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In the normal human adrenal gland, steroid secretion is regulated by a complex network 
of autocrine/paracrine interactions involving bioactive signals released by endothelial 
cells, nerve terminals, chromaffin cells, immunocompetent cells, and adrenocortical cells 
themselves. ACTH can be locally produced by medullary chromaffin cells and is, there-
fore, a major mediator of the corticomedullary functional interplay. Plasma ACTH also 
triggers the release of angiogenic and vasoactive agents from adrenocortical cells and 
adrenal mast cells and, thus, indirectly regulates steroid production through modulation 
of the adrenal blood flow. Adrenocortical neoplasms associated with steroid hypersecre-
tion exhibit molecular and cellular defects that tend to reinforce the influence of paracrine 
regulatory loops on corticosteroidogenesis. Especially, ACTH has been found to be 
abnormally synthesized in bilateral macronodular adrenal hyperplasia responsible for 
hypercortisolism. In these tissues, ACTH is detected in a subpopulation of adrenocortical 
cells that express gonadal markers. This observation suggests that ectopic production 
of ACTH may result from impaired embryogenesis leading to abnormal maturation of 
the adrenogonadal primordium. Globally, the current literature indicates that ACTH is a 
major player in the autocrine/paracrine processes occurring in the adrenal gland in both 
physiological and pathological conditions.

Keywords: ACTH, aldosterone, cortisol, Cushing’s syndrome, aldosterone-producing adenoma, hyperplasia, 
adrenocortical cells, veGF

iNTRODUCTiON

The adrenal cortex is a heterogeneous tissue that not only contains steroidogenic cells but also hosts 
various cell types that are able to locally release a wide variety of bioactive signals. This histological 
organization results in a complex interactive network that participates in the regulation of both basal 
and ACTH-induced corticosteroidogenesis. The intracortical sources of regulatory factors include 
chromaffin cells arranged in cords or islets, nerve fibers originating from extraadrenal neurones 
or cell bodies located in the adrenal medulla, cells of the immune system, including lymphocytes, 
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FiGURe 1 | Direct and indirect effects of ACTH on steroidogenesis in 
the adrenal gland. ACTH exerts a direct stimulatory effect on adrenocortical 
cells via melanocortin type 2 receptors (MC2R). Activation of MC2R increases 
secretion of steroid hormones, vascular endothelial growth factor (VEGF), and 
epoxyeicosatrienoic acids (EETs). Angiogenesis induced by VEGF, an 
endothelial cell-specific mitogen factor, allows adrenal tissue growth in 
response to ACTH. Increase in adrenal blood flow elicited by EETs, which are 
potent vasorelaxant agents, favors steroid production. In rats, ACTH also 
activates adrenal mast cells inducing local release of histamine and serotonin 
(5-HT). These factors modulate the tonicity of adrenal arterioles and, thus, the 
adrenal blood flow that indirectly influences the steroidogenesis. In addition, 
5-HT stimulates steroid secretion through activation of different 5-HT receptor 
subtypes expressed by normal and tumor human adrenocortical cells.
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macrophages/monocytes and mast cells, endothelial cells, and 
adipocytes. These autocrine/paracrine mechanisms have been 
extensively reviewed during the past years (1–5). However, their 
physiological role, especially their exact contribution to the 
regulation of corticosteroid synthesis remains a matter of debate 
although some data indicate that intraadrenal regulatory signals 
may mediate parts of the biological effects of ACTH on the adre-
nal cortex. Interestingly, adrenocortical neoplasms associated 
with steroid hypersecretion exhibit molecular and cellular defects 
that tend to reinforce the potency of paracrine factors to activate 
corticosteroidogenesis. For instance, abnormal expression of 
ACTH has been reported in adrenocortical cells in both tumors 
and hyperplasias responsible for hypercortisolism (6–11).

