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The adrenal cortex is critical for physiological function as the central site of gluco-
corticoid and mineralocorticoid synthesis. It possesses a great degree of specialized 
compartmentalization at multiple hierarchical levels, ranging from the tissue down to 
the molecular levels. In this paper, we discuss this functionalization, beginning with the 
tissue zonation of the adrenal cortex and how this impacts steroidogenic output. We 
then discuss the cellular biology of steroidogenesis, placing special emphasis on the 
mitochondria. Mitochondria are classically known as the “powerhouses of the cell” for 
their central role in respiratory adenosine triphosphate synthesis, and attention is given 
to mitochondrial electron transport, in both the context of mitochondrial respiration and 
mitochondrial steroid metabolism. Building on work demonstrating functional assembly 
of large protein complexes in respiration, we further review research demonstrating a role 
for multimeric protein complexes in mitochondrial cholesterol transport, steroidogenesis, 
and mitochondria–endoplasmic reticulum contact. We aim to highlight with this review 
the shift in steroidogenic cell biology from a focus on the actions of individual proteins 
in isolation to the actions of protein assemblies working together to execute cellular 
functions.

Keywords: cholesterol transport, translocator protein, steroidogenic acute regulatory protein, voltage-dependent 
anion channels, cytochrome P450 enzyme system, mitochondria, endoplasmic reticulum

iNTRODUCTiON

The cortex of the adrenal is the principal site of synthesis of vertebrate glucocorticoid and miner-
alocorticoid steroid hormones (1). These hormones are two of the five classes of steroid hormones 
which are indispensable for mammalian development and physiology, the remaining including the 
estrogens, progestins, and androgens (2). The steroidogenic capacity of the adrenal gland is highly 
compartmentalized, performed by specialized cells, organelles, and proteins. The biosynthesis of 
steroids has been authoritatively reviewed (3), and this manuscript looks to focus attention on the 
compartmentalization of steroidogenesis of the adrenal mitochondria. To this end, several topics 
will be covered, including adrenal tissue zonation, mitochondrial organellar organization, and 
macromolecular protein complexes, all contributing to the regulation and optimization of adrenal 
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FiGURe 1 | Schematic of adrenal zonation. The different functional zones 
of the human adrenal gland are depicted with the outermost capsule layer 
overlying the mineralocorticoid-synthesizing glomerulosa layer. The 
fasciculata layer lies under the granulosa layer and is responsible for the 
synthesis of the glucocorticoid cortisol. The final layer of the cortex, the 
reticularis, synthesizes the androgen dehydroepiandrosterone (DHEA), while 
the innermost layer of the schematic, the medulla, is composed of chromaffin 
cells, responsible for the production of the catecholamine epinephrine.
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endocrine signaling. Special attention will be devoted to our 
increasing understanding of multiprotein assemblies in mito-
chondrial function.

ADReNAL GLAND ZONATiON

The adrenal gland is composed of two anatomically and func-
tionally distinct compartments: the cortex and the medulla. The 
adrenal medulla is innervated with chromaffin cells and plays a 
key role in catecholamine synthesis and the sympathetic stress 
response (4), while the cortex contains the steroidogenic cells 
responsible for the adrenal’s contribution to the endocrine system 
(5). The adrenal cortex is further compartmentalized, in humans 
functionally and morphologically divided into three concentric 
layers: the zona glomerulosa, the zona fasciculata, and the zona 
reticularis (Figure 1).

The zona glomerulosa, lying under the adrenal capsule 
(Figure 1), functions as part of the renin–angiotensin–aldosterone 
endocrine axis and contributes to organismal electrolyte balance 
(6). In response to the peptide angiotensin-II, or elevated plasma 
potassium, the cells of the zona glomerulosa secrete aldosterone. 
Aldosterone, such as all steroids, is synthesized from cholesterol 
via a multienzyme pathway particular to each steroidogenic tis-
sue, resulting in successive modifications to the sterol backbone 
(Figure 2). Aldosterone, a mineralocorticoid, in turn promotes 
sodium and water retention, as well as potassium excretion by 
the kidney (7). Ultrastructurally, glomerulosa cells are charac-
teristically contain numerous mitochondria with lamelli form 
cristae and some lipid droplets in the cytoplasm (8). The zona 
fasciculata, the next layer of the adrenal cortex (Figure  1), is 
responsible for organismal glucocorticoid production – cortisol 
in humans, corticosterone in rodents (Figure 2) (3). The cells of 
the zona fasciculata participate in the hypothalamic– pituitary–
adrenal endocrine signaling axis and respond to pituitary 

adrenocorticotropic hormone (ACTH) signaling through the 
ACTH receptor (M2CR) and its accessory protein, the melano-
cortin 2 receptor accessory protein (MRAP). The fasciculata cells 
are organized in cord-like bundles – the fascicles – surrounded 
by fenestrated capillaries (8). Ultrastructurally, these cells also 
contain numerous mitochondria, although their cristae take a 
more tubulovesicular form. Fasciculata cells, consistent with their 
prolific capacity to synthesize glucocorticoids, contain prominent 
smooth endoplasmic reticulum (ER) and large numbers of lipid 
droplets (9). The layer of the cortex abutting the  medulla in 
humans, the zona reticularis, is not part of currently well-defined 
endocrine axis, but does secrete significant amounts of the andro-
gen dehydroepiandrosterone (DHEA; Figure 2) (10). The cells 
of the zona reticularis resemble those of the fasciculata ultras-
tructurally, although contain relatively fewer lipid droplets with 
comparatively greater numbers of lysosomes (9).

