebrafish MRAP2a had no negative or 
positive effect on the trafficking of zebrafish MC4R to the plasma 
membrane (31, 34); whereas zebrafish MRAP2b appeared to 
increase the surface expression of zebrafish MC4R (31). Hence, 

there appears to be species-specific differences in way the MC4R 
orthologs respond to interaction with MRAP2 (See Table  1) 
That said, at the molecular level it is not clear which domain(s) 
of MRAP2 (MRAP2a or MRAP2b) are making contact with 
MC4R to alter ligand selectivity. The possibility of an “activation 
motif ” in MRAP2 orthologs, analogous to the activation motif in 
MRAP1 orthologs, has not been investigated.

In terms of the evolution of the MRAP gene family, an earlier 
review concluded that MRAP2 was the ancestral “MRAP” (1). 
This conclusion was based on the apparent absence of MRAP1 
orthologs in the genomes of a cartilaginous fish (Callorhinchus 
milii, the elephant shark) and the lamprey (Petromyzon marinus), 
and the presence of MRAP2 orthologs in both these species. In 
this scenario, the duplication of the ancestral mrap gene may 
have occurred in the bony fishes following the divergence of 
the ancestral cartilaginous fishes and the ancestral bony fishes 
(36) over 420 million years ago. However, recent annotation of 
the elephant shark genome project1 revealed a cDNA (accession 
number: XM_007903550.1) that Blast analysis2 has identified 
as an MRAP1 ortholog. The deduced amino acid sequence of 
the putative elephant shark MRAP1 ortholog is presented in 
Figure  1. The putative elephant shark MRAP1 has a reverse 
topology motif (LQVNKY), and the TM region has 39% amino 
acid sequence identity with the mouse MRAP1 TM region. The 
C-terminal domain of the putative elephant shark MRAP1 is very 
short relative to the other MRAP1 orthologs. However, Sebag and 
Hinkle (18) have shown that the C-terminal of mouse MRAP1 
is not required for either trafficking or activation of mamma-
lian MC2R orthologs. The N-terminal domain of the putative 
elephant shark MRAP1 is nearly 43% longer than the other 
MRAP1 orthologs in Figure 1. By inserting gaps, it was possible 
to align these sequences and identify a putative activation motif 
(EYE) in the putative elephant shark MRAP1. The presence of 
the Y residue in this domain is particularly interesting, given the 
importance of this residue for mammalian and teleost MRAP1 
orthologs (18, 24).

From a phylogenetic/evolutionary perspective, the detection 
of the putative cartilaginous fish MRAP1 ortholog fills a gap. The 
elephant shark is in Subclass Holocephali (Class Chondrichithyes), 
and it is very probable that mrap1 orthologs are present in the 
genomes of members of Subclass Elasmobranchii (i.e., sharks and 
rays). Hence, mrap1 and mrap2 paralogs may have been present 
in the genome of the ancestral gnathostomes (Figure 2). Given 
these assumptions, the evolution of the mrap gene family may 
have involved the following scenario. In the ancestral agnathan 
vertebrates that underwent the 2R genome duplication event, 
the ancestral mrap gene would have been duplicated to yield the 
mrap1 and mrap2 genes, and these paralogous genes presum-
ably would have been distributed on separate chromosomes. 
Currently, mrap1 and mrap2 genes have been found on separate 
chromosomes in the various gnathostome genome databases 
where chromosomes maps are available.3 Among extant 2R 

1 http://esharkgenome.imcb.a-star.edu.sg
2 https://blast.ncbi.nlm.nih.gov/Blast.cgi
3 http://ensemble.org
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FiGUre 2 | proposed evolution for the Mrap Gene Family. The evolutionary tree presented in this figure assumes that there was an ancestral mrap (MRAP) 
gene in the genome of ancestral agnathans. Following the 2R genome duplication event, two paralogous mrap genes emerged (MRAP1 and MRAP2) and are 
present in the genomes of many extant 2R chordates. A solid black box indicates that the gene has been reported in the respective taxa. A box with a dashed line 
border indicates a gene that is predicted, but has not been detected (i.e., lamprey MRAP1) or the organism is extinct (e.g., ancestral agnathans, ancestral in 
gnathostomes). A box with a dotted border indicates a taxonomic group in which MRAP1 is required for the functional expression of MC2R, but a MRAP1 sequence 
has not been identified in the genome of a representative from that taxonomic group.