In the present review article, we have updated the current 
knowledge on the role of ACTH in the cell-to-cell communica-
tion processes occurring in the adrenal cortex in both physi-
ological and pathological conditions. We will also discuss the 
potential interest of the intraadrenal ACTH regulatory loop for 
the clinical management of patients with primary adrenal excess 
of corticosteroids.

eFFeCT OF ACTH ON THe ADReNAL 
vASCULATURe

The adrenal cortex is a richly vascularized organ. This extensive 
vasculature is essential for delivery of tropic hormone and ster-
oid hormones precursors to the gland and secretion of mature 
hormones into the blood flow. Furthermore, the establishment 
of such dense vascular network ensures that every adrenocortical 
cell is in contact with at least one endothelial cell (12, 13). This 
remarkable histological organization allows paracrine regulation 
of adrenocortical cells by endothelial cells through release of 
endothelins, adrenomedullin, nitric oxide, and prostacyclin (14). 
For instance, Rossi et al. have shown that endothelin-1 released by 
endothelial cells is an important regulator of aldosterone secre-
tion, and may then indirectly influence arterial blood pressure 
(15, 16). The release of endothelin by adrenocortical sinusoids is 
thought to mediate the modulation of adrenal steroidogenesis by 
the adrenal blood (17). Interestingly, ACTH appears able to both 
act on development and maintenance of the adrenal vasculature 
and regulate the adrenal blood flow (18, 19), influencing thus 
steroid production through an indirect effect in addition to its 
intrinsic steroidogenic action on adrenocortical cells (Figure 1).

The modulation of adrenal angiogenesis by ACTH may involve 
several bioactive signals. Thrombospondins (TSPs) represent 
a wide family of extracellular proteins consisting of five mem-
bers, TSP1–5, which can bind multiple cell surface molecules, 
including heparin sulfate proteoglycans, low-density lipoprotein 
receptor-related protein, integrins, CD36, and CD47 (20). Owing 
to the great diversity of their binding partners, TSPs are involved 
in various biological processes, such as cell adhesion, spreading 
and migration, and angiogenesis (20, 21). In this respect, TSPs 
are known to inhibit angiogenesis by preventing migration of 
capillary endothelial cells. Interestingly, adrenocortical cells 
release high amounts of TSP2 in response to ACTH (22), sug-
gesting that TSP2 may mediate some of the biological actions of 

ACTH in the adrenal cortex, especially centripetal adrenocortical 
cell migration, which is a fundamental process in the dynamic 
organization and remodeling of the adrenal cortex (23). However, 
the physiological role of TSP2, which is primarily expressed in 
zona glomerulosa and zona fasciculata, remains unclear since 
TSP2-null mice exhibit no alteration in corticosteroid secretion 
or adrenal development (24). In addition, syndromes of ACTH 
excess, including Cushing’s disease and 21-hydroxylase defi-
ciency, are associated with adrenocortical hyperplasia, a process 
that underlies active angiogenesis. Conversely, several observa-
tions indicate that vascular endothelial growth factor (VEGF) 
plays a pivotal role in the trophic effects of ACTH on the adrenal 
vasculature (25). VEGF is a widely expressed cytokine that acts 
as an endothelial cell-specific mitogen and angiogenic factor. In 
the bovine adrenal gland, VEGF is expressed in zona glomerulosa 
and zona fasciculata cells and its release is stimulated by ACTH 
(26). Upregulation of VEGF by ACTH has also been reported 
in human adrenal (27). The effect of ACTH on adrenal VEGF 
production involves transcription-independent mechanisms, 
including stabilization of VEGF mRNA by the HuR protein (28). 
Conversely, ACTH suppression by dexamethasone in mice results 
in progressive decrease of VEGF expression in adrenocortical 
cells and regression of the vascular network (29). Interestingly, 
ACTH also stimulates VEGF expression in human fetal adreno-
cortical cells, suggesting that VEGF is an important mediator of 
the trophic action of ACTH during the adrenal development (30). 
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Consistently, an increase in VEGF expression in adrenocortical 
cells has been noticed in the regenerating adrenal cortex in rats 
(31, 32). It is noteworthy that, in parallel to its effect on adrenal 
vasculature development via local synthesis of VEGF, ACTH also 
favors adrenal tissue growth through an antiapoptotic action on 
adrenocortical cells (29) and stimulation of synthesis of growth 
factors (30). Finally, VEGF may be involved in the capacity of 
ACTH to induce endothelial fenestration, a phenomenon that 
favors cell-to-cell interactions (26, 33).