Developmentally, the adrenal cortex arises from the adreno-
cortical primordium, itself derived from the urogenital ridge, a 
specialized region of the embryonic coelomic epithelium that 
also serves as the developmental precursor of the kidneys and 
hematopoietic progenitors (11). Cells in the adrenocortical 
primordium express the transcription factor genes Wilms tumor 
suppressor-1 (WT1), GATA-binding protein 4 (GATA4), and 
steroidogenicfactor-1 (SF1/NR5A1) (8, 12, 13). As development 
proceeds, adrenal progenitor cells in the migrate dorsomedially 
from the adrenocortical primordium into subjacent mesenchyme, 
concurrently upregulating expression of SF1, and downregulating 
expression of WT1 and GATA4 (13, 14). The developing adrenal 
gland is subsequently innervated by sympathoblasts from the 
neural crest, the precursors of the chromaffin cells of the medulla 
(15), and finally enveloped by capsule cells derived from the sur-
rounding mesenchyme.

CeLLULAR COMPARTMeNTALiZATiON 
AND MiTOCHONDRiAL ReSPiRATiON

Eukaryotic cells are characteristically compartmentalized, con-
taining numerous membrane-bounded organelles, each with spe-
cialized functions. These organelles achieve their specialization 
through non-uniform segregation of molecules, whether they are 
nucleic acids, proteins, lipids, or carbohydrates. The mitochon-
dria are famously known as the “powerhouse of the cell” for their 
respiratory capacity and synthesis of adenosine triphosphate 
(ATP). Although mitochondrial energetics have traditionally 
served an ancillary role in steroidogenic research (16), the recent 
finding that mitochondrial function directly impacts neuroen-
docrine, metabolic, inflammatory, and transcriptional responses 
to acute psychological stress (17) prompts a brief review. We will 
introduce individual proteins involved and use the mitochondrial 
respiratory chain serves an example of higher order functional 
protein assemblies.

The mitochondria generate ATP by oxidizing hydrogens 
derived from carbohydrates (through the tricyclic acid cycle) 
and fats (through fatty acid β-oxidation). Electrons from 
nicotinamide adenine dinucleotide (NADH) are donated to the 
iron–sulfur (Fe–S) clusters of mitochondrial complex I (NADH 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FiGURe 2 | Schematics of adrenal steroidogenic pathways. The metabolism of cholesterol to pregnenolone by the mitochondrial CYP11A1 is common to all 
three zones of the human adrenal. (A) The mitochondrial/microsomal enzyme HSD3B converts pregnenolone to progesterone, which is metabolized to 
11-deoxycorticosterone by the microsomal CYP21. The final reactions of aldosterone synthesis are catalyzed by the mitochondrial CYP11B2, which converts 
11-deoxycorticosterone to corticosterone, which is hydroxylated at C18 to form 18-hydroxycorticosterone which is then finally converted to aldosterone. 
(B) In the zona fasciculata, the microsomal CYP17 and the mitochondrial/microsomal HSD3B can generate 17-hydroxyprogesterone, progesterone, and 
17-hydroxyprogesterone. The microsomal CYP21 preferentially metabolizes 17-hydroxyprogesterone to 11-deoxycortisol, which is finally metabolized to the 
glucocorticoid cortisol by the microsomal CYP11B2. CYP21 can also metabolize progesterone to 11-deoxycorticosterone, which CYP11B2 converts to the 
glucocorticoid corticosterone, although this pathway is secondary in humans (although the principal pathway in rodents). (C) In the zona reticularis, CYP17 
hydroxylates pregnenolone to 17-hydroxypregnenolone, and then DHEA. DHEA is the major steroid product of the reticularis, with sulfated DHEA (DHEA-S), 
androstenedione, and testosterone serving as only minor steroidogenic products.
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dehydrogenase), a multimeric inner mitochondrial membrane 
(IMM) protein complex. From Complex I, the electrons are 
sequentially shuttled to ubiquinone (coenzyme Q/CoQ), giving 
rise to ubiquinol (CoQH2). Ubiquinol transfers its electrons to 
a cytochrome-containing IMM protein complex, Complex III 
(ubiquinol/cytochrome c oxidoreductase), which further shuttles 
the electrons to cytochrome c. From cytochrome c, the electrons 
flow to the cytochrome-containing Complex IV (cytochrome c 
oxidase, COX), the terminal IMM protein complex of the mito-
chondrial respiratory chain, which uses the electrons to reduce 
O2 to yield H2O. The free energy of electron movement through 
the ETC is used to pump protons (H+) out of the mitochondrial 
matrix into the mitochondrial intermembrane space (IMS), creat-
ing a capacitance across the IMM. This potential energy is utilized 
to drive ATP synthesis by the IMM Complex V (ATP synthase), 
which condenses ADP + Pi to form ATP while pumping protons 
back into the matrix. Matrix ATP is then exchanged with cyto-
solic ADP by the adenine nucleotide translocator (ANT/SLC25), 
which works in conjunction with the outer mitochondrial mem-
brane (OMM) voltage-dependent anion channel (VDAC) to form 
an energy-transducing mitochondrial contact site (18).

An interesting development in mitochondrial respiratory 
electron transport and one that, as discussed below, offers insight 
into mitochondrial steroidogenesis, began at the beginning of 
the twenty-first century with the proposal that the mitochondrial 
respiratory chain was organized in supramolecular assemblies 
termed “respirasomes” (19). This paradigm shift changed the 

view of mitochondrial electron transport from one of randomly 
organized respiratory chain complexes –  in which components 
associated via random diffusion (20) – to one of respiratory chain 
supercomplexes locally transferring electrons between restricted 
components (21). Numerous studies utilizing blue native gel elec-
trophoresis, preserving the fidelity of weakly associated members 
of protein complexes (22), have repeatedly shown that the oxida-
tive phosphorylation complexes associate in supercomplexes of 
the three proton-translocating units: Complex I, Complex III, and 
Complex IV (19, 23, 24). Moreover, these supercomplexes have 
been demonstrated to be functional in vitro, further supporting 
a role for complex molecular assemblies in cellular function (25).