5

Dores Melanocortin Receptors and MRAPs

Frontiers in Endocrinology | www.frontiersin.org June 2016 | Volume 7 | Article 79

vertebrates (Figure 2), an mrap1 ortholog has not been detected 
in the current version of the lamprey genome project4 (Figure 2). 
Whether the absence of this ortholog represents the incomplete 
state of the lamprey genome project, or a secondary loss of the 
ortholog cannot be determined at this time. In addition, mrap1 
orthologs have not been detected in the genomes of either the frog, 
Xenopus tropicalis or the reptile, Anolis carolinensis. However, the 
MC2R orthologs for both species requires co-expression with 
a tetrapod MRAP1 ortholog for functional expression in CHO 
cells (21, 37). It would appear that either the X. tropicalis and 
A. carolinensis genome projects are not complete, or some other 
accessory protein is utilized in these species.

From a pharmacological perspective, the presence of the 
putative elephant shark MRAP1 ortholog is perplexing. An 
earlier study had shown that the elephant shark MC2R ortholog 
could be functionally expressed in CHO cells in the absence of 
co-transfection of an exogenous mrap1 cDNA (38). Elephant 
shark MC2R could be stimulated in a dose-dependent manner 
by either human ACTH (1–24) or by dogfish (Squalus acanthias) 
ACTH (1–25). More recently, a MC2R cDNA cloned from the 
genome of the stingray, Dasyatis akajei, was also functionally 
expressed in CHO cells in the absence of co-transfection of an 
exogenous mrap1 cDNA (39). The stingray MC2R ortholog also 

4 http://www.ensembl.org/Petromyzon_marinus/Info/Index

could be stimulated by stingray ACTH (1–24) and stingray Des-
Acetyl-α-MSH. Hence, there are several issues with respective 
to the putative elephant shark MRAP1 that need to be resolved. 
It will be important to determine whether the elephant shark 
mrap1 mRNA is expressed in the same cells as elephant shark 
mcr mRNAs. In addition, pharmacological studies are needed 
to determine whether co-expression of cartilaginous fish MCR 
orthologs with the putative elephant shark MRAP1 ortholog 
have any effect on either trafficking of the MCR orthologs to the 
plasma membrane or sensitivity to melanocortin ligands.

LiGand seLeCtiVity oF MC2r 
ortHoLoGs

Several studies have shown that the MC2R orthologs of teleosts and 
tetrapods (Figure 2) require co-expression with a corresponding 
MRAP1 ortholog. Perhaps as a result of this interaction, and the 
intrinsic tertiary features of these MC2R orthologs, all of these 
receptors can only be activated by ACTH, and not by any MSH-
sized ligand (19–21, 37, 40). Nearly 40 years ago, analog studies 
on mammalian ACTH sequences revealed the dual importance 
of the H6F7R8W9 motif and the K15K16R17R18 (tetrabasic) motif 
in ACTH for the activation of the “ACTH” (MC2R) receptor 
on mammalian adrenal cortex cells (41). These same features 
are required for the activation of MC2R on the interrenal and 
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FiGUre 3 | amino acid alignment of MC2r orthologs. The amino acid sequences of human (h) MC2R (NP_ 001278840.1), zebrafish (z) MC2R 
(XP_00518229.1) stingray (s) MC2R (LC108747), elephant shark (e) MC2R (FAA704.1), stingray (s) MC4R (LC108749) were aligned, and amino acid positions in 
which four of the five sequences were identical are marked in red. The position of critical amino acids in the HFRW-binding site of MC4R orthologs (47) are marked 
with a star. The overall percent primary sequence identify (a) and the percent identity within each domain (B) are presented.
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adrenal cortex cells of non-mammalian tetrapods and teleosts as 
well (42). Although, teleost and tetrapod α-MSH sequences have 
the H6F7R8W9 motif, these ligands lack the tetrabasic motif, and 
as a result are incapable of activating either teleost or tetrapod 
MC2R orthologs. By contrast, the teleost and tetrapod MC1R, 
MC3R, MC4R, and MC5R paralogs can be activated by either 
ACTH or the MSH-sized polypeptides derived from POMC 
with varying potencies (10, 42, 43). It would appear that teleost 
and tetrapod MCR paralogs all have an HFRW-binding site, and 
MC2R orthologs have an addition R/KKRR-binding site. These 
generalizations apply for the ligand selectivity properties of the 
MCRs of cartilaginous fishes (class Chondrichthyes) with one 
notable exception.