The mechanism by which ACTH modulates the adrenal blood 
flow is obviously not univocal. Adrenocortical cells themselves 
are able to release vasorelaxant agents in response to ACTH. 
These compounds include metabolites of arachidonic acid, such 
as epoxyeicosatrienoic acids (EETs) (34). In addition, in the 
rat adrenal gland, capsular mast cells modulate the tonicity of 
adrenal arterioles and, thus, the adrenal blood flow through local 
release of histamine and serotonin (5-hydroxytryptamine; 5-HT) 
(17, 35). Interestingly, rat adrenal mast cells are sensitive to the 
action of ACTH, suggesting that they may represent an important 
intermediate in the effect of corticotropin on the adrenal blood 
flow (35). In humans, the presence of mast cells has been reported 
in both the subcapsular region of the normal adrenal gland (36) 
and various types of adrenocortical tumors, including deoxycor-
ticosterone-secreting tumors, aldosterone-producing adenomas 
(APAs), and adrenocortical carcinomas (37–39). However, there 
is currently no data reported in the literature indicating that 
human adrenal mast cells are target cells for ACTH.

iNDiReCT eFFeCTS OF ACTH ON 
CORTiCOSTeROiDOGeNeSiS THROUGH 
ADReNOCORTiCAL CeLL SeCReTORY 
PRODUCTS

Adrenocortical cells are important sources of bioactive compounds 
that are able to modulate steroidogenesis through autocrine/
paracrine actions. In man, it is doubtful that corticosteroid may 
affect their own secretion in physiological conditions. Conversely, 
the adrenal cortex is known to express the diverse components 
of the renin–angiotensin system, leading to local synthesis of 
angiotensin II and potential autocrine/paracrine stimulation 
of aldosterone secretion (40). Interestingly, renin production, 
which primarily occurs in zona glomerulosa cells, is stimulated 
by ACTH and reduced by hypophysectomy or dexamethasone 
administration (41, 42). This observation may explain why 
plasma renin levels are usually not suppressed in patients with 
overt ACTH-dependent hypercortisolism (43, 44). In fact, it is 
conceivable that, in this condition, ACTH-induced adrenal renin 
secretion may compensate inhibition of renal renin synthesis by 
hypervolemia and hypertension secondary to cortisol excess.

Adrenocortical cells also synthesize and release various 
cytokines, such as interleukin-1 (IL-1), IL-3, IL-6, and tumor 
necrosis factor-α (TNF- α) (1). These signals may influence the 
steroidogenic and mitogenic activities of adrenocortical cells via 
autocrine/paracrine processes (5). Indeed, ACTH has been shown 
to modulate cytokine production by adrenocortical cells, either 
positively (IL-6) or negatively (TNF-α) (45, 46). Intraadrenal 

cytokines may, thus, represent important effectors of ACTH 
capable of potentiating or attenuating its action on adrenocorti-
cal cells. However, there is currently no evidence that the impact 
of ACTH on adrenal cytokine synthesis may be involved in the 
pathogenesis of ACTH-dependent adrenal hyperplasia and/or 
hypercortisolism.

Several types of adrenocortical neoplasms are associated with 
illicit neuroendocrine differentiation of adrenocortical cells (47). 
This is especially true for APAs that have been shown to express 
synaptophysin, neuronal cell adhesion molecule, neuron specific 
enolase, and SV2 (48, 49). In addition, we have observed that APA 
cells may also abnormally synthesize 5-HT that is able to stimu-
late aldosterone secretion through activation of the overexpressed 
serotonergic type 4 (5-HT4) receptor (50, 51). Because APA cells 
also express high amounts of the ACTH receptor, i.e., the mel-
anocortin receptor type 2 (MC2R) (51–53), it is conceivable that 
locally produced 5-HT may act as an amplifier of the stimulatory 
effect of ACTH on aldosterone secretion by APA tissues.

Inhibins and activin are dimeric peptides belonging to 
the TGF-β family. Inhibins are formed by combination of the 
α-subunit encoded by INHA and A or B isoform of the β-subunit, 
encoded by INHBA and INHBB, respectively. Alternatively, 
activin is a homodimer composed of two β-subunits. The action 
of activin is mediated by its specific receptors type I and II, and 
the intracellular proteins SMAD. Inhibins counteract the biologi-
cal effects of activin by antagonizing activin type II receptor and 
formation of an inactive complex with the TGFβ type III receptor 
β-glycan. Adrenocortical cells are able to express both α and β 
subunits (54–56). In particular, the α-inhibin is expressed in the 
zona reticularis under the positive control of ACTH, whereas 
β-subunits are mainly present in the outer cortex. Both activin 
receptors and the inhibin co-receptor β-glycan are also detected 
in the adrenal cortex (55, 56). It has been demonstrated that 
ACTH stimulates secretion of inhibin A and B, without modify-
ing production of activin A (55). These data indicate that ACTH 
also controls corticosteroidogenesis through modulation of the 
intraadrenal activins/inhibins ratio.