The conceptual justification of such supercomplexes derives 
from theoretical work indicating that spatial proximity of chemi-
cal reactions fosters efficiency, providing fitness advantages for 
evolutionary selection. This concept was originally proposed 
by Welch in the 1970s (26) as the concept of the “metabolon,” 
and subsequently popularized by Srere (27), among others. This 
is not a novel concept for steroidogenic research, as Lieberman 
and Prasad utilized the metabolon construct in their work on 
steroidogenic metabolism (28). The crux of the metabolon 
is that groups of enzymes and/or proteins within metabolic 
pathways physically associate. This association, as noted above, 
would facilitate metabolite channeling, increasing the regula-
tion, control, and speed of metabolic pathways. The metabolon 
appeals to common sense and biological evolutionary arguments, 
as increased efficiency is a requirement of biological survival 
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in hostile environments. However, the metabolon has been 
 difficult to demonstrate experimentally. Biochemical pull-down 
experiments have been reticent to demonstrate large biological 
metabolic complexes (29), and it has been argued that metabolic 
protein complex association is weak to easily facilitate regulation. 
The development of non-denaturing molecular assays, such as 
the blue native PAGE described above, as well as high-resolution 
fluorescent microscopy, has supported research into transient, 
but functionally critical, aspects of protein–protein interactions. 
Indeed, increasing evidence of such interactions in cellular 
metabolism is receiving attention, ranging from descriptions 
of cytoplasmic purinosomes  –  regulating purine biosynthesis 
(30, 31)  –  to mitochondrial fatty acid translocation machin-
ery – contributing to mitochondrial fatty acid beta-oxidation and 
energetics (32, 33). The following sections describe the molecular 
components of mitochondrial steroidogenic machinery, first 
introducing individual proteins before transitioning description 
of a model of steroidogenesis functionally incorporating these 
proteins into larger protein assemblies, much akin to what has 
been observed for mitochondrial respiration.

STeROiDOGeNiC CeLLS, PROTeiNS,  
AND MiTOCHONDRiA

Cholesterol serves as the metabolic precursor of all adrenal ster-
oids, and as such, the adrenal cortex can be viewed as a highly 
specialized lipid processing organ. Cholesterol possesses fascinat-
ing structural characteristics, making it one of the most studied 
and versatile molecules in biological systems. Steroid hormones, 
in turn, are oxygenated forms of cholesterol, a characteristic they 
share with bile acids and oxysterols (2), and one which changes 
their chemical properties from highly hydrophobic to modestly 
hydrophilic. This change in chemical properties underlies the 
shift in their biological role from structural (as cholesterol plays 
in lipid membranes) to informational (as steroids play in biologi-
cal signaling).

Any discussion of the steroidogenic mitochondria of the 
adrenal gland must revolve around the mitochondrial steroi-
dogenic enzymes. These steroidogenic enzymes fall into two 
broad families: the cytochrome P450 (CYP) and hydroxysteroid 
dehydrogenase/ketosteroid reductase (HSD/KSR) enzymes. 
The CYP enzymes represent the majority of the steroidogenic 
enzymes and will receive the greatest attention here as they are the 
most abundant steroidogenic enzymes of mitochondria. A highly 
diverse superfamily of enzymes, the CYPs are characterized by 
a single heme prosthetic group and the ability to absorb light at 
450  nm when reduced with carbon monoxide. Enzymatically, 
P450 enzymes exhibit an extraordinary ability to insert oxygen 
into non-activated carbon–hydrogen bonds at the same time 
exhibiting high structural selectively. They accomplish this feat 
through their ability to activate molecular oxygen, although the 
iron atom of their heme tetrapyrrole prosthetic group with the aid 
of an ancillary redox partner (34).

Thousands of CYPs have been identified, in all domains of life, 
suggesting that this class of protein has ancient roots. There are 57 
CYP genes encoding CYP enzymes in humans, subdivided into 18 
clades. The majority of the CYP enzymes are localized to the ER, 

but one clade is localized to the mitochondria. While ER-localized 
CYPs obtain their electrons from a single P450 oxidoreductase, 
the mitochondrial CYPs utilize an electron transport chain con-
taining the ferredoxin reductase (FDXR) and ferredoxin proteins 
(34). There are seven mitochondrial CYPs in humans, namely 
CYP11A1, CYP11B1, CYP11B2, CYP24A1, CYP27A1, CYP27B1, 
and CYP27C1. Of these, CYP11A1, CYP11B1, and CYP11B2 are 
involved in steroidogenesis, metabolizing cholesterol and ster-
oids. Interestingly, CYP24A1 and the three CYP27 isozymes are 
all involved in cholesterol metabolism, playing roles in bile acid, 
oxysterol, and vitamin D biosynthesis (35, 36), suggestive that the 
ancestor of the mitochondrial clade of enzymes was involved in 
sterol metabolism. Interestingly, however, phylogenomic analysis 
of the CYP enzymes has repeatedly shown that the CYP11 fam-
ily appears with, or shortly before, the emergence of vertebrates 
(37, 38) (Figure 3). Indeed, it has been postulated that the advent 
of steroidogenesis and steroid hormone receptor signaling 
and the increased developmental complexity of vertebrates are 
intimately linked (39). Moreover, evolution of the mitochondrial 
CYP11 family is itself of interest within the vertebrate lineage, for 
while homologs of the CYP11 family, responsible for the first step 
of synthesis for all steroids, are observed throughout vertebrata 
from fish to mammals (37, 38) (Figure 3), the CYP11B family, 
responsible for glucocorticoid and mineralocorticoid synthesis, 
is underrepresented throughout this subphylum (Figure 3). Thus, 
while the molecular details of adrenal mitochondrial steroid bio-
synthesis are well understood, as described below, the evolution 
of this system remains an important and poorly understood area 
of research (7, 40).