Studies on the ligand selectivity of dogfish, Squalus acanthias 
(order Squaliformes, subclass Elasmobranchii), MC3R, MC4R, 
and MC5R paralogs (44–46), and the MC1R, MC3R, MC4R, 
and MC5R paralogs of the stingray, D. akajei [order Rajiformes, 

subclass Elasmobranchii; (39)] found that these MCR paralogs 
could be activated by either ACTH or MSH-sized ligands in a 
manner analogous to the corresponding MCR paralogs in teleosts 
or tetrapods. Hence, these paralogs have an HFRW-binding site. 
However, the MC2R ortholog of the stingray, D. akajei, and 
the MC2R ortholog from the elephant shark, C. milii (order 
Chimaeriformes, subclass Holocephali) could also be activated 
by either ACTH or MSH-sized ligands (38, 39), and as noted in 
Phylogeny and Proposed Evolution of the MRAPs, both of these 
MC2R orthologs could be functionally expressed in CHO cells 
without co-expression of an exogenous mrap1 cDNA. The two 
cartilaginous fish MC2R orthologs, from different subclasses of 
the cartilaginous fishes, have ligand selectivity properties more 
similar to MC4R paralogs, and most likely have only a HFRW-
binding pocket. This apparent feature for the cartilaginous fishes 
MC2R orthologs would be quite distinct from teleost and tetra-
pod MC2R orthologs. Whether the ligand selectivity properties 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
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of the cartilaginous fishes MC2R orthologs are an ancestral trait 
or a derived trait unique to the cartilaginous fishes is not clear at 
this time.

In any event, there should be distinct sites within the teleost/
tetrapod MC2R orthologs and the cartilaginous fishes MC2R 
orthologs that can account for the ligand selectivity properties of 
these receptors. In this regard, a comparison of MC2R orthologs 
with an MC4R paralog my reveal these potential sites. As shown 
in Figure 3, the human, zebrafish, elephant shark, and stingray 
MC2R amino acid sequences could be aligned to the stingray 
MC4R sequence by inserting a minimum of two gaps. The posi-
tions of critical residues in TM2, TM3, TM6, and TM7 that cor-
respond to the HFRW-binding site for a MC4R ortholog (47) are 
marked with a star. For the teleost and tetrapod MC2R orthologs, 
six of these sites are conserved, and for the cartilaginous fishes 
MC2R orthologs eight of these positions are conserved. Overall 
only 33% of the positions in this alignment are identical in at 
least four of the five sequences, however, there are very clear 
regions of primary sequence identity, which serve as markers for 
MCR-related sequences. The highly conserved regions (sequence 
identify greater than 50%) include: IC1, TM3, IC2, TM6, EC3, and 
TM7. Moderately conserved regions (sequence identity greater 
than 35%) include: TM1, TM2, and the C-terminal domain. The 
highest primary sequence divergence (<15%) was observed for 
the N-terminal domain, EC1, and EC2.

Previous studies used chimeric proteins of human MC2R and 
human MC4R to analyze the functions of these regions. For exam-
ple, Fridmanis et al. (48) observed that replacing the N-terminal 
domain of human MC4R with the N-terminal domain of human 
MC2R inhibited trafficking of the chimeric MC4R protein to the 