iNDiReCT eFFeCTS OF ACTH ON 
CORTiCOSTeROiDOGeNeSiS THROUGH 
NON-STeROiDOGeNiC ADReNAL CeLLS

The adrenal gland is surrounded by adipose tissue and its cortical 
region contains adipocytes either isolated or arranged in small 
islets (57). Like cells of the immune system, adipocytes release a 
wide panel of cytokines, suggesting that they could influence the 
adrenocortical function through a cell-to-cell communication 
process. For instance, adipocytes have been shown to activate 
aldosterone release by secreting soluble bioactive factors, which 
have not been yet characterized (57–59). Conversely, leptin 
exerts an inhibitory action on ACTH-induced corticosteroid 
secretion in human adrenocortical cells without affecting their 
viability and proliferation (60–63). It is possible that peri- and 
intraadrenal adipocytes may be controlled by ACTH and, thus, 
constitute a relay in the action of the hormone on the adrenal 
cortex. In support of this hypothesis, it has been reported that 
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FiGURe 2 | Presence of ACTH in the normal human adrenal. ACTH 
immunoreactivity is exclusively located in some chromaffin cells (high panel), 
identified as chromogranin A (CGA) immunoreactive cells (low panel), in the 
medulla. ACTH was detected by using antibodies against the N-terminal 
region of the peptide. ZF, zona fasciculata; ZR, zona reticularis. Illustration of 
the data published in Ref. (9).
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murine adipocyte cell lines and immortalized adipocytes express 
the MC2R, and ACTH regulate adipocyte functions in these 
models (64–66). In addition, patients with congenital adrenal 
hyperplasia due to 21-hydroxylase deficiency, a condition which 
is associated with chronically high plasma ACTH levels, can 
present with adrenal myelolipoma (67–69), suggesting a role of 
ACTH in the development of lipomatous tissue inclusions in the 
adrenal glands. However, in contrast to the observations made in 
murine cells, human mature adipocytes only express low levels of 
the MC2R and ACTH does not influence lipolysis in the mature 
human adipose tissue (70).

PARACRiNe CONTROL OF  
ADReNAL STeROiDOGeNeSiS BY  
iNTRAADReNAL ACTH

In the normal adrenal gland, chromaffin cells release detectable 
amounts of ACTH that is a major mediator in the corticomedul-
lary functional interaction (71, 72) (Figure  2). This secretory 
process can be activated by corticotropin-releasing hormone 
(CRH) that is expressed in the adrenal medullary tissue (11). 
As chromaffin cells are also regulated by splanchnic nerves and 
proinflammatory cytokines, it seems possible that they may be 
important intermediates in the activation of the adrenal cortex 
during stress and inflammation. However, the physiological role 
of the paracrine control of corticosteroidogenesis by adrenomed-
ullary ACTH remains unclear (3).

Conversely, clinicopathological studies have shown that 
paracrine interactions involving ACTH produced by chromaf-
fin cells may play a role in the pathogenesis of hypercorti-
solism. Pheochromocytoma can occasionally produce ACTH 
resulting in ACTH-dependent Cushing’s syndrome (73–75). 
Hypercortisolism seems to be mainly the consequence of the 
endocrine corticotropic action of ACTH whose plasma levels are 
typically elevated in this situation (76). Nevertheless, this mecha-
nism may not be exclusive. In fact, hyperplasia of the adrenal 
cortex adjacent to pheochromocytoma has also been observed, 
indicating that ACTH originating from the pheochromocytoma 
tissue can stimulate adrenocortical cells in a paracrine man-
ner (11, 77–80). Such a histological pattern is close to what is 
observed in corticomedullary mixed tumors that are composed 
of intermingled adrenocortical and pheochromocytoma tis-
sues (81–84). These rare tumors are sometimes associated with 
hypercortisolism, suggesting that pheochromocytes release 
paracrine signals capable of activating glucocorticoid synthesis 
(81, 84). ACTH could be one of them although it is not excluded 
that catecholamines may exert a stimulatory action on cortisol 
production through illicit expression of adrenergic receptors in 
tumor adrenocortical cells (85, 86).