CHOLeSTeROL SiDe CHAiN CLeAvAGe: 
CYP11A1

CYPA11A1 is absolutely essential for the synthesis of all vertebrate 
steroids, which are all characterized by the CYP11A1 reaction, 
namely cleavage of the cholesterol aliphatic side chain. The pro-
posed reaction mechanism of CYP11A1 involves three sequential 
modifications of cholesterol. In the first step, CYP11A1 hydroxy-
lates cholesterol at carbon 22 of the aliphatic tail; in the second 
step, cholesterol is hydroxylated at the carbon 20 of the aliphatic 
tail; finally, in the third step, oxidative scission of the C20–22 
bond of the subsequent 20,22-dihydroxycholesterol yields the 
steroid pregnenolone and the reactive aldehyde, isocaproaldehyde 
(44). This reaction mechanism, originally proposed in the 1970s 
based on purified enzyme catalysis of hydroxycholesterol (45), 
has found support in the publishing of x-ray crystal structures 
of bovine and human CYP11A1 (46, 47), which indicate that the 
heme prosthetic group lies proximally to the 20′ and 22′ carbons 
of cholesterol. Recent high-resolution temporal enzymatic work 
further indicates that transient cholesterol hydroperoxyl serves as 
reaction intermediates (48, 49), further supporting the sequential 
oxidative cleavage model of this enzyme.

The cellular expression CYP11A1 is hormonally regulated 
in the steroidogenic tissues of the adrenal and gonads, with 
circulating pituitary hormones stimulating intracellular cAMP 
production, which in turn promotes CYP11A1 expression (50). A 
number of paracrine and endocrine factors affect the expression 
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FiGURe 3 | Phylogenetic analysis of vertebrate mitochondrial CYP evolution. Homologs of the seven human mitochondrial CYPs (CYP11A1, CYP11B2, 
CYP11B3, CYP24A1, CYP27A1, CYP27B1, and CYP27C1) were identified using the nucleotide BLAST tool (41). Organisms chosen for search included the fully 
sequenced chicken (Gallus gallus), zebrafish (Danio rerio), and lancelet (Branchiostoma floridae), as they represented divergent vertebrate sequences (chicken vs. 
human vs. zebrafish) that could be compared with a non-vertebrate chordate (lancelet). The genomes of the Western clawed frog (Xenopus tropicalis) and anole 
lizard (Anolis carolinesis) were also searched, but sequences from these organisms were not included in the analysis as surprisingly no homologs of CYP11B1 or 
CYP11B2 were found (data not shown). Nucleotide sequences were aligned using MUSCLE (42), and phylogenetic trees constructed using PHyML (43).
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of CYP11A1. Pituitary hormones, such as ACTH or angiotensin-
II, stimulate CYP11A1 expression through a cAMP-dependent 
mechanism (51, 52), and the human CYP11A1 promoter con-
tains two cAMP-responsive regions (53). Additional factors that 
stimulate cAMP in adrenocortical cells, such as activin (54), are 
also able to stimulate CYP11A1 expression. In contrast to cAMP, 
intracellular signaling pathways activated by Ca2+ and protein 
kinase C (PKC) can suppress CYP11A1 transactivation (55). In 
addition to the cAMP-responsive sites (CRSs) in the CYP11A1 
promoter, the transcription factor SF-1 also contains an activat-
ing site (56, 57), which modulates the basal and cAMP-stimulated 
levels of CYP11A1 expression through association with the tran-
scription factors p300 and CREB-binding protein (CBP) (58).

GLUCOCORTiCOiD AND 
MiNeRALOCORTiCOiD SYNTHeSiS: 
CYP11B1 AND CYP11B2

The final steps in the synthesis of glucocorticoids and miner-
alocorticoids are catalyzed by two closely related mitochondrial 

