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Reproduction is associated with the circadian system, primarily as a result of the 
connectivity between the biological clock in the suprachiasmatic nucleus (SCN) and 
reproduction-regulating brain regions, such as preoptic area (POA), anteroventral 
periventricular nucleus (AVPV), and arcuate nucleus (ARC). Networking of the central 
pacemaker to these hypothalamic brain regions is partly represented by close fiber 
appositions to specialized neurons, such as kisspeptin and gonadotropin-releasing 
hormone (GnRH) neurons; accounting for rhythmic release of gonadotropins and sex 
steroids. Numerous studies have attempted to dissect the neurochemical properties 
of GnRH neurons, which possess intrinsic oscillatory features through the presence of 
clock genes to regulate the pulsatile and circadian secretion. However, less attention 
has been given to kisspeptin, the upstream regulator of GnRH and a potent mediator 
of reproductive functions including puberty. Kisspeptin exerts its stimulatory effects 
on GnRH secretion via its cognate Kiss-1R receptor that is co-expressed on GnRH 
neurons. Emerging studies have found that kisspeptin neurons oscillate on a circadian 
basis and that these neurons also express clock genes that are thought to regulate its 
rhythmic activities. Based on the fiber networks between the SCN and reproductive 
nuclei such as the POA, AVPV, and ARC, it is suggested that interactions among 
the central biological clock and reproductive neurons ensure optimal reproductive 
functionality. Within this neuronal circuitry, kisspeptin neuronal system is likely to 
“time” reproduction in a long term during development and aging, in a medium term 
to regulate circadian or estrus cycle, and in a short term to regulate pulsatile GnRH 
secretion.

Keywords: kisspeptin, reproduction, circadian rhythms, clock genes, GnRH, AvPv

iNTRODUCTiON

Reproduction, a central feature of life, requires synergistic actions of cellular processes at the brain 
and the reproductive organs to achieve normal sexual functionalities. Several neuronal popula-
tions in the hypothalamus including preoptic area (POA), anteroventral periventricular nucleus 
(AVPV), and arcuate nucleus (ARC) play critical roles in the hypothalamic–pituitary–gonadal 
(HPG) axis (1–4). Importantly, POA contains gonadotropin-releasing hormone (GnRH) neurons 
and AVPV and ARC contain a distinct neuronal population termed kisspeptin neurons; which 
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are fundamental in the feedback system of the HPG axis (5–9). 
When kisspeptin is bound to its cognate G-protein-coupled 
receptor (GPR) 54, commonly known as Kiss1-R, to stimulate 
GnRH secretion, the release of luteinizing hormone (LH) and 
follicle-stimulating hormone (FSH) from gonadotropes occurs 
(6). This process culminates in the synthesis of sex steroids at 
the gonads and, in concert with the action of gonadotropins, 
stimulates gametogenesis (10–12) (Figure 1).

Gonadotropin-releasing hormone neurons exhibit pulsatile 
and surge secretory patterns in females, with peaks occurring 
prior to the LH surge ensuring the temporal regulation of 
the HPG axis. Rhythmicity of GnRH neuronal activity and 
reproductive hormonal fluctuation are studied well in female 
rodents. During their estrous cycle (metestrous, diestrus, proes-
trus, and estrus), which normally cycles in 4–5  days in rats 
and mice, estradiol secreted from the ovary gradually increases 
until proestrus stage and rapidly decreases at estrus stage. 
Relatively low concentration of estradiol during metestrous 
and diestrus stages inhibits GnRH pulsatility. However, high 
concentration of estradiol in the afternoon of proestrus stage 
increases the frequency and amplitude of GnRH pulsatility 
resulting in GnRH/LH surge that induces ovulation from the 
ovary (14, 15) (Figure  1).

The HPG axis does not operate independently and is gated 
by multiple neurocircuitries, one of which is the circadian clock 
system. The term “circadian” is derived from the Latin words 
“circa” and “dies” referring to “around a day”; hence, the circa-
dian clock system ensures the timely regulation of physiological 
and molecular processes over a 24-h cycle. The cyclic features of 
reproduction are the result of synchrony to the circadian system. 
The importance of the circadian system in the regulation of the 
HPG axis was clearly shown by GnRH neuron firing activity of 
ovariectomized mice treated with high concentration of estradiol 
implants (OVX + E). Increased GnRH neuron firing activity and 
LH surge only occurred in the late afternoon or early night in 
OVE + E mice (16). Reproductive behavior is also regulated by 
the circadian system, such as increased sexual desire evident in 
men during the morning phase triggered by high testosterone 
levels (17–20). Similarly, in rodent species, female mice appear 
to be more sexually receptive during the early night, a behavior 
associated with the circadian profile of gonadotropins and sex 
steroid release (21, 22).