Alternatively, the occurrence of ectopic production of ACTH in 
the adrenal cortex has already been reported. Very rarely, ACTH-
positive cells in the adrenocortical tissue can reveal adrenal micro-
metastases of an ACTH-secreting cancer. In the published cases, 
plasma ACTH levels were strongly elevated, as a result of ACTH 
secretion by the primary tumor (87–89). More surprisingly, a 
subpopulation of adrenocortical cells has been shown to produce 
detectable amounts of ACTH in various types of adrenal neo-
plasms. A first case of adrenocortical cortisol-secreting adenoma 
associated with production of ACTH by tumor cells, has been 
described in 2001 by Hiroi et  al. (6). Illicit synthesis of ACTH 
was considered to result from abnormal pituitary differentiation 
of the tissue as witnessed by co-expression of 17-hydroxylase and 
pituitary homeobox factor-1 mRNAs by adrenocortical cells (6). 
At the ultrastructural level, tumor cells exhibited characteristics 
of both steroidogenic cells and neuroendocrine cells, and the 
tumor was, thus, referred to as an adrenocortical–pituitary hybrid 
adenoma. Bilateral macronodular adrenal hyperplasia (BMAH), 
a rare cause of primary adrenal hypercortisolism, has also been 
found to contain ACTH-producing cells. This observation was 
first reported by Pereira et  al. who also noticed that ACTH-
positive cells were labeled by antibodies to chromogranin A 
(CGA), suggesting that these cells may correspond to intracorti-
cal chromaffin cells (90). Subsequently, several teams reported 
expression of proopiomelanocortin (POMC) and ACTH in 
groups of adrenocortical cells in isolated BMAH cases (8, 10, 91) 
(Figure 3). In one case, it could be shown that ACTH-positive 
cells also expressed 17-hydroxylase but were negative for pituitary 
corticotroph markers (8). The role of ACTH in the pathogenesis 
of BMAH has been more extensively investigated in a large series 
of 30 cases (9). Adrenal hyperplasia samples expressed POMC 
mRNA at variable levels. Proconvertase 1, a protease implicated 
in the maturation of POMC into ACTH, was also visualized in 
clusters of adrenal cells, indicating that ACTH could be gener-
ated from POMC in the BMAH tissues. In agreement with this 
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FiGURe 3 | intraadrenal ACTH regulation of cortisol secretion in bilateral macronodular adrenal hyperplasia (BMAH). (A,B) Consecutive sections of a 
BMAH tissue labeled with ACTH and MC2R antibodies. (A) Heterogeneous distribution of ACTH-producing cell clusters in BMAH. (B) The ACTH receptor MC2R is 
highly expressed in ACTH-producing cells (arrows) and in their vicinity. (C) ACTH sensitivity of BMAH tissues. Application of exogenous ACTH stimulated cortisol 
secretion by perifused BMAH explants. (D) Corticostatin, a MC2R antagonist, inhibited in vitro the cortisol response of cultured BMAH cells to ACTH. Illustration of 
the data published in Ref. (9).
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finding, ACTH immunoreactivity was detected, as previously 
noticed, in some adrenocortical cells either isolated or arranged 
in small groups disseminated in the tissues. The presence of 
corticotropin can also be seen in some chromaffin cells of the 
adrenal medulla. Surprisingly, adrenocortical ACTH-positive 
cells also displayed characteristics of steroidogenic cells, such as 
the presence of numerous lipid inclusions and several markers 
of steroidogenic differentiation, including steroidogenic fac-
tor 1 (SF1), 17-hydroxylase, and the HDL-cholesterol receptor 
scavenger receptor B1 (SRB1). It could be, thus, concluded that 
they constitute a subcategory of adrenocortical steroidogenic 
cells characterized by an unusual capacity to synthesize ACTH. 