enzymes: CYP11B1 and CYP11B2 (59). Similar to CYP11A1 
and the other mitochondrial CYPs, CYP11B1 and CYP11B2 are 
associated with the IMM and are expressed with leader peptides 
targeting them to the mitochondrial matrix (60). CYP11B1 is the 
more abundantly expressed of the two proteins and is expressed 
predominantly in the zona fasciculata, and to a lesser extent 
in the zona reticularis, but not in the zona glomerulosa (61). 
CYP11B1 catalyzes the 11β-hydroxylation of 11-deoxycorticos-
terone and 11-deoxycortisol yielding corticosterone and cortisol, 
respectively (Figure 2) (44). CYP11B1 also has the capacity to 
hydroxylate C18 of 11-deoxycorticosterone or corticosterone to 
form 18-hydroxycorticosterone (62); however, it cannot catalyze 
the oxidation of the 18-hydroxy group to form aldosterone. This 
last reaction is catalyzed by CYP11B2, which is able to catalyze 
the sequential 11β-hydroxylation of 11-deoxycorticosterone, the 
hydroxylation of C18 and the subsequent oxidation of C18 to 
yield the C18 aldehyde group of aldosterone (Figure 2) (63–65). 
CYP11B2 inefficiently catalyzes oxidation of corticosterone; this 
finding has lent support to the zonation theory of mineralocor-
ticoid and glucocorticoid synthesis, as the products of CYP11B1 
would not be sequentially catalyzed to aldosterone (65).
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FiGURe 4 | Mitochondrial cytochrome P450 electron transport chain. 
The membrane-bound flavin-containing ferredoxin reductase (FDXR) accepts 
two electrons from NADPH, yielding NADP+. These electrons are passed to 
the iron–sulfur cluster of ferredoxin (FDX), which donates the electrons to the 
heme prosthetic group of the mitochondrial cytochrome P450 (CYP), which 
uses protons and molecular oxygen to hydroxylate its target substrate (R–H) 
yielding the final hydroxylated product (R–OH) and water.
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Although it is unclear whether the CYP11B clade of mito-
chondrial CYPs emerged with the advent of vertebrates or mam-
mals, within the mammalian lineage, the CYP11B clade exhibits 
significant diversity. While humans possess the two enzymes 
discussed above, cattle and pigs possess a single enzyme, CYP11B 
(66, 67), which is able to catalyze all of the reactions of CYP11B1 
and CYP11B2. Conversely, within the rodent lineage, rats (but not 
mice) possess three CYP11B genes – CYP11B1, CYP11B2, and 
CYP11B3 – with CYP11B1 and B2 exhibiting homologous activ-
ity to their human orthologs, and CYP11B3 possessing the ability 
to convert deoxycorticosterone to 18-deoxycorticosterone, but 
lacking the 18 activity necessary to synthesize aldosterone (68).

CYP11B1 and CYP11B2 are located on human chromosome 
8q21–22 (59, 69). Consistent with a tandem duplication event, 
the two human genes are closely linked, separated by 40  kb, 
exhibiting similar intron/exon structure, and 90 and 95% identity 
in the coding and non-coding sequences, respectively (59, 70). 
CYP11B1 expression is induced by ACTH via cAMP (71, 72), 
through a mechanism relying on cAMP response element 
(CRE) and activating transcription factor (ATF) sequences in 
the CYP11B1 promoter (73). Orphan nuclear receptors play a 
critical role in CYP11B1 genetics, with SF1/NR5A1 and LRH-1/
NR5A2 both contributing to the relative expression of CYP11B1 
and regulating the comparative expression of CYP11B1 vs. 
CYP11B2 (73, 74). CYP11B2 transcription in granulosa cells 
is induced by potassium and by angiotensin-II, in both cases 
stimulating calcium (Ca2+) influx and stimulation of PKC and 
calmodulin-dependent protein kinase kinase (CAMKK) intracel-
lular signaling (75, 76). CYP11B2 expression requires the action 
of the transcription factors NURR1 and NGF1B, but interestingly 
contrasts with CYP11B1 in its relationship with the transcription 
factor SF-1 (77, 78). Transcriptional regulation of CYP11B2 is 
also influenced by the activity of chicken ovalbumin upstream 
promoter transcription factor I (COUP-TF1), which itself is 
coactivated by the small ubiquitin-related modifier-1 (SUMO-1) 
conjugase and ligase Ubc9 and PIAS1 (79).

eLeCTRON TRANSFeR TO CYP11A1: 
FeRReDOXiN ReDUCTASe AND 
FeRReDOXiN

The mitochondrial clade of CYP enzymes uses two sequential 
electron-transfer donors  –  ferredoxin (FDX) and FDXR  –  as 
intermediates in electron donation from NADPH (Figure  4). 
These are ancient proteins, with orthologs expressed in all 
domains of life and involved in numerous processes outside of 
steroidogenesis (80). FDXR is a 54.5-kDa flavoprotein affixed 
to the IMM that reduces NADPH and contains of two domains 
(81): (1) a NADPH-binding domain and (2) a flavin adenine 
dinucleotide-binding domain, with electron transfer occurring 
between the two. This cleft possesses a number of basic residues, 
residues essential for interaction with acidic residues on its 
electron donor partner, FDX (82). FDXR is broadly expressed in 
numerous tissues, but is comparatively abundant in steroidogenic 
tissues (83), where its abundance contributes to the catalytic 
activity of the mitochondrial CYPs (84). High SF-1 expression 

in steroidogenic tissue likely contributes this preponderance of 
FDXR, as SF-1-binding sites are present in the FDXR promoter 
and SF-1 overexpression in adrenal cell models drives FDXR 
expression (85).

The electron donor partner of FDXR, FDX, is a 14-kDa 
mitochondrial matrix-localized protein containing a Fe–S cluster 
tethered by four cysteine residues (86). Two ferredoxins exist in 
humans, with FDX1 supporting steroidogenesis and FDX2 par-
ticipating in heme and Fe/S cluster protein synthesis (87). After 
obtaining electrons from FDXR, FDX1 subsequently transfers its 
electrons to mitochondrial P450 enzymes, including CYP11A1, 
CYP11B1, and CYP11B2, among others (Figure 4). FDX has been 
described as a mobile, indiscriminate, diffusible electron shuttle 
(3), much as cytochrome c and ubiquinol have been described 
previously (20).