Gonadotropin-releasing hormone neurons are webbed 
intricately with the biological clock system and have been 
studied extensively for their participation in the circadian 
release of gonadotropins and sex steroids (23–25). There has 
been a growing interest in kisspeptin neurons, the upstream 
regulators of GnRH neurons, which are thought to possess 
similar circadian components (26, 27), achieving a synchronized 
operating mechanism in the HPG axis. Kisspeptin neurons 
are not inherently localized in high numbers in reproduction-
related areas of the hypothalamus; they undergo a process of 
developmental maturation to attain their adult numbers and 
activity profile (28–30). Kisspeptin neuronal system is likely to 
“time” reproduction during development and aging by regulat-
ing circadian or estrus reproductive cycle as well as pulsatile 
GnRH/LH secretion.

NeUROCHeMiCAL PROPeRTieS 
OF KiSSPePTiN

Kisspeptin belongs to the RF-amide peptide family. The pro-
peptide, consisting of 145 amino acids is encoded by the Kiss1 
gene (31), which upon cleavage by the convertase enzyme, furin, 
generates the active form of kisspeptin, Kp54 (32). Shorter 
peptides such as Kp10, Kp13, and Kp14 are found in circulating 
levels in the placenta and result from the fragmentation of the 
unstable Kp54 (33, 34). Kisspeptin neurons adopt different func-
tional roles in the AVPV and ARC as depicted by their opposing 
estrogenic response to ensure the inclusion of both a positive and 
negative feedback loop within the HPG axis, respectively (7, 35) 
(Figure 1).

Kisspeptin neurons in the AVPV are estrogen-sensitive, co-
expressing high percentage of ERα type receptors (approx. 99% 
in rodents) and lower percentage of ERβ type receptors (approx. 
31%) (7). Steroid-dependent activation of kisspeptin via ERα 
are imperative for the positive feedback response as depicted by 
the increased number of cells expressing Kiss1 mRNA following 
estradiol treatment in intact female mice, and the lack of shift 
in firing pattern by estradiol in ERα knockout mice (36–38) 
(Figure  1). Peptides such as arginine vasopressin (AVP) (39) 
and gonadotropin-inhibitory hormone (GnIH) (40) and neu-
rotransmitters including glutamate and gamma-aminobutyric 
acid (GABA) (41, 42) also regulate AVPV kisspeptin neurons 
(Figure 1). It was also reported that AVPV kisspeptin neurons 
co-express galanin (43–45) and dopamine (46).

As opposed to the AVPV, kisspeptin neurons in the ARC are 
sexually differentiated during the prepubertal stages and achieve 
stability both in terms of Kiss1 expression and cell number during 
adulthood; latter attributed to the prevailing steroidal environ-
ment (47, 48). Furthermore, they co-express ERα, ERβ, and 
androgen receptors (7, 8), such that castrated/ovariectomized 
rodents exhibit increased Kiss1 expression levels, which are 
suppressed upon exposure to testosterone and estrogen (7, 8) 
(Figure  1). Kisspeptin neurons also respond to GnIH (49) via 
GPR147 receptors (50, 51) (Figure 1).

The Role of Kisspeptin in Reproduction
Parhar et al. were the first to elucidate the association between 
kisspeptin and GnRH, and the role of kisspeptin within the 
reproductive systems of non-mammalian vertebrates (52). 
Subsequently, similar findings were reported in mammalian 
species, including mice (53) and rats (6). Distribution studies 
demonstrated the presence of Kiss1-R in hypothalamic regions 
engaged in reproduction, such as the POA, ARC, and dorsome-
dial hypothalamus (DMH) (54, 55). The concentration of Kiss1-R 
in the POA was found to colocalize with GnRH neurons, with 
kisspeptin fiber projections evident in 40 and 10% of GnRH 
neurons in the POA of adult female and male mice, respectively 
(28, 52). Furthermore, the in vivo administration of kisspeptin 
triggers an acute release of GnRH, an effect that is abrogated in 
Kiss1-R knockout mice (56).