plasma membrane. However, since the N-terminal of stingray 
MC4R is nearly the same length as the human MC2R domain 
(Figure  3), and the stingray receptor could be functionally 
expressed in CHO cells (39), length alone may not be a factor in 
influencing trafficking to the plasma membrane. Hinkle et al. (49) 
observed that exchanging the TM2/EC1/TM3 region of human 
MC2R with the corresponding region of human MC4R resulted 
in a chimeric MC2R protein that could be activated by either 
ACTH or NDP-MSH. Presumably making a similar chimeric 
protein for human MC2R, but using the TM2/EC1/TM3 region 
of either elephant shark or stingray MC2R should yield the same 
outcome. Finally, Fridmanis et  al. (48) observed that substitu-
tion of the TM4 and TM5 domains in human MC2R affected 
ACTH activation, and this region of human MC2R may be the 
KKRR-binding site. In support of the later conclusion, studies 
on naturally occurring mutations in the TM4/EC2/TM5 domain 
of human MC2R, and alanine substitution experiments point to 
the TM4/EC2/TM5 region as playing an important role in the 
activation of human MC2R [for review see Ref. (50)]. It would 
now seem advantageous to extend the chimeric protein paradigm 
to the cartilaginous fishes MC2R orthologs to determine whether 
exchanging the TM2/EC1/TM3 and TM4/EC2/TM5 domains 
of teleost/tetrapod MC2R orthologs with the corresponding 
domains in the elephant shark MC2R orthologs would make the 
cartilaginous fish MC2R chimeric proteins exclusively selective 
for ACTH, and in the converse experiments, would the teleost/
tetrapod chimeric MC2R proteins have more permissive ligand 
selectivity properties. Given Malik et  al. (51) observations on 
the importance of extracellular domains in human MC2R for 
interaction with mouse MRAP1, co-expression of these MC2R 
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chimeric proteins with a class-specific MRAP1 ortholog may 
reveal the domain within the MC2R orthologs that makes contact 
with MRAP1.

MeLanoCortin reCeptor GenoMe 
and Gene dUpLiCations

The successive genome duplications during the radiation of the 
chordates theoretically should yield four paralogous genes in the 
genomes of extant cartilaginous fishes, non-teleost ray finned 
fishes, and tetrapods. However, in the genomes of the Japanese 
stingray (39), the spotted gar5, or the mouse (6), there are five 
paralogous MCR genes. The conclusion drawn from these obser-
vations is that one of the paralogous mcr genes underwent a local 
gene duplication (52). While there is general agreement that the 
mc5r gene was the result of the local gene duplication, the original 
mcr paralog that was duplicated has not been resolved. The issues 

5 http://www.ensembl.org/Lepisosteus_oculatus/Info/Index

associated with the origin of the mc5r gene can be seen in the 
spotted gar (sg) genome. Chromosome mapping indicates that 
the sgmc1r gene is located on chromosome 21, the sgmc2r gene is 
located on chromosome 11, the sgmc3r gene is located on chro-
mosome 18, the sgmc4r gene is located on chromosome 9, and 
the sgmc5r gene is also located on chromosome 11. The presence 
of paralogous genes on different chromosomes is considered an 
indication of a genome duplication event(s) (4). The presence of 
two genes on the same chromosome is generally construed as a 
result of a local gene duplication. In this regard, synteny studies 
found that the mc2r and the mc5r genes were on the same chromo-
some in the genomes of teleost fishes, the chicken (Gallus gallus), 
and several mammals (43, 52, 53). Based on these observations, 
it seemed reasonable to conclude that the mc2r and mc5r genes 
were the result of a local gene duplication (54, 55). In this scenario, 
the paralogous mc2r and mc5r genes would accumulate muta-
tions independently, and based on selection pressures diverge in 
terms of amino acid sequence, and perhaps in terms of function. 
The divergence in amino acid sequence can be seen from an 
alignment of gar MC2R and gar MC5R (Figure 4A). The amino 
acid identity for the two paralogs is 42%. From an evolutionary 
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perspective, the local gene duplication may have occurred after 
the 2R genome duplication event in the ancestral gnathostomes 
prior to the divergence of the ancestral cartilaginous fishes and 
the ancestral bony fishes.

However, Vastermark and Schioth (1) have pointed out that in 
phylogenetic analyses, MC5R orthologs form a clade with MC4R 
orthologs, and do not form a clade with MC2R orthologs. These 
observations have led to the conclusion that the mc5r gene was 
the result of a duplication of the mc4r gene (1). In support of this 
conclusion, an alignment of gar MC4R and gar MC5R indicates 
70% sequence identity (Figure 4B). In this scenario, the presence 
of the mc2r and mc5r paralogous genes on the same chromosome 
of extant teleost and tetrapods could have been the result of an 
exchange of chromosome fragments in the last common ancestor 
to the ancestral ray-finned fishes (Class Actinopterygii) and the 
ancestral lobe-finned fishes (Class Sarcopterygii), the lineage 
which gave rise to the tetrapods, approximately 410 million years 
ago (56).