iDeNTiFiCATiON OF STeROiDOGeNiC 
PROTeiN COMPLeXeS

Research on CYP enzymes has contributed to the emerging 
picture of CYPs operating in functional complexes with other 
CYPs (88) as well as with their cognate electron donor partners 
(89). As noted in the previous section, the mitochondrial CYPs 
and the FDX and FDXR redox partners have been considered 
to interact randomly in the mitochondrial inner membrane (3). 
However, examination of native protein complexes in steroido-
genic mitochondria from tumor Leydig cells using BN-PAGE and 
mass spectroscopy suggested that CYP11A1 and FDXR physi-
cally associate (90). In addition, these natively isolated CYP11A1 
complexes were functionally active, cleaving the aliphatic tail of 
a fluorescent cholesterol reporter. Taken together, these find-
ings support a model for CYP11A1–FDXR electron transport 
occurring in a physically associated metabolon, much akin to 
the electron transport of the respirasomes discussed above (24). 
This CYP11A1 metabolon model integrates with work on the 
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steroidogenic transduceosome, a multiprotein complex  traversing 
the OMM and IMM of the steroidogenic mitochondria integrat-
ing the movement of cholesterol with intracellular signaling to 
CYP111A1 (90, 91) (Figure  5). The steroidogenic transduceo-
some and metabolon complexes contain a number of cytoplasmic 
and mitochondrial components (Figure 5): cytoplasmic proteins 
include the steroidogenic acute regulatory (StAR) protein, the 
protein kinase cAMP-dependent type I regulatory subunit 
alpha (PRKAR1A), the diazepam-binding inhibitor (DBI), and 
the acyl-CoA-binding domain containing 3 (ACBD3); mito-
chondrial proteins include the VDAC, the translocator protein 
(TSPO), ATPase family, AAA domain containing 3A (ATAD3A), 
CYP family 11 subfamily A member 1 (CYP11A1), and FDXR. 
In addition, functional partners of the transduceosome have 
been identified, including mitochondria-associated members 
of the 14-3-3 adaptor protein family (92, 93) as well as kinase 
signalers such as extracellular signal-regulated kinase (ERK) 
1/2 (94); the physical association and temporal interaction of 
these proteins with the transduceosome remain an active area of 
research. Because the focus of this review is upon mitochondrial 
contributions to steroidogenesis, the mitochondrial components 
of the transduceosome and metabolon are focused upon below.

vOLTAGe-DePeNDeNT ANiON CHANNeL

Voltage-dependent anion channel is the most abundant protein of 
the mitochondrial outer membrane and is widely accepted as the 

principal route and control of metabolic flux between the cytosol 
and mitochondria (95). VDAC is a 32-kDa beta barrel protein 
and has been implicated in numerous cellular processes, ranging 
from cellular energetics to apoptosis (96). Three VDAC isoforms 
are expressed in the human genome, with VDAC1 located on 
chromosome 5q31, VDAC2 located on chromosome 10q22, and 
VDAC3 located on chromosome 8p11 (97). The relative abun-
dance of the different VDAC isoforms vary by tissue, by VDAC1 
is the predominant form, followed by VDAC2, with VDAC3 
expression low in comparison. Although functional redundancy 
is believed to exist between the isoforms, significant differences 
in roles of the VDAC proteins has been slowly teased out through 
biochemical and genetic investigations (98). Interestingly, mice 
null for Vdac1 and Vdac3 are viable and display little overt phe-
notypical changes; however, on this particular murine genetic 
background, Vdac2−/− mice were embryonically lethal (99, 100). 
Moreover, although the VDAC proteins have been recurrently 
implicated in apoptosis, mitochondria from Vdac1−/− and 
Vdac3−/− null mice, as well as cell lines null for all three isozymes 
fail to show changes in mitochondrial permeability transition and 
Bcl-2 family member-driven cell death compared with wild-type 
mitochondria.

Voltage-dependent anion channel is found at contact sites 
between the OMM and the IMM (101) where it may complex 
with energetics-related proteins, such as hexokinase, ANT, and 
creatine kinase, or with apoptotic proteins of the Bcl-2 family (18), 
and as noted above, and discussed below in greater detail, appears 
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to play a central role in facilitating mitochondrial  steroidogenic 
cholesterol transport through interactions with several key 
proteins. Moreover, VDAC also appears to play a significant, 
albeit poorly understood, role in cellular cholesterol homeostasis 
(102). Structural characterization of VDAC indicates that it is a 
cholesterol-binding protein; whether this cholesterol binding is 
a non-specific artifact of VDAC hydrophobicity, or whether this 
cholesterol binding plays a physiological role in steroidogenesis 
or other processes remains to be determined. It is unlikely that 
VDAC itself participates as a cholesterol channel, as the center of 
its ring-like structure is hydrophilic, suitable for anion transport 
but unsuitable for hydrophobic molecule transport (103, 104). 
After nearly half a century of work on this ubiquitous protein, 
much remains to be understood, especially in the context of 
mitochondrial cholesterol metabolism.

TRANSLOCATOR PROTeiN, 18 kDa

In the 1970s and 1980s, studies of benzodiazepine drug binding to 
sites outside of the central nervous system led to the identification 
of a peripheral benzodiazepine-binding site, generally expressed 
throughout the body, but concentrated in the steroidogenic cells 
of the adrenal and gonad (105–107). Isolation of this benzodiaz-
epine-binding site led to the identification of an 18-kDa integral 
OMM protein, originally named the peripheral benzodiazepine 
receptor (PBR) (106). Subsequent research demonstrated that 
benzodiazepine and other chemical distinct PBR ligands were 
able to stimulate steroid biosynthesis by mobilizing mitochon-
drial cholesterol transport in isolated mitochondria, cell cultures, 
as well as in humans (108–111), and based on work implying 
the involvement of this protein in mitochondrial cholesterol and 
heme tetrapyrrole import, the PBR was renamed the TSPO (112).