Loss of function of kisspeptin is detrimental to the HPG axis. 
Kiss1/Kiss1-R gene mutations are characterized by general infer-
tility and cause abnormal gonadal development, delayed sexual 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FiGURe 1 | interactions among the central biological clock and reproductive neurons in the hypothalamic–pituitary–gonadal axis of females. The 
suprachiasmatic nucleus (SCN), the central biological clock, can be divided into two major subdivisions known as the ventrolateral (vl) SCN, the core, and the 
dorsomedial (dm) SCN, the shell. The former contains cell bodies of vasoactive intestinal polypeptide (VIP) neurons and the latter contains cell bodies of arginine 
vasopressin (AVP) neurons. The vlSCN acts as the conductor of rhythmicity and transmits synchronizing cues to the dmSCN. VIP neurons project to gonadotropin-
releasing hormone (GnRH) neurons in the preoptic area (POA), whereas AVP neurons project to kisspeptin (Kiss) neurons in the anteroventral periventricular nucleus 
(AVPV). Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamus (DMH) inhibit the activity of GnRH neurons as well as kisspeptin neurons 
in the AVPV and arcuate nucleus (ARC). AVPV kisspeptin neuron is also regulated by stimulatory and inhibitory neurotransmitters glutamate and GABA, respectively. 
GnRH is released at the median eminence (ME) to stimulate luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion from the pituitary, which 
stimulate steroidogenesis and gametogenesis in the ovary. Estradiol (E2) secreted from the ovary gradually increases and rapidly decreases during the estrous cycle 
[metestrous (M), diestrus (D), proestrus (P), and estrus (E)] in rodents. GnIH and Kiss neurons express estrogen receptor (ER) to convey hormonal information to the 
reproductive neuronal network. ARC Kiss neurons may function as part of the negative feedback mechanism of E2 on pulsatile GnRH release at the ME. On the 
other hand, AVPV Kiss neurons may function as the positive feedback mechanism of high E2 concentration on GnRH/LH surge. E2 inhibits GnIH gene expression in 
the DMH and Kiss gene expression in the ARC but stimulates Kiss gene expression in the AVPV. Kiss and GPR54 are reported to be expressed in gonadotropes, 
and they are thought to exert synergic effects with GnRH and E2 on LH release (13). Solid lines indicate direct regulation by receptors of signaling molecules, 
whereas dotted lines indicate possible indirect regulation.
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TABLe 1 | Developmental changes in kisspeptin–GnRH system in female mice.

Postnatal (P0-30) Puberty (P30-35) Adult 
(8 weeks–1 year)

Aging (1 year)

Kisspeptin cell number  
in AVPV

No cells at P10  
Cell number increases from P25

Adult level – Increase in morphologically 
irregular cells

GnRH neurons with  
kisspeptin fibers

Close apposition between kisspeptin fibers and 
 GnRH cell bodies become apparent on P25

Rapid increase to 
reach adult level

– ?

GnRH neurons with Gpr54 40% of GnRH neurons express Gpr54 at P0,  
approximately 70% from P20

Adult level – ?

Adapted from Clarkson and Herbison (28), Herbison et al. (61), Clarkson et al. (30), and Zhang et al. (63).
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maturation, and aberrant hormone secretion (57–59). Similar 
sexual irregularities and decreased serum gonadotropin levels are 
evident in GnRH-specific Kiss1-R knockout mice (60), endorsing 
kisspeptin as the prime effector of GnRH.