BMAH specimens were found to express very low levels of T-pit 
[a transduction factor which controls pituitary corticotrophs dif-
ferentiation (92)], confirming that ectopic synthesis of ACTH in 
adrenocortical cells does not result from illicit corticotropic-like 
differentiation of the latter (9) but may rather be considered as 
an additional feature of neuroendocrine differentiation of the 
hyperplastic tissues (47, 93, 94). Interestingly, ACTH-containing 
cells were also positive for gonadal markers like the gonadal 
marker insulin-like 3 (INSL3), exhibiting thus a pseudo-gonadal 
phenotype (8, 9, 95, 96). This observation is concordant with 
expression of POMC and synthesis of ACTH previously reported 
in testicular Leydig cells and ovarian granulosa cells (97, 98). 
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FiGURe 4 | Putative pathophysiological mechanism responsible for 
bilateral macronodular adrenal hyperplasia. Both gonads and adrenals 
originate from the adrenogonadal primordium. It can be speculated that the 
causative genetic mutations may alter differentiation and/or separation of the 
adrenogonadal primordium leading to the presence of pseudo-gonadal cells 
in the adrenals. Secretion of ACTH by intraadrenal pseudo-gonadal cells may 
progressively stimulate, via activation of MC2R, both cortisol secretion and 
growth of the adrenocortical tissue, leading to bilateral adrenal hyperplasia 
associated with hypercortisolism. In parallel, sustained activation of the PKA 
pathway consecutive to activation of MC2R by intraadrenal ACTH may 
activate expression of some illegitimate receptors. Activation of 
steroidogenesis by ligands of illegitimate receptors further reinforces cortisol 
hypersecretion through both an intrinsic stimulatory action and an indirect 
effect via local release of ACTH.
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Because the adrenal glands and gonads both originate from a same 
tissue precursor, the adrenogonadal primordium, it is likely that 
the occurrence of these pseudo-gonadal cells in BMAH tissues 
may be the consequence of altered embryogenesis, explaining the 
bilaterality of the lesions.

Perifusion studies revealed that ACTH is released by BMAH 
tissues in vitro in a pulsatile mode (9), in agreement with older 
clinical studies showing a clear pulsatility of cortisol secretion 
in patients with BMAH (99). The ectopic secretion of ACTH 
by the hyperplastic adrenal glands has also been detected 
in vivo in two patients through adrenal vein catheterization (9). 
Taken collectively, these data suggested that, in BMAH tissues, 
intraadrenal ACTH may exert an autocrine/paracrine action 
to stimulate cortisol secretion, supplying therefore circulating 
ACTH that is suppressed by cortisol excess. This hypothesis was 
supported by statistical analyses showing positive correlations 
between ACTH and cortisol levels in BMAH culture medium. In 
addition, basal plasma cortisol concentrations measured in vivo 
were positively correlated with both the levels of POMC mRNA 
and the ACTH histological score in the tissues. Most importantly, 
MC2R antagonists, such as corticostatin and ACTH (7–38), were 
found to inhibit in vitro spontaneous and ACTH-evoked cortisol 
secretion by BMAH explants (9) (Figure 3). Clinical studies with 
MC2R antagonists are now mandatory to confirm that cortisol 
production is actually dependent on intraadrenal ACTH in 
patients with BMAH.

Bilateral macronodular adrenal hyperplasia tissues also 
constitute an interesting model for the study of the regulation of 
MC2R expression in the adrenal cortex. MC2R mRNA is globally 
underexpressed in BMAH samples versus normal adrenals (100). 
In fact, we could observe that, at variance with the normal adrenal 
cortex that is diffusely labeled by anti-MC2R antibodies, BMAH 
explants exhibit heterogeneous distribution of the receptor that 
appears highly expressed in the vicinity of clusters of ACTH-
producing cells and more weakly at distance (Figure 3). Indeed, 
as previously established in the normal adrenal gland (101–103), 
MC2R seems to be upregulated by ACTH in BMAH tissues. In 
fact, MC2R mRNA levels were positively correlated with POMC 
mRNA rates and MC2R-like immunoreactivity was principally 
visualized in the vicinity of ACTH-positive cells (9). Interestingly, 
ACTH-producing cells were also found to express the receptor, 
suggesting that intraadrenal ACTH possibly exerts autocrine 
actions in BMAH.