Biochemical evidence and recent structural determinations of 
the TSPO protein indicate that TSPO is predominantly α-helical, 
containing five helices clustered into a barrel-like shape (113–115). 
Although antioxidant properties of TSPO have been demon-
strated (115), no classical redox enzymatic or prosthetic groups, 
such as transition metals or active thiols, have been observed, and 
functional analysis of the protein has been difficult owing to its 
hydrophobicity (116). TSPO does contain an evolutionarily con-
served C-terminal cholesterol recognition amino acid concensus 
(CRAC) motif (117, 118), which has been shown to facilitate 
cholesterol binding through a conserved tyrosine residue (119). 
This cholesterol-binding activity for TSPO has been implicated 
in steroidogenesis, as small molecules targeting the CRAC motif 
inhibit steroid production in cell and animal models (120, 121), 
and a naturally occurring human polymorphism in the protein 
proximal to the C-terminal CRAC motif (A147T) reduces cellular 
steroid production (122).

Hormonal stimulation of steroidogenesis in a steroidogenic 
cell model resulted in increased TSPO polymerization in correla-
tion with increased ligand-binding affinity and steroid production 
(123, 124). Much like VDAC discussed above, TSPO has been 
identified as concentrated at OMM–IMM contact sites (125), and 
in addition to homooligomerization, TSPO has been consistently 
shown to physically associate with VDAC (126–128). Moreover, 
VDAC–TSPO interaction affects binding of TSPO ligands (127), 

suggestive of a functional relationship between the two proteins. 
The TSPO–VDAC platform appears to serve as an OMM base for 
the steroidogenic transduceosome cholesterol-transfer machin-
ery (90, 91), a complex which appears to predominantly contain 
the polymerized form of TSPO (90). However, the mechanistic 
details of TSPO involvement in this complex are unclear at this 
time. Recent genetic mouse models in which TSPO had been 
deleted tissue specifically and globally have yielded conflicting 
results regarding steroidogenesis, ranging from no effect on ster-
oidogenesis to severe compromise of ACTH-stimulated produc-
tion of corticosterone (129–131). The complex effects of genetic 
background and selection for compensatory changes likely play 
a role in the experimental variability, however, especially in light 
of skewed embryonic Mendelian ratios in TSPO null mice (131).

STeROiDOGeNiC ACUTe  
ReGULATORY PROTeiN

Pharmacological inhibition of protein synthesis by compounds, 
such as cycloheximide, was long known as an inhibitor of ster-
oidogenesis (132), suggesting that rapid protein synthesis was a 
necessary driver of steroid biosynthesis. The StAR protein was 
originally identified as a labile protein factor rapidly induced in 
response to hormonal stimulation of steroidogenic cells in cor-
relation with increased steroid production (133, 134). Moreover, 
a number of studies have demonstrated that StAR is a direct target 
of hormonally stimulated cellular kinase signaling pathways, 
including the protein kinase A (PKA) and ERK kinase pathways 
(94, 135, 136). The necessity of StAR for steroidogenesis derived 
from work in humans showing that a broad spectrum of muta-
tions in StAR contribute to congenital adrenal lipoid hyperplasia, 
a condition characterized by the inability to synthesize steroids, 
resulting in impaired sexual development and adrenal dysfunc-
tion leading to infant death unless treated with glucocorticoid 
supplementation (137).

Steroidogenic acute regulatory protein is located on chromo-
some 8p11 and is expressed as a 37-kDa mitochondrial pre-protein 
containing a mitochondrial targeting leader sequence, and sub-
sequently imported into mitochondria, where the presequence 
is cleaved by Lon proteases in the matrix to a 30-kDa mature 
protein (although it is interesting to note that theoretical calcu-
lation of StAR protein molecular mass indicate 30 and 25 kDa 
masses for the pre- and mature proteins, although the reason for 
this discrepancy is unclear at this time). Surprisingly, StAR was 
found to stimulate steroid production in cell model systems with-
out its leader sequence and import into the mitochondria (138). 
This led to elegant work on StAR action involving its molecular 
tether to the OMM, IMS, and IMM which indicated that StAR 
acts on the OMM and that mitochondrial import to the matrix 
inactivates StAR activity (139). Interestingly, however, in  vivo 
work has demonstrated that the StAR mitochondrial presequence 
has biological necessity, as mouse models in which full-length 
StAR has been replaced by StAR that lacks the mitochondrial 
targeting sequence stochastically exhibit the CAH phenotype of 
steroidogenic failure (140). Moreover, CAH-causing mutations 
have been found in the leader sequence of human StAR-mutation 
patients (141), collectively arguing that the StAR relationship 
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with its leader peptide is more complex than previously thought. 
The finding that StAR physically interacts with VDAC1 (142) 
and can be found in the OMM transduceosome complex when 
proteins are crosslinked after steroidogenic stimulation (91) sup-
ports a model in which StAR serves as a “key” acting to “start” 
the mitochondrial cholesterol import machinery. However, the 
precise molecular details of this model remain to be determined.

ATPase FAMiLY, AAA DOMAiN 
CONTAiNiNG 3A

The ATAD3A protein belongs to the AAA+ family of ATPases, 
a broadly conserved family of ATPases implicated in various 
cellular processes (1, 3–5). ATAD3A is characterized by two 
N-terminal coiled-coil domains: a central transmembrane helix 
and a conserved C-terminal AAA+-type ATPase domain (143). 
Several studies have localized ATAD3A to the mitochondria 
(143, 144), where is appears to be involved in mitochondrial 
membrane dynamics. Trypsin digestion assays have been used 
to study the membrane topology of ATAD3A, suggesting that 
the C-terminal ATPase domain is localized in the mitochondrial 
matrix, the transmembrane segment traverses the IMM, and the 
N-terminal coiled-coils anchor the protein the OMM. ATAD3A 
appears capable of homooligomerization, and as noted above, 
appears to be a partner protein in the mitochondrial transduceo-
some of steroidogenic cells, critical for cholesterol import into 
mitochondria and steroidogenesis (90, 145).