Developmental Timing of  
Kisspeptin – A Checkpoint 
for Reproductive Functionality
The kisspeptinergic system develops dynamically throughout 
the mammalian lifespan until the start of the aging process. The 
maturation of the kisspeptin system begins with an increase in 
kisspeptin neurons from peripubertal stages in C57BL/6J mice 
(28) (Table  1). Kisspeptin cells are absent on postnatal day 10 
(P10) and rapidly increase in number from P25 (28, 29). This 
increase in the neuronal population during development occurs 
concomitantly with both the formation of kisspeptin fiber apposi-
tions to GnRH neurons and Kiss1-R mRNA expression in GnRH 
neurons (28, 61) (Table  1). Connectivity between kisspeptin 
and GnRH neurons is barely noticeable before PN25 and slowly 
increases until puberty (28). The small number of kisspeptin cells 
evident during the prepubertal stage suggests that the kisspeptin-
ergic system is “not yet-functional” and immature, an idea sup-
ported by the fact that during the same period GnRH neuronal 
activity is regulated by glutamatergic and GABAergic inputs (62).

Puberty is a fundamental stage, during which the kisspeptin 
system achieves its full functionality. Kisspeptin expression 
increases exponentially from the time of puberty until adulthood 
(30). A sevenfold increase in the number of Kiss1 mRNA-express-
ing cells in AVPV of male mice is evident during the transition 
from puberty to adulthood, a pattern consistent with a fivefold 
increase in the number of kisspeptin expressing cells from PN25 
to adulthood (64). However, these changes are exclusive to AVPV: 
the number of Kiss1 mRNA-expressing cells remains unchanged 
in ARC (64). Evidence also exists to support the increased 
responsiveness of GnRH neurons to kisspeptin: 44% GnRH 
neuronal activity upon exposure to kisspeptin is evident during 
puberty, whereas 90% is evident during adulthood in male mice 
(28, 64). Interestingly, the pulsatile secretion of GnRH changes 
from one pulse every 90 min to one pulse every 30 min from the 
early postnatal to pubertal stages in male rats (65). The stability 
in the frequency of GnRH release marks the maturation of the 
HPG axis and suggests the onset of an active kisspeptin–GnRH 
stimulatory mechanism, which is required for a preovulatory 
GnRH/LH surge in females (66, 67).

Aging is a process that entails numerous degenerative pro-
cesses and affects reproductive traits. In female mice, although 
the number of kisspeptin neurons remains unaffected during the 
aging process, specific cellular changes occur, including:

• decreased numbers of ERα-positive kisspeptin neurons,
• decreased kisspeptin neuronal activity at the time of LH surge, 

and
• morphological cellular changes in kisspeptin neurons fea-

turing irregular shapes and atypical nucleus/cytoplasm (63) 
(Table 1).

A study by Ishii et al. showed that Kiss1 mRNA and peptide 
expression in AVPV remains unchanged in middle-aged rats 
compared with young rats (68). The findings suggest that age-
related reproductive neuroendocrine deficiencies originate from 
a loss of response of kisspeptin neurons in AVPV to estrogenic 
signals, therefore altering its secretory pattern and disrupting 
stimulation of the HPG axis (69). Aged rats (18–21 months old) 
exhibit reduced LH and FSH secretion, which coincides with 
decreased GnRH mRNA expression in the POA and reduced 
GnRH fiber projections to the median eminence (ME) (70–72).

iNTeGRATiON OF RHYTHMiCiTY 
wiTHiN THe HYPOTHALAMiC–
PiTUiTARY–GONADAL AXiS – 
“CYCLiNG” RePRODUCTiON

Several brain circuits converge to maintain the timely activation 
of the HPG axis: this maintenance is achieved by rhythmic cues 
originating mainly from the central biological clock located in 
the suprachiasmatic nucleus (SCN) (73, 74). The SCN is anatomi-
cally structured into a core and a shell, termed the ventrolateral 
(vl) and dorsomedial (dm) SCN, demarcated by neuropeptide 
composition (75). Vasoactive intestinal peptide (VIP) is the main 
neuropeptide released by most neurons of the vlSCN, which 
account for 10% of the total SCN, whereas neurons synthesizing 
AVP are localized in the dmSCN (76, 77). The vlSCN acts as the 
conductor of rhythmicity and transmits synchronizing cues to 
the dmSCN, which in turn amplifies the signal and conveys it 
to slave oscillators present in other brain regions and cellular 
entities (78) (Figure 1).

Among different hypothalamic nuclei of the HPG axis, the 
POA is densely innervated by VIP-ir fibers, with a subpopulation 
of GnRH neurons (±40%) expressing the cognate receptors for 
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TABLe 2 | Reproductive deficiencies observed in clock genes mutants 
mice.