All these data indicate that intraadrenal ACTH plays a 
pivotal role in the pathogenesis of hypercortisolism associated 
with BMAH. Deciphering the mode of regulation of ACTH 
production by BMAHs is, thus, essential for the comprehension 
of the pathophysiology of the disease. At variance with pituitary 
ACTH, intraadrenal ACTH does not seem to be regulated by 
cortisol, as suggested by the lack of action of dexamethasone 
and the glucocorticoid receptor antagonist RU486 on ACTH 
release by BMAH explants (9). Conversely, we noticed that 
ligands of various membrane receptors that are known to be 
abnormally expressed by BMAH cells, i.e., 5-HT, LH/hCG, 
and glucose-dependent insulinotropic peptide (GIP), are able 
to activate ACTH production from BMAH tissues in  vitro 
(9). This surprising finding indicated that activation of illicit 

membrane receptors may stimulate cortisol production via two 
mechanisms, including a direct effect on corticosteroidogenesis, 
as previously shown in BMAH cell culture (93, 104), and an 
indirect action mediated by ACTH secretion (9). Consistently, 
MC2R antagonists were found to partially inhibit in  vitro the 
cortisol response evoked by GIP in perifused BMAH samples. 
Taken together, these results suggest that intraadrenal ACTH 
may be regarded as a common intermediate and amplifier of the 
action of several illicit membrane receptors in BMAH tissues. 
Targeting the MC2R with specific antagonists may, thus, repre-
sent an efficient strategy for the treatment of BMAH-associated 
hypercortisolism. The pathophysiology links between intraad-
renal ACTH and abnormally expressed receptors may be more 
complex and could form a complete auto-amplification loop in 
the hyperplastic tissues. In fact, although the presence of the LH 
and GIP receptors in adrenocortical cells may be simply con-
sidered as features of pseudo-gonadal differentiation of BMAH 
tissues, overexpression of some membrane receptors, such as 
5-HT receptors, may result from local production from ACTH. 
This hypothesis is supported by intriguing observations recently 
performed in another type of adrenal hyperplasia associated 
with hypercortisolism, namely primary pigmented adrenocorti-
cal disease (PPNAD). The disease is caused in most patients by 
germline inactivating mutations that affect the PRKAR1A gene 
(105), resulting in constitutive activation of protein kinase A 
(PKA) in adrenocortical cells (106). Since MC2R are positively 
coupled to the cAMP/PKA pathway, it can be considered that 
PRKAR1A mutations partly mimic the action of ACTH on adre-
nal steroidogenic cells. Interestingly, PPNAD have been found 
to overexpress several types of 5-HT receptors, including the 
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5-HT4 receptor (107). It seems, thus, conceivable that abnormal 
expression of 5-HT receptors in BMAH tissues may result from 
exposure of adrenocortical cells to locally produced ACTH 
whose release is subsequently increased by the 5-HT signaling 
pathway.

There is now no doubt that BMAH is a genetically determined 
condition, ARMC5 being a major susceptibility gene of the 
disease (108). It is now well established that the development of 
macronodular adrenal hyperplasia requires inactivation of the 
two ARMC5 alleles, respectively, by the first germline mutation 
and a secondary somatic genetic event. Surprisingly, inactivation 
of ARMC5 expression in the human adrenocortical cell line 
H295R, which reproduces the molecular defects observed in 
adrenocortical cells of patients with BMAH, results in a decrease 
in expression of steroidogenic enzymes (108, 109). It seems, 
thus, that a second line event is necessary for the emergence of 
hypercortisolism. We hypothesize that ARMC5 mutations may 
alter differentiation and/or separation of the adrenogonadal 
primordium leading to the presence of pseudo-gonadal cells in 
the adrenal areas. Progressive expression of POMC and ACTH 
by these cells may then result in cortisol hypersecretion. Because 
illicit expression of ACTH has also been observed in non-
ARMC5-mutated adrenal hyperplasias, it seems that abnormal 
differentiation of adrenocortical cells is a frequent histological 
feature in BMAH tissues whatever the causative firstline genetic 
defect (Figure 4).

CONCLUSiON

In addition to its well-known action on adrenocortical cells to 
promote steroidogenesis through activation of the MC2R, ACTH 
exerts multiple effects through the paracrine communication 
processes that occur in the adrenal gland in both physiological 
and pathophysiological conditions. ACTH can also be abnormally 
produced in adrenal neoplasms in which the hormone acts, thus, 
as an autocrine/paracrine factor to activate steroid secretion. 
This new pathophysiological concept opens novel avenues for the 
development of original pharmacological treatments of primary 
adrenal syndromes of steroid excess.
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