MiTOCHONDRiA-ASSOCiATeD 
MeMBRANeS: SiTeS OF  
eR–MiTOCHONDRiAL MeMBRANe 
iNTeRACTiON

The ER is a complex cellular organelle, formed by an intercon-
nected network of cisternae (146), is distributed across the cell 
and is involved in numerous processes, including lipid and 
protein synthesis. The ER is well known in steroidogenic research 
as the site of action of numerous steroidogenic CYP and HSD/
KSR enzymes (3), but recently, the ER has attracted recent inter-
est in mitochondrial cholesterol metabolism as a possible source 
of cholesterol (147). The ER and mitochondria are considered 
cholesterol poor organelles, especially in contrast to the high 
levels present in plasma membranes and endosomes. However, 
the ER appears to be a staging platform for cellular cholesterol 
homeostasis, as endogenous cellular cholesterol is synthesized 
in the ER, and cholesterol taken up by cells from circulating 
lipoproteins makes its way to the ER before incorporation into 
lipid droplets. In addition, the ER houses the sterol regulatory 
element-binding protein (SREBP) sensory machinery, which 
senses ER sterol levels and subsequently regulates transcription 
of genes involved in cholesterol and fatty acid synthesis and 
uptake (148). Although lipid droplets have been considered the 
classic source of steroidogenic cholesterol, the intimate relation-
ship between lipid droplets, the ER and mitochondria, suggest 
a complex relationship in mitochondrial cholesterol delivery for 
steroidogenesis (149).

Almost 30  years ago, Vance demonstrated phospholipid 
synthesis in cellular fractions enriched in mitochondrial and ER 
markers (150). Electron microscopic investigations of mitochon-
dria–ER association have consistently revealed the existence of 
specific regions of close apposition between the ER membranes 
and the OMM, with these regions representing between 5 and 
20% of the mitochondrial surface (151–153). These mitochon-
dria-associated membrane (MAM) sites have become recognized 
as possessing their own particular makeup, characterized by a 
number of resident proteins (154). Interestingly, several of these 
proteins have been demonstrated to participate in mitochondrial 
cholesterol transport and steroid biosynthesis. VDAC itself has 
been demonstrated to be present in MAMs (155), and, interest-
ingly, StAR appears to interact with VDAC2 in steroidogenic 
cell model MAMs, an interaction necessary for its steroidogenic 
activity and mitochondrial import (156). In addition to VDAC, 
which is predominantly localized to mitochondria, several highly 
enriched resident MAM proteins have been demonstrated to play 
a key role in mitochondrial cholesterol transport. The first of 
these proteins, the sigma-1 receptor (SIGMAR1), was found to 
coimmunoprecipitate with VDAC2 in a steroidogenic cell model 
as well as disrupt mitochondrial cholesterol metabolism when 
its expression was reduced by short interfering RNA (siRNA) 
(157). Interestingly, SIGMAR1 appears to promote the compart-
mentalization of cholesterol in ER membranes (158), although 
depletion of cholesterol promoted mitochondrial–ER association 
in in vitro membrane association assays and cell models (159). A 
second resident MAM protein, acyl-CoA synthetase 4 (ACSL4), 
an enzyme involved in cellular arachidonic acid metabolism, par-
ticipates in mitochondrial arachidonic acid movement (160). Of 
note, silencing the expression of ACSL4 inhibits steroidogenesis in 
a cell model, overexpression of ACSL4 promotes steroidogenesis 
(161), and cAMP signaling promotes increased mitochondrial 
colocalization of ACSL4 (162), collectively suggestive of a MAM 
relationship to mitochondrial arachidonic acid and cholesterol 
import. Finally, ATAD3A, in addition to forming a physical link 
between the IMM and OMM, may be involved in linking the 
mitochondria to the ER at MAMs. A long isoform of ATAD3A 
was found to be present in the MAMs of steroidogenic cells (145), 
and this work, in conjunction with the VDAC–StAR–MAM work 
cited above (156), suggesting that the transduceosome complex 
may serve to link not only the membranes of the mitochondria 
to the CYP metabolon but also the metabolon to cholesterol 
reserves in the ER and beyond.

CONCLUSiON

Steroidogenesis begins with the mobilization and movement of 
cholesterol from intracellular stores into mitochondria. Control 
of steroidogenic output is organized at two levels: substrate avail-
ability and targeting, and enzyme expression and localization. 
Past and recent studies in hormone-inducible steroidogenic cells 
showed that cholesterol trafficking and targeting into mitochon-
dria is rate limiting and driven by intracellular protein networks, 
referred to as the transduceosome, which amplifies the cAMP 
signal at the OMM, and the steroidogenic metabolon. This mito-
chondrial metabolon prevents unwanted crosstalk of the substrate 
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cholesterol with other pathways, optimizing substrate concentra-
tion and targeting to CYP11A1. Deciphering the organization 
and regulation of intracellular protein assemblies that interact 
with the steroidogenic machinery will provide insight into the 
intracellular events involved in normal and disease states, facili-
tating diagnosis and treatment. These studies suggest a shift in 
focus in steroidogenic cell biology from the actions of individual 
proteins in isolation to the actions of protein assemblies working 
together to execute specialized cellular functions, in this case 
adrenal steroid formation.
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