Clock 
gene

Gender Mutation Reproductive deficiencies

Clock Female ClockΔ19 Irregular and lengthened estrous cycles, 
↑ fetal reabsorption and term-pregnancy 
failures, interferes with coordinated release 
of GnRH, abnormal LH secretion patterns, 
affects maternal behavior, growth, litter size, 
and survival of pups (96, 110–112)

Male ClockΔ19 No significant difference in male fecundity 
(110, 112)

Bmal1 Female Bmal1−/− Infertile following sub-developed reproductive 
organs, abnormal estrous cycles, ↓ 
progesterone synthesis (108, 113–115)

Male Bmal1−/− ↑ LH levels, ↓ testosterone levels, 
impaired steroidogenesis, and accelerated 
reproductive aging (108, 115)

Per1/
Per2

Female Per1−/− and 
Per2−/−

No signs of reproductive instability in young 
adult stages; mid-aged mutants have 
prolonged and acyclic estrous cycles (116)

Male – No available literature on male rodents

Bmal1, Brain and muscle ARNT-like 1; Clock, Circadian locomotor output cycle kaput; 
FSH, follicle-stimulating hormone; GnRH, gonadotropin-releasing hormone; LH, 
luteinizing hormone; and Per, period.
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VIP, VPAC2/VIP2 (79) (Figure 1). This connectivity is further 
supported by the decrease in VIP-ergic innervations to the 
POA following lesions of VIP-positive neurons in the SCN (80). 
Importantly, the connectivity between the SCN to GnRH neurons 
is strengthened with an increase in VIP contacts to GnRH cells 
from prepubertal stages to adulthood, suggesting a circadian 
clock-aided maturation of the reproductive axis with the genera-
tion of estrous cyclicity and hormonal rhythms (81). Signals from 
the SCN are relayed to the AVPV through AVP fiber projections, as 
substantiated by anterograde tracing from the central clock (82). 
Studies have demonstrated expression of AVP-specific receptor, 
V1a, in kisspeptin neurons, and manipulation of AVP content in 
the brain elicits a time-dependent response of kisspeptin neurons 
(39) (Figure 1).

The DMH is also an important brain region for reproduc-
tive  functionality, given its high content of GnIH neurons 
and co-expression of GPR147 receptors, specific to the GnIH 
peptide, in both kisspeptin and GnRH neurons (40, 50, 83–85) 
(Figure 1). The DMH receives extensive fiber projections from 
both regions  of the SCN, although the majority of the fibers 
 originate  from the vlSCN (86). Exogenous administration of 
VIP triggers a decrease in GnIH cellular activity that is confined 
to the evening,  mediating its time-specific modulation (87). 
Nonetheless, GnIH neurons do not co-express VIP receptors (87), 
suggesting that its neuronal activity is regulated by the circadian 
clock via alternate pathways, such as interneurons (Figure  1). 
On  the other hand, it was recently demonstrated that GnIH 
inhibits VIP signaling in GnRH neuronal cell line, GT1-7, and 
inhibits VIP induced GnRH release from hypothalamic culture of 
female mice (88). Accordingly, GnIH neurons may modulate the 
activity of GnRH neurons in parallel with VIP, possibly to trans-
late endogenous hormonal signals [estradiol: (89, 90) (Figure 1); 
melatonin: (84); glucocorticoid: (91, 92)]. Based on the fiber 
networks between the SCN and reproductive nuclei such as the 
POA, AVPV, ARC, and DMH, it is suggested that interactions 
among the central biological clock and reproductive neurons 
ensure optimal reproductive functionality (Figure 1).

Disruption of the Circadian System and 
its effects on Reproductive Functionality
It is generally accepted that ablation of the SCN leads to repro-
ductive incompetency by affecting subparts of the HPG axis such 
as interfering with diurnal variation of reproductive hormones 
(93). Females are more prone to this ablation as reported by a loss 
of ovulation, disruption of estrous cyclicity with desynchronized 
LH surge, and vaginal cornification induced by acyclic prolactin 
levels (94–96).