While either scenario (i.e., MC2R/MC5R or MC4R/MC5R) 
can be supported by the current evidence, there are at least two 
issues that neither scenario adequately addresses. As shown in 
Figure 5A, a comparison of stingray MC2R and human MC2R, 
vertebrates that last shared a common ancestor over 420 million 
years ago, the amino acid sequence identity is 37% (positions in 
red). Given the apparent role of the Hypothalamus/Pituitary/
Adrenal (HPA) axis and the Hypothalamus/Pituitary/Interrenal 
(HPI) axis in maintaining the fitness of vertebrates (57–60), this 
lack of primary sequence conservation is difficult to comprehend. 
While divergence is expected, this degree of divergence is difficult 
to rationalize. It would appear that during the radiation of the 
gnathostomes, the mc2r gene sequence has drifted to the current 
state, while still maintaining functional capabilities.

For ray-finned fishes, such as the gar or zebrafish (Class 
Actinopterygii), MC2R primary sequence conservation is 
higher (55%; Figure  5B), and this condition may reflect the 
close interaction with MRAP1. That interaction most likely 

FiGUre 6 | amino acid sequence identity of MC5r orthologs. (a) The amino acid sequences of human (h) MC5R (NP_ 005904.1) and stingray (s) MC5R 
(AY562212) are aligned. (B) The amino acid sequences of gar (g) MC5R and Takifugu rubripes (f) MC5R (AA06553.1; fugu) were aligned. The position of critical 
amino acids in the proposed HFRW-binding site (47) is marked with a star. Amino acid positions that are identical are marked in red.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


10

Dores Melanocortin Receptors and MRAPs

Frontiers in Endocrinology | www.frontiersin.org June 2016 | Volume 7 | Article 79

reFerenCes

1. Vastermark A, Schiöth HB. The early origin of melanocortin receptors, 
agouti-related peptide, agouti signaling peptide, and melanocortin recep-
tor-accessory proteins, with emphasis on pufferfishes, elephant shark, 
lampreys, and amphioxus. Eur J Pharmacol (2011) 660:61–9. doi:10.1016/j.
ejphar.2010.10.106 

2. Ohno S, Wolf U, Atkins NB. Evolution from fish to mammals by gene dupli-
cation. Hereditas (1968) 59:169–87. doi:10.1111/j.1601-5223.1968.tb02169.x 

3. Lundin LG. Evolution of the vertebrate genome as reflected in paralogous 
chromosomal regions in man and the house mouse. Genomics (1993) 16:1–19. 
doi:10.1006/geno.1993.1133 

4. Holland PW, Garcia-Fernandez J, Williams NA, Sidow A. Gene duplications 
and the origins of vertebrate development. Dev Suppl (1994):125–33. 

5. Gallo-Payet N, Battista M-C. Steroidogenesis – adreanl cells signal transduc-
tion. Compr Physiol (2014) 4:889–964. doi:10.1002/cphy.c130050 

6. Cone RD. Studies on the physiological functions of the melanocortin system. 
Endocr Rev (2006) 27:736–49. doi:10.1210/er.2006-0034 

7. Takahashi A, Amemiya Y, Sarashi M, Sower SA, Kawauchi H. Melanotropin 
and corticotropin are encoded on two distinct genes in the lamprey, the earli-
est evolved extant vertebrate. Biochem Biophys Res Commun (1995) 213:490–8. 
doi:10.1006/bbrc.1995.2158 

8. Hinkle PM, Sebag JA. Structure and function of the melanocortin 2 receptor 
accessory protein. Mol Cell Endocrinol (2009) 300:25–31. doi:10.1016/j.
mce.2008.10.041 

9. Webb TR, Clark AJ. Mini-review: the melanocortin 2 receptor accessory 
proteins. Mol Endocrinol (2010) 24:475–84. doi:10.1210/me.2009-0283 

10. Gantz I, Fong TM. The melanocortin system. Am J Physiol Endocrinol Metab 
(2003) 284:E468–74. doi:10.1152/ajpendo.00434.2002 

11. Mountjoy KG, Robbins LS, Mortrud MT, Cone RD. The cloning of a family 
of genes that encode the melanocortin receptors. Science (1992) 257:1248–51. 
doi:10.1126/science.1325670 