Circadian rhythmicity of SCN neurons is maintained by the 
transcriptional auto-regulatory loop between the clock genes 
and their products. Clock genes, such as Period 1 (Per1) and 
Period 2 (Per2), are transcriptionally activated by photic signals 
(97–99) and regulate the expression of Brain and muscle ARNT-
like 1 (Bmal1), which dimerizes with Circadian locomotor output 
cycle kaput (Clock) to enhance circadian transcriptional activity 
(100, 101). Additionally, Per and cryptochrome genes (Cry) are 
involved in the negative limb of the clock system by repressing 

CLOCK:BMAL1-induced transcriptional activity (102–104). 
Repression of the circadian machinery is also undertaken 
by genes such as Rev-Erbα (also known as Nuclear receptor 
 subfamily 1, group D, member 1) (105, 106) and Glycogen syn-
thase kinase 3β (107).

Global mutations, as listed in Table  2, generate stronger 
reproductive deficiencies as opposed to site- or neuron-specific 
gene alterations. Clock mutant female mice do not exhibit LH 
surges and normal estrous cyclicity (96). Bmal1 knockout male 
mice exhibit lowered testosterone levels, accompanied by high 
serum LH concentrations (108). These results also indicate 
that the effects of clock-gene mutations on the HPG axis differ 
between the sexes, as suggested by gonadal and sex chromosome-
dependent differences in the circadian system (109).

Rhythmicity of GnRH Neuronal Activity
Clock genes, such as Bmal1, Per1 and Per2, exhibit rhythmic 
mRNA expression synchronous with oscillations in GnRH levels 
in GT1-7 cell line (117, 118). The intrinsic circadian molecular 
machinery of GnRH neurons is responsible for the mode of 
GnRH secretion, because a mutation in the Clock gene results in 
significant decrease of GnRH pulse frequency. On the other hand, 
overexpression of Cry gene increases GnRH pulse amplitude 
without changing pulse frequency (117). An in vivo study showed 
the sub-fertile attributes of GnRH-specific Bmal1 knockout mice, 
characterized by irregular LH secretion while retaining normal 
reproductive processes, including estrous cycle (119). These results 
suggest that although GnRH neurons have intrinsic molecular 
timing machinery, GnRH neurons have to be properly regulated 
by other neurons to achieve regular GnRH/LH secretion.

The circadian regulation of GnRH neurons is two-tiered, 
because they also receive VIP-ergic afferents from the vlSCN and 
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possess VPAC2 receptor (79). GnRH neuronal firing is activated 
in OVX + E mice by VIP during surge onset, but not in OVX mice. 
Administration of VIP receptor antagonist during surge peak 
decreases GnRH neuronal activity (120). An in vitro study using 
GT1-7 cells showed that GnRH neurons exhibit daily changes in 
GnRH levels and secretory patterns following stimulatory cues 
from VIP and kisspeptin (121). These results suggest that VIP can 
directly regulate circadian rhythm of GnRH neurons (Figure 1).

Gonadotropin-releasing hormone/luteinizing hormone release 
is also regulated by AVP. The circadian GnRH release coincided 
with circadian AVP release in coculture experiment of female 
rat POA and SCN (122). Administration of AVP into the POA 
of SCN lesioned female rat induced surge-like LH release (123). 
Interestingly, the effect of AVP administration to the POA in 
SCN-intact female rat was time-dependent. When AVP was 
administered during the second half of the light period, LH surge 
was induced in 30% of the animals; however, AVP had no effect 
when it was administered during the first half of the light period, 
indicating that AVP is part of the circadian regulatory machinery 
of LH surge (124). Intracerebroventricular (icv) injection of AVP 
on the afternoon of proestrus also induced LH surge in Clock 
mutant mice (125). Because AVP has no direct projection on 
GnRH neurons, these effect of AVP on GnRH/LH release may 
be mediated by AVPV kisspeptin neurons because SCN sends 
AVP fiber projections to AVPV and AVPV kisspeptin neurons 
express AVP-specific receptor, V1a (39, 82) (Figure 1). Effect of 
AVP on GnRH or LH release shown in in vitro (122) and in vivo 
(123) may also have been mediated by AVPV kisspeptin neurons 
because AVPV and POA regions are located closely in the brain.

Rhythmicity of AvPv Kisspeptin 
Neuronal Activity
Kisspeptin mRNA in the AVPV peaks during the evening of 
proestrus in female rats, whereas kisspeptin mRNA in the ARC 
does not (126). AVPV kisspeptin neurons display rhythmic 
characteristics in ovariectomized female mice administered 
with constant estradiol, with peak expression occurring during 
late subjective day coincident with LH release. Kiss1 rhythmicity 
only occurs in the presence of steroidal milieu: gonadectomised 
females are devoid of Kiss1 rhythms, paralleled by a lack of LH 
rhythmicity (26). The circadian increase in Kiss1 expression in 
the AVPV and the activation of GnRH cells were further shown 
to be dependent on ipsilateral neural input from the SCN (127).

A recent study showed the presence of circadian expression of 
Per1 in AVPV kisspeptin neurons. Interestingly, Per1 rhythm in 
the AVPV was estradiol-dependent (27). Noradrenaline (NA) is 
one of the modulators of GnRH release, and NA fiber terminals 
exist in close apposition to AVPV kisspeptin neurons. The use 
of Prazosin, an α1-adrenergic blocker, altered Kiss1 mRNA 
expression and Kiss1 contents, associated with the disruption in 
Clock and Bmal1 expression in the POA (128), providing further 
evidence to the circadian regulation of kisspeptin signaling by 
clock genes.

Another trait endorsing rhythmicity of the kisspeptinergic sys-
tem is the cyclic expression of Kiss1-R by GnRH neurons, which 
is dependent on an elevated steroidal environment, explaining 
its oscillating levels prior to the LH surge (129). This receptor 

expression pattern occupies a prime role in regulating the sensi-
tivity of GnRH neurons to kisspeptin (39, 129), contributing to 
its cyclic secretion profile.

Rhythmicity of ARC Kisspeptin Neuronal 
Activity
Ovariectomized rats with subcutaneous estradiol capsules 
were administered with kisspeptin or kisspeptin antagonist via 
bilateral intra-ARC or intra-POA cannulae or icv cannulae, and 
blood samples were collected for LH measurement via intrave-
nous catheters. Administration of kisspeptin resulted in a dose-
dependent increase in LH release. Although icv and intra-ARC 
administration of kisspeptin antagonist profoundly attenuated 
LH pulse frequency, intra-POA administration of kisspeptin 
antagonist did not affect pulsatile LH secretion (130). Dense kiss-
peptin fibers from ARC terminate at GnRH axons in the ME (44, 
131, 132) (Figure 1). Accordingly, ARC kisspeptin may stimulate 
the frequency of pulsatile release of GnRH in the ME.

Kisspeptin neurons of ARC are referred to as KNDy neurons, 
because of their unique co-expression with neurokinin B (NKB) 
and dynorphin (Dyn) (133). The cellular activity of KNDy neu-
rons is induced and repressed by NKB and Dyn, respectively, and 
ARC also possesses a subpopulation of NKB neurons that are not 
kisspeptin related and mediate direct actions on GnRH secretion 
(134). Central administration of Dyn inhibited multiple-unit 
activity (MUA) in the medial basal hypothalamus and pulsatile 
LH secretion, whereas NKB induced MUA and pulsatile LH 
secretion (135). These results suggest that ARC kisspeptin neu-
rons regulate pulsatile GnRH/LH secretion acting with NKB and 
Dyn in the ARC.

CONCLUDiNG ReMARKS

It is thought that the generation of oscillations within cellular 
entities requires coordinated inputs from the SCN as well as an 
intrinsic circadian machinery (136, 137). As reviewed above, the 
cyclic reproductive functions also rely on regulatory cues origi-
nating from the SCN. Kisspeptin neurons exhibit their “timed” 
actions from their maturation to regulate GnRH/LH pulse and 
surge. These characteristic features of kisspeptin neuronal activity 
are in line with the influence of the central biological clock in 
imparting rhythmic cues to slave oscillators present in individual 
cells, and its coordinated entrainment of other elements of the 
HPG axis to ensure normal reproductive functions. It was shown 
that disruption of clock genes in GnRH neurons modifies the 
frequency and amplitude of GnRH pulse. Given the dearth of 
information on the role of circadian genes in the regulation of 
kisspeptin neurons, site-directed clock gene mutation study 
is imperative to understand the role of its intrinsic oscillatory 
mechanism in reproduction. It is also important to study how 
estradiol drives the oscillatory mechanism of kisspeptin neurons 
in females.
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