12. Noon LA, Franklin JM, King PJ, Goulding NJ, Hunyady L, Clark AJ. Failed 
export of the adrenocorticotropin receptor from the endoplasmic reticu-
lum in non-adrenal cells: evidence in support of a requirement for a specific 
adrenal accessory factor. J Endocrinol (2002) 174:17–25. doi:10.1677/
joe.0.1740017 

13. Rached M, El Mourabit H, Buronfosse A, Blondet A, Naville D, Begeot M, 
et al. Expression of the human melanocortin-2 receptor in different eukaryotic 
cells. Peptides (2005) 26:1842–7. doi:10.1016/j.peptides.2004.11.037 

14. Kilianova Z, Basora N, Kilian P, Payet MD, Gallo-Payet N. Human melano-
cortin receptor 2 expression and functionality: effects of protein kinase A and 
protein kinase C on desensitization and internalization. Endocrinology (2006) 
147:2325–37. doi:10.1210/en.2005-0991 

started in the ancestral bony fishes, and while the interaction 
may not have “rescued” MC2R functionality, the interaction 
appears to have stabilized the functional capabilities of teleost 
and tetrapod MC2R orthologs. Tetrapod MC2R orthologs show 
a similar level of primary sequence conservation. As a result, 
selection pressures on teleost and tetrapod MC2R orthologs may 
involve maintaining the close interaction between MRAP1 and 
MC2R. For the cartilaginous fishes, the MRAP1/MC2R relation-
ship is unclear or may not exit, and the selection pressures to 
maintain MC2R primary sequence identity does not appear to 
be as strong. For example, in a recent study, on stingray MCRs 
(39), mc2r and mc5r mRNA levels were detected in the interrenal 
tissue of this species. However, the EC50 value of the stingray 
MC5R for ACTH (1–24) was in the 10−9M range, whereas the 
EC50 value for stingray MC2R was in the 10−7M range. In this 
example, MC5R rather MC2R may be the “ACTH” receptor in 
the HPI axis of the stingray.

The diminished primary sequence conservation for MC2R 
orthologs is in sharp contrast to the higher degree of primary 
sequence conservation for stingray and human MC5R orthologs 
(55%; Figure  6A). In addition, for two very distantly related 
bony fish MC5R orthologs (gar and fugu) the sequence identity 
was 73% (Figure  6B). These observations beg the question of 
the functional significance of the stability of MC5R orthologs 
during the radiation of the gnathostomes. For mammals, MC5R 
plays a role in exocrine gland secretion (61). However, the role 
of the MC5R receptor in non-mammalian vertebrates is largely 
unknown. Perhaps a renewed focus on the distribution of MC5 
receptors in various tissues of non-mammalian vertebrates will 
yield some answers.

ConCLUsion

While it has been nearly 25 years since the cloning of the first 
MCRs (6, 11), and nearly 40 years since the structure/function 
studies on ACTH (41), there are still many aspects of the phar-
macology and physiology of the melanocortin peptides and the 

MCRs that have not been resolved. One of the interesting facets 
of this receptor family is the interaction with the MRAPs (8, 9, 
16, 17). The presence of a mrap1 ortholog in the genome of a 
cartilaginous fish suggests that the mrap1 and the mrap2 paralo-
gous genes were the result of the 2R genome duplication event 
(2). There is still a considerable amount of work to be done to 
clarify the physiological roles of the MRAP1 and MRAP2 in non-
mammalian vertebrates, and the contact sites between MRAPs 
and the MCRs that can influence ligand selectivity.

When considering the functional activation of the MCRs, 
the paralogs MC1R, MC3R, MC4R, and MC5R are activated 
through an HFRW-binding site on these receptors that appears 
to be highly conserved. However, the MC2R orthologs of teleosts 
and tetrapods appear to utilize an additional binding site for 
the R/KKRR motif in gnathostome ACTH. Recent studies on 
cartilaginous fish MC2R orthologs suggest that a single-binding 
site may be all that is needed for the activation of these receptors 
(39, 46). Identifying the functional domains within the various 
gnathostome MC2R orthologs may clarify the ligand selectiv-
ity properties of cartilaginous fish and teleost/tetrapod MC2R 
orthologs.

Finally, while the role for MC2R orthologs in the HPA/HPI 
axis seems very clear, the role of the MC5R orthologs in the 
physiology of non-mammalian vertebrates is not resolved. The 
possibility that MC2R and MC5R may be functioning in the same 
cells should be considered.
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